File: cyclotom.gi

package info (click to toggle)
gap 4.15.1-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 110,212 kB
  • sloc: ansic: 97,261; xml: 48,343; cpp: 13,946; sh: 4,900; perl: 1,650; javascript: 255; makefile: 252; ruby: 9
file content (2092 lines) | stat: -rw-r--r-- 63,845 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
#############################################################################
##
##  This file is part of GAP, a system for computational discrete algebra.
##  This file's authors include Thomas Breuer.
##
##  Copyright of GAP belongs to its developers, whose names are too numerous
##  to list here. Please refer to the COPYRIGHT file for details.
##
##  SPDX-License-Identifier: GPL-2.0-or-later
##
##  This file is being maintained by Thomas Breuer.
##  Please do not make any changes without consulting him.
##  (This holds also for minor changes such as the removal of whitespace or
##  the correction of typos.)
##
##  This file contains methods for cyclotomics.
##


#############################################################################
##
#V  Cyclotomics . . . . . . . . . . . . . . . . . .  field of all cyclotomics
##
BindGlobal( "Cyclotomics", Objectify( NewType(
    CollectionsFamily( CyclotomicsFamily ),
    IsField and IsAttributeStoringRep ),
    rec() ) );
SetName( Cyclotomics, "Cyclotomics" );
SetLeftActingDomain( Cyclotomics, Rationals );
SetIsFiniteDimensional( Cyclotomics, false );
SetIsFinite( Cyclotomics, false );
SetIsWholeFamily( Cyclotomics, true );
SetDegreeOverPrimeField( Cyclotomics, infinity );
SetDimension( Cyclotomics, infinity );
SetRepresentative(Cyclotomics, 0);


#############################################################################
##
#M  Conductor( <list> ) . . . . . . . . . . . . . . . . . . . . .  for a list
##
##  (This works not only for lists of cyclotomics but also for lists of
##  lists of cyclotomics etc.)
##
InstallOtherMethod( Conductor,
    "for a list",
    [ IsList ],
    function( list )
    local n, entry;
    n:= 1;
    for entry in list do
      n:= LcmInt( n, Conductor( entry ) );
    od;
    return n;
    end );


#############################################################################
##
#M  RoundCyc( <cyc> ) . . . . . . . . . . cyclotomic integer near to <cyc>
##
InstallMethod( RoundCyc, "general cyclotomic", [ IsCyclotomic ],
    function ( x )
    local n, cfs, int, i, c;
    n:= Conductor( x );
    cfs:= ExtRepOfObj( x );
    int:= EmptyPlist( n );
    for i in [ 1 .. n ] do
      c:= cfs[i];
      if IsInt( c ) then
        int[i]:= c;
      elif c < 0 then
        int[i]:= Int( c - 1/2 );
      else
        int[i]:= Int( c + 1/2 );
      fi;
    od;
    return CycList( int );
end );


#############################################################################
##
#M  RoundCycDown( <cyc> ) . . . . . . . . .  cyclotomic integer near to <cyc>
##                                                       rounding halves down
##
InstallMethod( RoundCycDown, "general cyclotomic", [ IsCyclotomic ],
    x -> CycList( List( ExtRepOfObj( x ), RoundCycDown ) ) );


#############################################################################
##
#M  ComplexConjugate( <cyc> )
#M  ComplexConjugate( <list> )
##
InstallMethod( ComplexConjugate,
    "for a cyclotomic",
    [ IsCyc ],
    cyc -> GaloisCyc( cyc, -1 ) );

InstallMethod( ComplexConjugate,
    "for a list",
    [ IsList ],
    function( list )
    local result, i;

    result:= [];
    for i in [ 1 .. Length( list ) ] do
      if IsBound( list[i] ) then
        result[i]:= ComplexConjugate( list[i] );
      fi;
    od;
    return result;
    end );


#############################################################################
##
#M  RealPart( <z> )
#M  RealPart( <list> )
##
InstallMethod( RealPart,
    "for a scalar",
    [ IsScalar ],
    z -> ( z + ComplexConjugate( z ) ) / 2 );

InstallMethod( RealPart,
    "for a list",
    [ IsList ],
    function( list )
    local result, i;

    result:= [];
    for i in [ 1 .. Length( list ) ] do
      if IsBound( list[i] ) then
        result[i]:= RealPart( list[i] );
      fi;
    od;
    return result;
    end );


#############################################################################
##
#M  ImaginaryPart( <z> )
#M  ImaginaryPart( <list> )
##
InstallMethod( ImaginaryPart,
    "for a cyclotomic",
    [ IsCyc ],
    z -> E(4) * ( ComplexConjugate( z ) - z ) / 2 );

InstallMethod( ImaginaryPart,
    "for a list",
    [ IsList ],
    function( list )
    local result, i;

    result:= [];
    for i in [ 1 .. Length( list ) ] do
      if IsBound( list[i] ) then
        result[i]:= ImaginaryPart( list[i] );
      fi;
    od;
    return result;
    end );


#############################################################################
##
#M  ExtRepOfObj( <cyc> )
##
##  <#GAPDoc Label="ExtRepOfObj:cyclotomics">
##  <ManSection>
##  <Meth Name="ExtRepOfObj" Arg='cyc' Label="for a cyclotomic"/>
##
##  <Description>
##  The external representation of a cyclotomic <A>cyc</A> with conductor
##  <M>n</M> (see <Ref Attr="Conductor" Label="for a cyclotomic"/> is
##  the list returned by <Ref Func="CoeffsCyc"/>,
##  called with <A>cyc</A> and <M>n</M>.
##  <P/>
##  <Example><![CDATA[
##  gap> ExtRepOfObj( E(5) ); CoeffsCyc( E(5), 5 );
##  [ 0, 1, 0, 0, 0 ]
##  [ 0, 1, 0, 0, 0 ]
##  gap> CoeffsCyc( E(5), 15 );
##  [ 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
InstallMethod( ExtRepOfObj,
    "for an internal cyclotomic",
    [ IsCyc and IsInternalRep ],
    COEFFS_CYC );


#############################################################################
##
#F  CoeffsCyc( <z>, <N> )
##
InstallGlobalFunction( CoeffsCyc, function( z, N )
    local coeffs,      # coefficients list (also intermediately)
          n,           # length of `coeffs'
          quo,         # factor by that we have to blow up
          s,           # denominator of `quo' (we have to reduce)
          factors,     #
          second,      # product of primes in second reduction step
          first,
          val,
          kk,
          pos,
          j,
          k,
          p,
          nn,
          newcoeffs;

    if IsCyc( z ) then

      # `z' is an internal cyclotomic, and therefore it is represented
      # in the smallest possible cyclotomic field.

      coeffs:= ExtRepOfObj( z ); # returns `CoeffsCyc( z, Conductor( z ) )'
      n:= Length( coeffs );
      quo:= N / n;
      if not IsInt( quo ) then
        return fail;
      fi;

    else

      # `z' is already a coefficients list
      coeffs:= z;
      n:= Length( coeffs );
      quo:= N / n;
      if not IsInt( quo ) then

        # Maybe `z' was not represented with respect to
        # the smallest possible cyclotomic field.
        # Try to reduce `z' until the denominator $s$ disappears.

        s:= DenominatorRat( quo );

        # step 1.
        # First we get rid of
        # - the $p$-parts for those primes $p$ that divide both $s$
        #   and $n / s$, and hence remain in the reduced expression,
        # - all primes but the squarefree part of the rest.

