File: ctblpc.gi

package info (click to toggle)
gap 4.15.1-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 110,212 kB
  • sloc: ansic: 97,261; xml: 48,343; cpp: 13,946; sh: 4,900; perl: 1,650; javascript: 255; makefile: 252; ruby: 9
file content (115 lines) | stat: -rw-r--r-- 3,229 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
#############################################################################
##
##  This file is part of GAP, a system for computational discrete algebra.
##  This file's authors include Alexander Hulpke.
##
##  Copyright of GAP belongs to its developers, whose names are too numerous
##  to list here. Please refer to the COPYRIGHT file for details.
##
##  SPDX-License-Identifier: GPL-2.0-or-later
##
##  This file contains the parts of the Dixon-Schneider specific to pc groups
##


#############################################################################
##
#F  PcGroupClassMatrixColumn(<D>,<mat>,<r>,<t>)  . calculate the t-th column
#F       of the r-th class matrix and store it in the appropriate column of M
##
BindGlobal( "PcGroupClassMatrixColumn", function(D,M,r,t)
  local c,s,z,i,T,p,orb,chunk;
  if t=1 then
    M[D.inversemap[r]][t]:=D.classiz[r];
  else
    orb:=DxGaloisOrbits(D,r);
    z:=D.classreps[t];
    c:=orb.orbits[t][1];
    if c<>t then
      p:=RepresentativeAction(orb.group,c,t);
      # was the first column of the galois class active?
      if ForAny([1..NrRows(M)],i->M[i,c]>0) then
        for i in D.classrange do
          M[i^p][t]:=M[i][c];
        od;
        Info(InfoCharacterTable,2,"Computing column ",t,
          " : by GaloisImage");
        return;
      fi;
    fi;

    T:=DoubleCentralizerOrbit(D,r,t);
    Info(InfoCharacterTable,2,"Computing column ",t," :",
      Length(T[1])," instead of ",D.classiz[r]);

    for i in [1..Length(T[1])] do
      T[1][i]:=T[1][i]*z;
    od;
    #T[3]:=List(T[1],x->Position(D.ids,D.identification(D,x)));
    T[3]:=[];

    # identify in blocks of at most 5000
    chunk:=5000;

    for i in [0..QuoInt(Length(T[1]),chunk)] do
      orb:=[chunk*i+1..Minimum(chunk*(i+1),Length(T[1]))];

      #z:=ClassesSolvableGroup(D.group,0, rec(candidates:=T[1]{orb}));
      z:=MultiClassIdsPc(D.classiddat,T[1]{orb});
      z:=List(z,x->Position(D.ids,x));
      T[3]{orb}:=z;

    od;

    for i in [1..Length(T[1])] do
      s:=T[3][i];
#      if s=fail then
#        Error("failure");
#        s:=Position(D.ids,D.identification(D,T[1][i]));
#      fi;

      M[s][t]:=M[s][t]+T[2][i];
    od;

  fi;
end );


#############################################################################
##
#F  IdentificationSolvableGroup(<D>,<el>) . .  class invariants for el in G
##
BindGlobal( "IdentificationSolvableGroup", function(D,el)
  return MultiClassIdsPc(D.classiddat,[el])[1];
  #return ClassesSolvableGroup(D.group,0,rec(candidates:=[el]))[1].representative;
end );


#############################################################################
##
#M  DxPreparation(<G>)
##
InstallMethod(DxPreparation,"pc group",true,[IsPcGroup,IsRecord],0,
function(G,D)
local i,dat;

  if not IsDxLargeGroup(G) then
    TryNextMethod();
  fi;

  D.ClassElement:=ClassElementLargeGroup;
  D.identification:=IdentificationSolvableGroup;
  D.rationalidentification:=IdentificationGenericGroup;
  D.ClassMatrixColumn:=PcGroupClassMatrixColumn;

  dat:=rec(group:=G);
  D.classiddat:=dat;
  D.ids:=MultiClassIdsPc(dat,D.classreps);
  D.rids:=[];
  for i in D.classrange do
    D.rids[i]:=D.rationalidentification(D,D.classreps[i]);
  od;

  return D;

end);