        factors:= PrimeDivisors( s );
        second:= 1;
        for p in factors do
          if s mod p <> 0 or ( n / s ) mod p <> 0 then
            second:= second * p;
          fi;
        od;
        if second mod 2 = 0 then
          second:= second / 2;
        fi;
        first:= s / second;
        if first > 1 then
          newcoeffs:= ListWithIdenticalEntries( n / first, 0 );
          for k in [ 1 .. n ] do
            if coeffs[k] <> 0 then
              pos:= ( k - 1 ) / first + 1;
              if not IsInt( pos ) then
                return fail;
              fi;
              newcoeffs[ pos ]:= coeffs[k];
            fi;
          od;
          n:= n / first;
          coeffs:= newcoeffs;
        fi;

        # step 2.
        # Now we process those primes that shall disappear
        # in the reduced form.
        # Note that $p-1$ of the coefficients congruent modulo $n/p$
        # must be equal, and the negative of this value is put at the
        # position of the $p$-th element of this congruence class.
        if second > 1 then
          for p in Factors(Integers, second ) do
            nn:= n / p;
            newcoeffs:= ListWithIdenticalEntries( nn, 0 );
            for k in [ 1 .. n ] do
              pos:= 0;
              if coeffs[k] <> 0 then
                val:= coeffs[k];
                for j in [ 1 .. p-1 ] do
                  kk:= ( ( k - 1 + j*nn ) mod n ) + 1;
                  if coeffs[ kk ] = val then
                    coeffs[ kk ]:= 0;
                  elif pos <> 0 or coeffs[kk] <> 0 or kk mod p <> 1 then
                    return fail;
                  else
                    pos:= ( kk - 1 ) / p + 1;
                  fi;
                od;
                newcoeffs[ pos ]:= - val;
              fi;
            od;
            n:= nn;
            coeffs:= newcoeffs;
          od;
        fi;
        quo:= NumeratorRat( quo );

      fi;

    fi;

    # If necessary then blow up the representation in two steps.

    # step 1.
    # For each prime `p' not dividing `n' we replace
    # `E(n)^k' by $ - \sum_{j=1}^{p-1} `E(n*p)^(p*k+j*n)'$.
    if quo <> 1 then

      for p in PrimeDivisors( quo ) do
        if p <> 2 and n mod p <> 0 then
          nn  := n * p;
          quo := quo / p;
          newcoeffs:= ListWithIdenticalEntries( nn, 0 );
          for k in [ 1 .. n ] do
            if coeffs[k] <> 0 then
              for j in [ 1 .. p-1 ] do
                newcoeffs[ ( ( (k-1)*p + j*n  ) mod nn ) + 1 ]:= -coeffs[k];
              od;
            fi;
          od;
          coeffs:= newcoeffs;
          n:= nn;
        fi;
      od;

    fi;

    # step 2.
    # For the remaining divisors of `quo' we have
    # `E(n*p)^(k*p)' in the basis for each basis element `E(n)^k'.
    if quo <> 1 then

      n:= Length( coeffs );
      newcoeffs:= ListWithIdenticalEntries( quo*n, 0 );
      for k in [ 1 .. Length( coeffs ) ] do
        if coeffs[k] <> 0 then
          newcoeffs[ (k-1)*quo + 1 ]:= coeffs[k];
        fi;
      od;
      coeffs:= newcoeffs;

    fi;

    # Return the coefficients list.
    return coeffs;
end );


#############################################################################
##
#F  IsGaussInt(<x>) . . . . . . . . . test if an object is a Gaussian integer
##
InstallGlobalFunction( IsGaussInt,
    x -> IsCycInt( x ) and (Conductor( x ) = 1 or Conductor( x ) = 4) );


#############################################################################
##
#F  IsGaussRat( <x> ) . . . . . . .  test if an object is a Gaussian rational
##
InstallGlobalFunction( IsGaussRat,
    x -> IsCyc( x ) and (Conductor( x ) = 1 or Conductor( x ) = 4) );


##############################################################################
##
#F  DescriptionOfRootOfUnity( <root> )
##
##  Let $\zeta$ denote the primitive $n$-th root of unity $`E'(n)$,
##  and suppose that we know the coefficients of $\pm\zeta^i$ w.r.t.
##  the $n$-th Zumbroich basis (see~"ZumbroichBasis").
##  These coefficients are either all $1$ or all $-1$.
##  More precisely, they arise in the base conversion from (formally)
##  successively multiplying $\pm\zeta^i$ by
##  $1 = - \sum_{j=1}^{p-1} \zeta^{jn/p}$,
##  for suitable prime diviors $p$ of $n$,
##  and then treating the summands $\pm\zeta^{i + jn/p}$ in the same way
##  until roots in the basis are reached.
##  It should be noted that all roots obtained this way are distinct.
##
##  Suppose the above procedure must be applied for the primes
##  $p_1$, $p_2$, \ldots, $p_r$.
##  Then $\zeta^i$ is equal to
##  $(-1)^r \sum_{j_1=1}^{p_1-1} \cdots \sum_{j_r=1}^{p_r-1}
##  \zeta^{i + \sum_{k=1}^r j_k n/p_k}$.
##  The number of summands is $m = \prod_{k=1}^r (p_k-1)$.
##  Since these roots are all distinct, we can compute the sum $s$ of their
##  exponents modulo $n$ from the known coefficients of $\zeta^i$,
##  and we get $s \equiv m ( i + r n/2 ) \pmod{n}$.
##  Either $m = 1$ or $m$ is even,
##  hence this congruence determines $\zeta^i$ at most up to its sign.
##
##  Now suppose that $g = \gcd( m, n )$ is nontrivial.
##  Then $i$ is determined only modulo $n/g$, and we have to decide which
##  of the $g$ possible values $i$ is.
##  This could be done by computing the values $j_{0,p}$ for one
##  candidate $i$, where $p$ runs over the prime divisors $p$ of $n$
##  for which $m$ is the product of $(p-1)$.
##
##  (Recall that each $n$-th root of unity is of the form
##  $\prod_{p\in P} \prod_{k_p=1}^{\nu_p-1} \zeta^{j_{k,p}n/p^{k_p+1}}$,
##  with $j_{0,p} \in \{ 0, 1, \ldots, p-1 \}$, $j_{k,2} \in \{ 0, 1 \}$
##  for $k > 0$, and $j_{k,p} \in \{ -(p-1)/2, \ldots, (p-1)/2 \}$ for
##  $p > 2$.
##  The root is in the $n$-th Zumbroich basis if and only if $j_{0,2} = 0$
##  and $j_{0,p} \not= 0$ for $p > 2$.)
##
##  But note that we do not have an easy access to the decomposition
##  of $m$ into factors $(p-1)$,
##  although in fact this decomposition is unique for $n \leq 65000$.
##
##  So the exponent is identified by dividing off one of the candidates
##  and then identifying the quotient, which is a $g$-th or $2 g$-th
##  root of unity.
##  (Note that $g$ is small compared to $n$.
##  $m$ divides the product of $(p-1)$ for prime divisors $p$
##  that divide $n$ at least with exponent $2$.
##  The maximum of $g$ for $n \leq 65000$ is $40$, so $2$ steps suffice
##  for these values of $n$.)
##
InstallGlobalFunction( DescriptionOfRootOfUnity, function( root )
    local coeffs,   # Zumbroich basis coefficients of `root'
          n,        # conductor of `n'
          sum,      # sum of exponents with nonzero coefficients
          num,      # number of nonzero coefficients
          i,        # loop variable
          val,      # one coefficient
          coeff,    # one nonzero coefficient (either `1' or `-1')
          exp,      # candidate for the exponent
          g,        # `Gcd( n, num )'
          groot;    # root in recursion

    # Handle the trivial cases that `root' is an integer.
    if root = 1 then
      return [ 1, 1 ];
    elif root = -1 then
      return [ 2, 1 ];
    fi;
    Assert( 1, not IsRat( root ) );

    # Compute the Zumbroich basis coefficients,
    # and number and sum of exponents with nonzero coefficient (mod `n').
    coeffs:= ExtRepOfObj( root );
    n:= Length( coeffs );
    sum:= 0;
    num:= 0;
    for i in [ 1 .. n ] do
      val:= coeffs[i];
      if val <> 0 then
        sum:= sum + i;
        num:= num + 1;
        coeff:= val;
      fi;
    od;
    sum:= sum - num;

    # `num' is equal to `1' if and only if `root' or its negative
    # belongs to the basis.
    # (The coefficient is equal to `-1' if and only if either
    # `n' is a multiple of $4$ or
    # `n' is odd and `root' is a primitive $2 `n'$-th root of unity.)
    if num = 1 then
      if coeff < 0 then
        if n mod 2 = 0 then
          sum:= sum + n/2;
        else
          sum:= 2*sum + n;
          n:= 2*n;
        fi;
      fi;
      Assert( 1, root = E(n)^sum );
      return [ n, sum mod n ];
    fi;

    # Let $N$ be `n' if `n' is even, and equal to $2 `n'$ otherwise.
    # The exponent is determined modulo $N / \gcd( N, `num' )$.
    g:= GcdInt( n, num );
    if g = 1 then

      # If `n' and `num' are coprime then `root' is identified up to its sign.
      exp:= ( sum / num ) mod n;
      if root <> E(n)^exp then
        exp:= 2*exp + n;
        n:= 2*n;
      fi;

    elif g = 2 then

      # `n' is even, and again `root' is determined up to its sign.
      exp:= ( sum / num ) mod ( n / 2 );
      if root <> E(n)^exp then
        exp:= exp + n / 2;
      fi;

    else

      # Divide off one of the candidates.
      # The quotient is a `g'-th or $2 `g'$-th root of unity,
      # which can be identified by recursion.
      exp:= ( sum / num ) mod ( n / g );
      groot:= DescriptionOfRootOfUnity( root * E(n)^(n-exp) );
      if n mod 2 = 1 and groot[1] mod 2 = 0 then
        exp:= 2*exp;
        n:= 2*n;
      fi;
      exp:= exp + groot[2] * n / groot[1];

    fi;

    # Return the result.
    Assert( 1, root = E(n)^exp );
    return [ n, exp mod n ];
end );


#############################################################################
##
#F  Atlas1( <n>, <i> )  . . . . . . . . . . . . . . . utility for EB, ..., EH
##
##  is the value $\frac{1}{i} \sum{j=1}^{n-1} z_n^{j^i}$
##  for $2 \leq i \leq 8$ and $<n> \equiv 1 \pmod{i}$;
##  if $i > 2$, <n> should be a prime to get sure that the result is
##  well-defined;
##  `Atlas1' returns the value given above if it is a cyclotomic integer.
##  (see: Conway et al, ATLAS of finite groups, Oxford University Press 1985,
##        Chapter 7, Section 10)
##
BindGlobal( "Atlas1", function( n, i )
    local atlas, k, pos;

    if not IsInt( n ) or n < 1 then
      Error( "usage: EB(<n>), EC(<n>), ..., EH(<n>) with appropriate ",
             "integer <n>" );
    elif n mod i <> 1 then
      Error( "<n> not congruent 1 mod ", i );
    fi;

    if n = 1 then
      return 0;
    fi;

    atlas:= [ 1 .. n ] * 0;

    if i mod 2 = 0 then
      # Note that `n' is odd in this case.
      for k in [ 1 .. QuoInt( n-1, 2 ) ] do
        # summand `2 * E(n)^(k^i)'
        pos:= ( (k^i) mod n ) + 1;
        atlas[ pos ]:= atlas[ pos ] + 2;
      od;
    else
      for k in [ 1 .. QuoInt( n-1, 2 ) ] do
        # summand `E(n)^(k^i) + E(n)^(n - k^i)'
        pos:= ( (k^i) mod n ) + 1;
        atlas[ pos ]:= atlas[ pos ] + 1;
        pos:= ( n - pos + 1 ) mod n + 1;
        atlas[ pos ]:= atlas[ pos ] + 1;
      od;
      if n mod 2 = 0 then
        # summand `E(n)^( (n/2)^i )'
        pos:= ( ( (n/2)^i ) mod n ) + 1;
        atlas[ pos ]:= atlas[ pos ] + 1;
      fi;
    fi;
    atlas:= CycList( atlas / i );
    if not IsCycInt( atlas ) then
      Error( "result divided by ", i, " is not a cyclotomic integer" );
    fi;
    return atlas;
end );


#############################################################################
##
#F  EB( <n> ), EC( <n> ), \ldots, EH( <n> ) . . .  some ATLAS irrationalities
##
InstallGlobalFunction( EB, n -> Atlas1( n, 2 ) );
InstallGlobalFunction( EC, n -> Atlas1( n, 3 ) );
InstallGlobalFunction( ED, n -> Atlas1( n, 4 ) );
InstallGlobalFunction( EE, n -> Atlas1( n, 5 ) );
InstallGlobalFunction( EF, n -> Atlas1( n, 6 ) );
InstallGlobalFunction( EG, n -> Atlas1( n, 7 ) );
InstallGlobalFunction( EH, n -> Atlas1( n, 8 ) );


#############################################################################
##
#F  NK( <n>, <k>, <d> ) . . . . . . . . . . utility for ATLAS irrationalities
##
##  Find the (<d>+1)-st automorphism *nk of order <k> on primitive <n>-th
##  roots of unity.
##
##  Optimization steps:
##  - Since <k> is very small, `PowerModInt' should be avoided, compared to
##    powering and then reducing mod <n>.
##  - Do not call `Phi' but look at the prime factors of <n> directly.
##  - Use multiplication instead of powering for computing squares.
##
InstallGlobalFunction( NK, function( n, k, deriv )
    local nk,
          nkn,   # nk mod n
          n1,    # n-1
          pow, pow2, pow3;

    if n <= 2 then
      return fail;
    fi;

    nk:= 1;
    nkn:= 1;
    n1:= n-1;
    if k = 2 then
      # We have always `Phi( n ) mod k = 0'.
      while true do
        if nkn <> 1 then
          # `*nk' has order larger than 1.
          pow:= (nkn * nkn) mod n;
          if pow = 1 then
            # `*nk' has order 2.
            if deriv = 0 then return nk; fi;
            deriv:= deriv - 1;
            if nkn <> n1 then
              # `**nk' has order larger than 1 and thus equal to 2.
              if deriv = 0 then return -nk; fi;
              deriv:= deriv - 1;
            fi;
          fi;
        elif nkn <> n1 then
          # `**nk' has order larger than 1.
          pow:= (nkn * nkn) mod n;
          if pow = 1 then
            # `**nk' has order dividing 2.
            if deriv = 0 then return -nk; fi;
            deriv:= deriv - 1;
          fi;
        fi;
        nk:= nk + 1;
        nkn:= nk mod n;
      od;
    elif k in [ 3, 5, 7 ] then   # for odd primes
      if ( n mod ( k*k ) <> 0 ) and
         ForAll( PrimeDivisors( n ), p -> (p-1) mod k <> 0 ) then
        return fail;
      fi;
      while true do
        if nkn <> 1 then
          # `*nk' has order larger than 1.
          pow:= (nkn ^ k) mod n;
          if pow = 1 then
            # `*nk' has order dividing `k'.
            if deriv = 0 then return nk; fi;
            deriv:= deriv - 1;
          fi;
          if nkn <> n1 and pow = n1 then
            # `**nk' has order larger than 1 and dividing `k'.
            if deriv = 0 then return -nk; fi;
            deriv:= deriv - 1;
          fi;
        elif nkn <> n1 then
          # `**nk' has order larger than 1.
          pow:= (nkn ^ k) mod n;
          if pow = n1 then
            # `**nk' has order dividing `k'.
            if deriv = 0 then return -nk; fi;
            deriv:= deriv - 1;
          fi;
        fi;
        nk:= nk + 1;
        nkn:= nk mod n;
      od;
    elif k = 4 then
      # An automorphism of order 4 exists if 4 divides $p-1$ for an odd
      # prime divisor $p$ of `n', or if 16 divides `n'.
      if ForAll( PrimeDivisors( n ), p -> (p-1) mod k <> 0 )
         and n mod 16 <> 0 then
        return fail;
      fi;
      while true do
        if nkn <> 1 and nkn <> n1 then
          # `*nk' and `**nk' have order at least 2.
          pow:= (nkn * nkn) mod n;
          if pow <> 1 and ( pow * pow ) mod n = 1 then
            # `*nk' (and thus also `**nk') has order 4.
            if deriv = 0 then
              return nk;
            elif deriv = 1 then
              return -nk;
            fi;
            deriv:= deriv - 2;
          fi;
        fi;
        nk:= nk + 1;
        nkn:= nk mod n;
      od;
    elif k = 6 then
      # An automorphism of order 6 exists if automorphisms of the orders
      # 2 and 3 exist; the former is always true.
      if ( n mod 9 <> 0 ) and
         ForAll( PrimeDivisors( n ), p -> (p-1) mod 3 <> 0 ) then
        return fail;
      fi;
      while true do
        if nkn <> 1 and nkn <> n1 then
          # `*nk' and `**nk' have order at least 2.
          pow2:= (nkn * nkn) mod n;
          if pow2 <> 1 then
            # `*nk' (and thus `**nk') has order larger than 2.
            pow:= (pow2 ^ 3) mod n;
            if pow = 1 then
              # `*nk' (and thus `**nk') has order dividing 6.
              pow3:= (nkn * pow2) mod n;
              if pow3 <> 1 then
                if deriv = 0 then return nk; fi;
                deriv:= deriv - 1;
              fi;
              if pow3 <> n1 then
                if deriv = 0 then return -nk; fi;
                deriv:= deriv - 1;
              fi;
            fi;
          fi;
        fi;
        nk:= nk + 1;
        nkn:= nk mod n;
      od;
    elif k = 8 then
      # An automorphism of order 8 exists if 8 divides $p-1$ for an odd
      # prime divisor $p$ of `n', or if 32 divides `n'.
      if ForAll( PrimeDivisors( n ), p -> (p-1) mod k <> 0 )
         and n mod 32 <> 0 then
        return fail;
      fi;
      while true do
        if nkn <> 1 and nkn <> n1 then
          # `*nk' and `**nk' have order at least 2.
          pow:= (nkn ^ 4) mod n;
          if pow <> 1 and ( pow * pow ) mod n = 1 then
            # `*nk' (and thus also `**nk') has order 8.
            if deriv = 0 then
              return nk;
            elif deriv = 1 then
              return -nk;
            fi;
            deriv:= deriv - 2;
          fi;

        fi;
        nk:= nk + 1;
        nkn:= nk mod n;
      od;
    fi;

    # We have `k < 2' or `k > 8'.
    return fail;
end );


#############################################################################
##
#F  Atlas2( <n>, <k>, <deriv> ) . . . . . . utility for ATLAS irrationalities
##
BindGlobal( "Atlas2", function( n, k, deriv )
    local nk, result, i, pos;

    if not ( IsInt( n ) and IsInt( k ) and IsInt( deriv ) ) then
      Error( "usage: ATLAS irrationalities require integral arguments" );
    fi;

    nk:= NK( n, k, deriv );
    if nk = fail then
      return fail;
    fi;

    result:= [ 1 .. n ] * 0;
    for i in [ 0 .. k-1 ] do
      # summand `E(n)^(nk^i);
      pos:= ( (nk^i) mod n ) + 1;
      result[ pos ]:= result[ pos ] + 1;
    od;
    return CycList( result );
end );


#############################################################################
##
#F  EY(<n>), EY(<n>,<deriv>) . . . . . . .  ATLAS irrationalities $y_n$ resp.
#F                                          $y_n^{<deriv>}$
#F  ... ES(<n>), ES(<n>,<deriv>)              ... $s_n$ resp. $s_n^{<deriv>}$
##
InstallGlobalFunction( EY, function(arg)
    if   Length(arg)=1 then return Atlas2(arg[1],2,0);
    elif Length(arg)=2 then return Atlas2(arg[1],2,arg[2]);
    else Error( "usage: EY(n) resp. EY(n,deriv)" ); fi;
end );

InstallGlobalFunction( EX, function(arg)
    if   Length(arg)=1 then return Atlas2(arg[1],3,0);
    elif Length(arg)=2 then return Atlas2(arg[1],3,arg[2]);
    else Error( "usage: EX(n) resp. EX(n,deriv)" ); fi;
end );

InstallGlobalFunction( EW, function(arg)
    if   Length(arg)=1 then return Atlas2(arg[1],4,0);
    elif Length(arg)=2 then return Atlas2(arg[1],4,arg[2]);
    else Error( "usage: EW(n) resp. EW(n,deriv)" ); fi;
end );

InstallGlobalFunction( EV, function(arg)
    if   Length(arg)=1 then return Atlas2(arg[1],5,0);
    elif Length(arg)=2 then return Atlas2(arg[1],5,arg[2]);
    else Error( "usage: EV(n) resp. EV(n,deriv)" ); fi;
end );

InstallGlobalFunction( EU, function(arg)
    if   Length(arg)=1 then return Atlas2(arg[1],6,0);
    elif Length(arg)=2 then return Atlas2(arg[1],6,arg[2]);
    else Error( "usage: EU(n) resp. EU(n,deriv)" ); fi;
end );

InstallGlobalFunction( ET, function(arg)
    if   Length(arg)=1 then return Atlas2(arg[1],7,0);
    elif Length(arg)=2 then return Atlas2(arg[1],7,arg[2]);
    else Error( "usage: ET(n) resp. ET(n,deriv)" ); fi;
end );

InstallGlobalFunction( ES, function(arg)
    if   Length(arg)=1 then return Atlas2(arg[1],8,0);
    elif Length(arg)=2 then return Atlas2(arg[1],8,arg[2]);
    else Error( "usage: ES(n) resp. ES(n,deriv)" ); fi;
end );


#############################################################################
##
#F  Atlas3( <n>, <k>, <deriv> ) . . . . . . utility for ATLAS irrationalities
##
BindGlobal( "Atlas3", function( n, k, deriv )
    local nk, l, pow, val, i;

    nk:= NK( n, k, deriv );
    if nk = fail then
      return fail;
    fi;
    l:= 0 * [ 1 .. n ];
    pow:= 1;
    val:= 1;
    for i in [ 1 .. k ] do
      l[ pow + 1 ]:= val;
      pow:= (nk * pow) mod n;
      val:= -val;
    od;

    return CycList( l );
end );


#############################################################################
##
#F  EM( <n>[, <deriv>] )  . . . . . . . . ATLAS irrationality $m_{<n>}$ resp.
##                                                        $m_{<n>}^{<deriv>}$
InstallGlobalFunction( EM, function( arg )
    local n;

    n:= arg[1];
    if 2 < Length( arg ) or not IsInt( n ) or n < 3 then
      Error( "usage: EM( <n>[, <deriv>] )" );
    elif Length( arg ) = 1 then
      return Atlas3( n, 2, 0 );
    else
      return Atlas3( n, 2, arg[2] );
    fi;
end );


#############################################################################
##
#F  EL( <n>[, <deriv>] )  . . . . . . . . ATLAS irrationality $l_{<n>}$ resp.
##                                                        $l_{<n>}^{<deriv>}$
InstallGlobalFunction( EL, function( arg )
    local n;

    n:= arg[1];
    if 2 < Length( arg ) or not IsInt( n ) or n < 3 then
      Error( "usage: EL( <n>[, <deriv>] )" );
    elif Length( arg ) = 1 then
      return Atlas3( n, 4, 0 );
    else
      return Atlas3( n, 4, arg[2] );
    fi;
end );


#############################################################################
##
#F  EK( <n>[, <deriv>] )  . . . . . . . . ATLAS irrationality $k_{<n>}$ resp.
##                                                        $k_{<n>}^{<deriv>}$
InstallGlobalFunction( EK, function( arg )
    local n;

    n:= arg[1];
    if 2 < Length( arg ) or not IsInt( n ) or n < 3 then
      Error( "usage: EK( <n>[, <deriv>] )" );
    elif Length( arg ) = 1 then
      return Atlas3( n, 6, 0 );
    else
      return Atlas3( n, 6, arg[2] );
    fi;
end );


#############################################################################
##
#F  EJ( <n>[, <deriv>] )  . . . . . . . . ATLAS irrationality $j_{<n>}$ resp.
##                                                        $j_{<n>}^{<deriv>}$
InstallGlobalFunction( EJ, function( arg )
    local n;

    n:= arg[1];
    if 2 < Length( arg ) or not IsInt( n ) or n < 3 then
      Error( "usage: EJ( <n>[, <deriv>] )" );
    elif Length( arg ) = 1 then
      return Atlas3( n, 8, 0 );
    else
      return Atlas3( n, 8, arg[2] );
    fi;
end );


#############################################################################
##
#F  ER( <n> ) . . . . ATLAS irrationality $r_{<n>}$ (pos. square root of <n>)
##
##  Different from other {\ATLAS} irrationalities,
##  `ER' (and its synonym `Sqrt') can be applied also to noninteger
##  rationals.
##
InstallGlobalFunction( ER, function( n )
    local factor, factors, pair;

    if IsInt( n ) then

      if n = 0 then
        return 0;
      elif n < 0 then
        factor:= E(4);
        n:= -n;
      else
        factor:= 1;
      fi;

      # Split `n' into the product of a square and a squarefree number.
      factors:= Collected( Factors( n ) );
      n:= 1;
      for pair in factors do
        if pair[2] mod 2 = 0 then
          factor:= factor * pair[1]^(pair[2]/2);
        else
          n:= n * pair[1];
          if pair[2] <> 1 then
            factor:= factor * pair[1]^((pair[2]-1)/2);
          fi;
        fi;
      od;
      if   n mod 4 = 1 then
        return factor * ( 2 * EB(n) + 1 );
      elif n mod 4 = 2 then
        return factor * ( E(8) - E(8)^3 ) * ER( n / 2 );
      elif n mod 4 = 3 then
        return factor * (-E(4)) * ( 2 * EB(n) + 1 );
      fi;

    elif IsRat( n ) then
      factor:= DenominatorRat( n );
      return ER( NumeratorRat( n ) * factor ) / factor;
    else
      Error( "argument must be rational" );
    fi;
end );


#############################################################################
##
#F  EI( <n> ) . . . . ATLAS irrationality $i_{<n>}$ (the square root of -<n>)
##
InstallGlobalFunction( EI, n -> E(4) * ER(n) );


#############################################################################
##
#M  Sqrt( <rat> ) . . . . . . . . . . . . . . . . .  square root of rationals
##
InstallMethod( Sqrt,
    "for a rational",
    [ IsRat ],
    ER );


#############################################################################
##
#F  StarCyc( <cyc> )  . . . . the unique nontrivial Galois conjugate of <cyc>
##
InstallGlobalFunction( StarCyc, function( cyc )
    local n, gens, cand, exp, img;

    n:= Conductor( cyc );
    if n = 1 then
      return fail;
    fi;
    gens:= Flat( GeneratorsPrimeResidues( n ).generators );
    cand:= fail;
    for exp in gens do
      img:= GaloisCyc( cyc, exp );
      if img <> cyc then
        if cand = fail then
          cand:= img;
        elif cand <> img then
          return fail;
        fi;
      fi;
    od;
    for exp in gens do
      img:= GaloisCyc( cand, exp );
      if img <> cyc and img <> cand then
        return fail;
      fi;
    od;
    return cand;
    end );


#############################################################################
##
#F  AtlasIrrationality( <irratname> )
##
InstallGlobalFunction( AtlasIrrationality, function( irratname )
    local len, pos, sign, pos2, coeff, letts, funcs, recurse, lpos, N,
          dashes, irrat, qN, gal, oldpos;

    # Check the argument.
    if not IsString( irratname ) or IsEmpty( irratname ) then
      return fail;
    fi;
    len:= Length( irratname );

    # Get the first sign.
    pos:= 1;
    sign:= 1;
    if irratname[1] = '-' then
      sign:= -1;
      pos:= 2;
    elif irratname[1] = '+' then
      pos:= 2;
    fi;

    # Get the first coefficient.
    if pos <= len and IsDigitChar( irratname[ pos ] ) then
      pos2:= pos;
      while pos2 <= len and IsDigitChar( irratname[ pos2 ] ) do
        pos2:= pos2+1;
      od;
      coeff:= sign * Int( irratname{ [ pos .. pos2-1 ] } );
      pos:= pos2;
    else
      coeff:= sign;
    fi;
    if len < pos then
      return coeff;
    fi;

    # Get the first atomic irrationality (with dashes).
    letts:= "bcdefghijklmrstuvwxyz";
    funcs:= List( "BCDEFGHIJKLMRSTUVWXY", x -> ValueGlobal( [ 'E', x ] ) );
    Add( funcs, E );

    # Is the coefficient an integer summand?
    if irratname[ pos ] in "+-" then
      recurse:= AtlasIrrationality( irratname{ [ pos ..
                    Length( irratname ) ] } );
      if recurse = fail then
        return fail;
      else
        return coeff + recurse;
      fi;
    fi;

    lpos:= Position( letts, irratname[ pos ] );
    if lpos = fail then
      return fail;
    fi;
    pos:= pos + 1;
    dashes:= 0;
    while pos <= len and irratname[ pos ] in "\'\"" do
      dashes:= dashes + 1;
      if irratname[ pos ] = '\"' then
        dashes:= dashes + 1;
      fi;
      pos:= pos + 1;
    od;
    pos2:= pos;
    while pos2 <= len and IsDigitChar( irratname[ pos2 ] ) do
      pos2:= pos2+1;
    od;
    if pos2 = pos and lpos = 8 then
      N:= 1;
    else
      N:= Int( irratname{ [ pos .. pos2 - 1 ] } );
    fi;
    if dashes = 0 then
      qN:= funcs[ lpos ]( N );
    else
      qN:= funcs[ lpos ]( N, dashes );
    fi;
    pos:= pos2;
    irrat:= coeff * qN;
    if len < pos then
      return irrat;
    fi;

    # Get the Galois automorphism.
    if irratname[ pos ] = '*' then
      pos:= pos + 1;
      if pos <= len and irratname[ pos ] = '*' then
        pos:= pos + 1;
        pos2:= pos;
        while pos2 <= len and IsDigitChar( irratname[ pos2 ] ) do
          pos2:= pos2 + 1;
        od;
        gal:= Int( irratname{ [ pos .. pos2-1 ] } );
        if gal = 0 then
          irrat:= ComplexConjugate( irrat );
        else
          irrat:= GaloisCyc( irrat, -gal );
        fi;
        pos:= pos2;
      elif len < pos or irratname[ pos ] in "+-&" then
        irrat:= StarCyc( irrat );
      else
        pos2:= pos;
        while pos2 <= len and IsDigitChar( irratname[ pos2 ] ) do
          pos2:= pos2 + 1;
        od;
        gal:= Int( irratname{ [ pos .. pos2-1 ] } );
        irrat:= GaloisCyc( irrat, gal );
        pos:= pos2;
      fi;
    fi;

    while pos <= len do

      # Get ampersand summands.
      if irratname[ pos ] = '&' then
        pos2:= pos + 1;
        while pos2 <= len and IsDigitChar( irratname[ pos2 ] ) do
          pos2:= pos2 + 1;
        od;
        gal:= Int( irratname{ [ pos+1 .. pos2-1 ] } );
        irrat:= irrat + coeff * GaloisCyc( qN, gal );
        pos:= pos2;
      elif irratname[ pos ] in "+-" then
        if irratname[ pos ] = '+' then
          sign:= 1;
          oldpos:= pos+1;
        else
          sign:= -1;
          oldpos:= pos;
        fi;
        pos2:= pos + 1;
        while pos2 <= len and IsDigitChar( irratname[ pos2 ] ) do
          pos2:= pos2 + 1;
        od;
        if pos2 = pos + 1 then
          coeff:= sign;
        else
          coeff:= sign * Int( irratname{ [ pos+1 .. pos2-1 ] } );
        fi;
        pos:= pos2;
        if pos <= len then
          if irratname[ pos ] = '&' then
            pos2:= pos + 1;
            while pos2 <= len and IsDigitChar( irratname[ pos2 ] ) do
              pos2:= pos2 + 1;
            od;
            gal:= Int( irratname{ [ pos+1 .. pos2-1 ] } );
            irrat:= irrat + coeff * GaloisCyc( qN, gal );
            pos:= pos2;
          else
            recurse:= AtlasIrrationality( irratname{ [ oldpos .. len ] } );
            if recurse = fail then
              return fail;
            fi;
            irrat:= irrat + recurse;
            pos:= len+1;
          fi;
        else
          irrat:= irrat + coeff;
        fi;
      else
        return fail;
      fi;

    od;

    # Return the result.
    return irrat;
end );


#############################################################################
##
#F  Quadratic( <cyc>[, <rat>] ) . information about quadratic irrationalities
##
InstallGlobalFunction( Quadratic, function( arg )
    local cyc,
          rat,
          denom,
          coeffs,     # Zumbroich basis coefficients of `cyc'
          facts,      # factors of conductor of `cyc'
          factsset,   # set of `facts'
          two_part,   # 2-part of the conductor of `cyc'
          root,       # `root' component of the result
          a,          # `a'    component of the result
          b,          # `b'    component of the result
          d,          # `d'    component of the result
          ATLAS,      # string that expresses `cyc' in {\sf ATLAS} format
          ATLAS2,     # another string, maybe shorter ...
          display;    # string that shows a way to input `cyc'

    cyc:= arg[1];
    rat:= Length( arg ) = 2 and arg[2] = true;

    if not IsCyc( cyc ) then
      return fail;
    fi;
    denom:= DenominatorCyc( cyc );
    if not ( rat or denom = 1 ) then
      return fail;
    fi;
    if IsRat( cyc ) then
      return rec(
                  a       := NumeratorRat( cyc ),
                  b       := 0,
                  root    := 1,
                  d       := denom,
                  ATLAS   := String( cyc ),
                  display := String( cyc )
                 );
    fi;
    if denom <> 1 then
      cyc:= cyc * denom;
    fi;

    coeffs:= ExtRepOfObj( cyc );
    facts:= Factors(Integers, Length( coeffs ) );
    factsset:= Set( facts );
    two_part:= Number( facts, x -> x = 2 );

    # Compute candidates for `a', `b', `root', `d'.
    if two_part = 0 and Length( facts ) = Length( factsset ) then

      root:= Length( coeffs );
      if root mod 4 = 3 then
        root:= -root;
      fi;
      a:= StarCyc( cyc );
      if a = fail then
        return fail;
      fi;

      # Set `a' to the trace of `cyc' over the rationals.
      a:= cyc + a;

      if Length( factsset ) mod 2 = 0 then
        b:= 2 * coeffs[2] - a;
      else
        b:= 2 * coeffs[2] + a;
      fi;
      if a mod 2 = 0 and b mod 2 = 0 then
        a:= a / 2;
        b:= b / 2;
        d:= 1;
      else
        d:= 2;
      fi;

    elif two_part = 2 and Length( facts ) = Length( factsset ) + 1 then

      root:= Length( coeffs ) / 4;
      if root = 1 then
        a:= coeffs[1];
        b:= - coeffs[2];
      else
        a:= coeffs[5];
        if Length( factsset ) mod 2 = 0 then a:= -a; fi;
        b:= - coeffs[ root + 5 ];
      fi;
      if root mod 4 = 1 then
        root:= -root;
        b:= -b;
      fi;
      d:= 1;

    elif two_part = 3 then

      root:= Length( coeffs ) / 4;
      if root = 2 then
        a:= coeffs[1];
        b:= coeffs[2];
        if b = coeffs[4] then
          root:= -2;
        fi;
      else
        a:= coeffs[9];
        if Length( factsset ) mod 2 = 0 then a:= -a; fi;
        b:= coeffs[ root / 2 + 9 ];
        if b <> - coeffs[ 3 * root / 2 - 7 ] then
          root:= -root;
        elif ( root / 2 ) mod 4 = 3 then
          b:= -b;
        fi;
      fi;
      d:= 1;

    else
      return fail;
    fi;

    # Check whether the candidates `a', `b', `d', `root' are correct.
    if d * cyc <> a + b * ER( root ) then
      return fail;
    fi;

    # Compute a string for the irrationality in {\ATLAS} format.
    if d = 2 then

      # Necessarily `root' is congruent 1 mod 4, only $b_{'root'}$ possible.
      # We have $'cyc' = ('a' + `b') / 2 + `b' b_{'root'}$.
      if a + b = 0 then
        if b = 1 then
          ATLAS:= "";
        elif b = -1 then
          ATLAS:= "-";
        else
          ATLAS:= ShallowCopy( String( b ) );
        fi;
      elif b = 1 then
        ATLAS:= Concatenation( String( ( a + b ) / 2 ), "+" );
      elif b = -1 then
        ATLAS:= Concatenation( String( ( a + b ) / 2 ), "-" );
      elif 0 < b then
        ATLAS:= Concatenation( String( ( a + b ) / 2 ), "+", String( b ) );
      else
        ATLAS:= Concatenation( String( ( a + b ) / 2 ), String( b ) );
      fi;

      Append( ATLAS, "b" );
      if 0 < root then
        Append( ATLAS, String( root ) );
      else
        Append( ATLAS, String( -root ) );
      fi;

    else

      # `d' = 1, so we may use $i_{'root'}$ and $r_{'root'}$.
      if a = 0 then
        ATLAS:= "";
      else
        ATLAS:= ShallowCopy( String( a ) );
      fi;
      if a <> 0 and b > 0 then Append( ATLAS, "+" ); fi;
      if b = -1 then
        Append( ATLAS, "-" );
      elif b <> 1 then
        Append( ATLAS, String( b ) );
      fi;
      if root > 0 then
        ATLAS:= Concatenation( ATLAS, "r", String( root ) );
      elif root = -1 then
        Append( ATLAS, "i" );
      else
        ATLAS:= Concatenation( ATLAS, "i", String( -root ) );
      fi;

      if ( root - 1 ) mod 4 = 0 then

        # In this case, also $b_{|'root'|}$ is possible.
        # Note that here the coefficients are never equal to $\pm 1$.
        if a = -b then
          ATLAS2:= String( 2 * b );
        else
          ATLAS2:= Concatenation( String( a+b ), "+", String( 2*b ) );
        fi;
        if root > 0 then
          ATLAS2:= Concatenation( ATLAS2, "b", String( root ) );
        else
          ATLAS2:= Concatenation( ATLAS2, "b", String( -root ) );
        fi;

        if Length( ATLAS2 ) < Length( ATLAS ) then
          ATLAS:= ATLAS2;
        fi;

      fi;

    fi;
    if denom <> 1 then
      ATLAS:= Concatenation( "(", ATLAS, ")/", String( denom ) );
    fi;
    ConvertToStringRep( ATLAS );

    # Compute a string used by the `Display' function for character tables.
    if a = 0 then
      if b = 1 then
        display:= "";
      elif b = -1 then
        display:= "-";
      else
        display:= Concatenation( String( b ), "*" );
      fi;
    elif b = 1 then
      display:= Concatenation( String( a ), "+" );
    elif b = -1 then
      display:= Concatenation( String( a ), "-" );
    elif 0 < b then
      display:= Concatenation( String( a ), "+", String( b ), "*" );
    else
      display:= Concatenation( String( a ), String( b ), "*" );
    fi;
    Append( display, Concatenation( "Sqrt(", String( root ), ")" ) );
    d:= d * denom;
    if d <> 1 then
      if a <> 0 then
        display:= Concatenation( "(", display, ")" );
      fi;
      display:= Concatenation( display, "/", String( d ) );
    fi;
    ConvertToStringRep( display );

    # Return the result.
    return rec(
                a       := a,
                b       := b,
                root    := root,
                d       := d,
                ATLAS   := ATLAS,
                display := display
               );
end );


#############################################################################
##
#M  GaloisMat( <mat> )  . . . . . . . . . . . . . for a matrix of cyclotomics
##
##  Note that we must not mix up plain lists and class functions, since
##  these objects lie in different families.
##
InstallMethod( GaloisMat,
    "for a matrix of cyclotomics",
    [ IsMatrix and IsCyclotomicCollColl ],
    function( mat )
    local warned,      # at most one warning will be printed if `mat' grows
          ncha,        # number of rows in `mat'
          nccl,        # number of columns in `mat'
          galoisfams,  # list with information about conjugate characters:
                       #       1 means rational character,
                       #      -1 means character with undefs,
                       #       0 means dependent irrational character,
                       #  [ .. ] means leading irrational character.
          n,           # conductor of irrationalities in `mat'
          genexp,      # generators of prime residues mod `n'
          generators,  # permutation of `mat' induced by elements in `genexp'
          X,           # one row of `mat'
          i, j,        # loop over rows of `mat'
          irrats,      # set of irrationalities in `X'
          fusion,      # positions of `irrats' in `X'
          k, l, m,     # loop variables
          generator,
          irratsimages,
          automs,
          family,
          orders,
          exp,
          image,
          oldorder,
          cosets,
          auto,
          conj,
          blocklength,
          innerlength;

    warned := false;
    ncha   := Length( mat );
    mat    := ShallowCopy( mat );

    # Step 1:
    # Find the minimal cyclotomic field $Q_n$ containing all irrational
    # entries of <mat>.

    galoisfams:= [];
    n:= 1;
    for i in [ 1 .. ncha ] do
      if ForAny( mat[i], IsUnknown ) then
        galoisfams[i]:= -1;
      elif ForAll( mat[i], IsRat ) then
        galoisfams[i]:= 1;
      else
        n:= LcmInt( n, Conductor( mat[i] ) );
      fi;
    od;

    # Step 2:
    # Compute generators for Aut( Q(n):Q ), that is,
    # compute generators for (Z/nZ)* and convert them to exponents.

    if 1 < n then

      # Each Galois automorphism induces a permutation of rows.
      # Compute the permutations for each generating automorphism.
      # (Initialize with the identity permutation.)
      genexp:= Flat( GeneratorsPrimeResidues( n ).generators );
      generators:= List( genexp, x -> [ 1 .. ncha ] );

    else

      # The matrix is rational.
      generators:= [];

    fi;

    # Step 3:
    # For each character X, find and complete the family of conjugates.

    if 0 < ncha then
      nccl:= Length( mat[1] );
    fi;

    for i in [ 1 .. ncha ] do
      if not IsBound( galoisfams[i] ) then

        # We have found an independent character that is not integral
        # and contains no unknowns.

        X:= mat[i];
        for j in [ i+1 .. ncha ] do
          if mat[j] = X then
            galoisfams[j]:= Unknown();
            Info( InfoWarning, 1,
                  "GaloisMat: row ", i, " is equal to row ", j );
          fi;
        od;

        # Initialize the list of distinct irrationalities of `X'
        # (not ordered).
        # Each Galois automorphism induces a permutation of that list
        # rather than of the entries of `X' themselves.
        irrats:= [];

        # Store how to distribute the entries of irrats to `X'.
        fusion:= [];

        for j in [ 1 .. nccl ] do
          if IsCyc( X[j] ) and not IsRat( X[j] ) then
            k:= 1;
            while k <= Length( irrats ) and X[j] <> irrats[k] do
              k:= k+1;
            od;
            if k > Length( irrats ) then
              # This is the first appearance of `X[j]' in `X'.
              irrats[k]:= X[j];
            fi;

            # Store the position in `irrats'.
            fusion[j]:= k;
          else
            fusion[j]:= 0;
          fi;
        od;

        irratsimages:= [ irrats ];
        automs:= [ 1 ];
        family:= [ i ]; # indices of family members (same ordering as automs)
        orders:= [];    # orders[k] will be the order of the k-th generator
        for j in [ 1 .. Length( genexp ) ] do
          exp:= genexp[j];
          image:= List( irrats, x -> GaloisCyc( x, exp ) );
          oldorder:= Length( automs );  # group order up to now
          cosets:= [];
          orders[j]:= 1;
          while not image in irratsimages do
            orders[j]:= orders[j] + 1;
            for k in [ 1 .. oldorder ] do
              auto:= ( automs[k] * exp ) mod n;
              image:= List( irrats, x -> GaloisCyc( x, auto ) );
              conj:= [];    # the conjugate character
              for l in [ 1 .. nccl ] do
                if fusion[l] = 0 then
                  conj[l]:= X[l];
                else
                  conj[l]:= image[ fusion[l] ];
                fi;
              od;
              l:= Position( mat, conj, i );
              if l <> fail then

                galoisfams[l]:= 0;
                Add( family, l );
                for m in [ l+1 .. ncha ] do
                  if mat[m] = conj then galoisfams[m]:= 0; fi;
                od;

              else

                if not warned and 500 < Length( mat ) then
                  Info( InfoWarning, 1,
                        "GaloisMat: completion of <mat> will have",
                        " more than 500 rows" );
                  warned:= true;
                fi;

                Add( mat, conj );
                galoisfams[ Length( mat ) ]:= 0;
                Add( family, Length( mat ) );

              fi;
              Add( automs, auto );
              Add( cosets, image );
            od;
            exp:= exp * genexp[j];
            image:= List( irrats, x -> GaloisCyc( x, exp ) );
          od;
          irratsimages:= Concatenation( irratsimages, cosets );
        od;

        # Store the conjugates and automorphisms.
        galoisfams[i]:= [ family, automs ];

        # Now the length of `family' is the size of the Galois family of the
        # row `X'.
        # Compute the permutation operation of the generators on the set of
        # rows in `family'.

        blocklength:= 1;
        for j in [ 1 .. Length( genexp ) ] do

          innerlength:= blocklength;
          blocklength:= blocklength * orders[j];
          generator:= [ 1 .. blocklength ];

          # `genexp[j]' maps the conjugates under the action of
          # $\langle `genexp[1]', \ldots, `genexp[j-1]' \rangle$
          # (a set of length `innerlength') as one block to their images,
          # preserving the order of succession.

          for l in [ 1 .. blocklength - innerlength ] do
            generator[l]:= l + innerlength;
          od;

          # Compute how a power of `genexp[j]' maps back to the block.

          exp:= ( genexp[j] ^ orders[j] ) mod n;
          for l in [ 1 .. innerlength ] do
            generator[ l + blocklength - innerlength ]:=
                 Position( irratsimages, List( irrats,
                             x -> GaloisCyc( x, exp*automs[l] ) ) );
          od;

          # Transfer this operation to the cosets under the operation of
          # $\langle `genexp[j+1]',\ldots,`genexp[Length(genexp)]' \rangle$,
          # and transfer this to <mat> via `family'.

          for k in [ 0 .. Length( family ) / blocklength - 1 ] do
            for l in [ 1 .. blocklength ] do
              generators[j][ family[ l + k*blocklength ] ]:=
                           family[ generator[ l ] + k*blocklength ];
            od;
          od;

        od;

      fi;
    od;

    # Convert the `generators' component to a set of generating permutations.
    generators:= Set( generators, PermList );
    RemoveSet( generators, () );  # `generators' arose from `PermList'
    if IsEmpty( generators ) then
      generators:= [ () ];  # `generators' arose from `PermList'
    fi;

    # Return the result.
    return rec(
                mat        := mat,
                galoisfams := galoisfams,
                generators := generators
               );
    end );


#############################################################################
##
#M  RationalizedMat( <mat> )  . . . . . .  list of rationalized rows of <mat>
##
InstallMethod( RationalizedMat,
    "for a matrix",
    [ IsMatrix ],
    function( mat )
    local i, rationalizedmat, rationalfams;

    rationalfams:= GaloisMat( mat );
    mat:= rationalfams.mat;
    rationalfams:= rationalfams.galoisfams;
    rationalizedmat:= [];
    for i in [ 1 .. Length( mat ) ] do
      if rationalfams[i] = 1 or rationalfams[i] = -1 then
        # The row is rational or contains unknowns.
        Add( rationalizedmat, mat[i] );
      elif IsList( rationalfams[i] ) then
        # The row is a leading character of a family.
        Add( rationalizedmat, Sum( mat{ rationalfams[i][1] } ) );
      fi;
    od;
    return rationalizedmat;
    end );


InstallOtherMethod( RationalizedMat,
    "for an empty list",
    [ IsList and IsEmpty ],
    empty -> [] );


#############################################################################
##
#M  IsGeneratorsOfMagmaWithInverses( <cycs> ) . .  for a coll. of cyclotomics
##
##  Disallow to create groups of cyclotomics because the `\^' operator has
##  a meaning for cyclotomics that makes it not compatible with that for
##  groups:
##  `E(4)^-1' is the *inverse* of `E(4)',
##  but in the group generated by `E(4)',
##  {\GAP} would use this term for the *conjugate* of `E(4)' by `-1'.
##
InstallMethod( IsGeneratorsOfMagmaWithInverses,
    "for a collection of cyclotomics (return false)",
    [ IsCyclotomicCollection ],
    SUM_FLAGS, # override everything else
    function( gens )
    Info( InfoWarning, 1,
          "no groups of cyclotomics allowed because of incompatible ^" );
    return false;
    end );


#############################################################################
##
##  Functions for factorizing polynomials over fields of cyclotomics
##  (For arbitrary number fields, the explicit embedding of the field of
##  rationals may cause that the functions below do not work.)
##


#############################################################################
##
#M  FactorsSquarefree( <R>, <cycpol>, <opt> )
##
##  The function uses Algorithm~3.6.4 in~\cite{Coh93}.
##  (The record <opt> is ignored.)
##
InstallMethod( FactorsSquarefree,
    "for a polynomial over a field of cyclotomics",
    IsCollsElmsX,
    [ IsAbelianNumberFieldPolynomialRing, IsUnivariatePolynomial, IsRecord ],
    function( R, U, opt )
    local coeffring, theta, xind, yind, x, y, T, coeffs, G, powers, pow, i,
          B, c, val, j, k, N, factors;

    if IsRationalsPolynomialRing( R ) then
      TryNextMethod();
    fi;

    # Let $K = \Q(\theta)$ be a number field,
    # $T \in \Q[X]$ the minimal monic polynomial of $\theta$.
    # Let $U(X) be a monic squarefree polynomial in $K[x]$.
    coeffring:= CoefficientsRing( R );
    theta:= PrimitiveElement( coeffring );

    xind:= IndeterminateNumberOfUnivariateRationalFunction( U );
    if xind = 1 then
      yind:= 2;
    else
      yind:= 1;
    fi;
    x:= Indeterminate( Rationals, xind );
    y:= Indeterminate( Rationals, yind );

    # Let $U(X) = \sum_{i=0}^m u_i X^i$ and write $u_i = g_i(\theta)$
    # for some polynomial $g_i \in \Q[X]$.
    # Set $G(X,Y) = \sum_{i=0}^m g_i(Y) X^i \in \Q[X,Y]$.
    coeffs:= CoefficientsOfUnivariatePolynomial( U );
    if ForAll( coeffs, IsRat ) then
      G:= U;
    else
      powers:= [ 1 ];
      pow:= 1;
      for i in [ 2 .. DegreeOverPrimeField( coeffring ) ] do
        pow:= pow * theta;
        powers[i]:= pow;
      od;
      B:= Basis( coeffring, powers );
      G:= Zero( U );
      for i in [ 1 .. Length( coeffs ) ] do
        if IsRat( coeffs[i] ) then
          G:= G + coeffs[i] * x^i;
        else
          c:= Coefficients( B, coeffs[i] );
          val:= c[1];
          for j in [ 2 .. Length( c ) ] do
            val:= val + c[j] * y^(j-1);
          od;
          G:= G + val * x^i;
        fi;
      od;
    fi;

    # Set $k = 0$.
    k:= 0;

    # Compute $N(X) = R_Y( T(Y), G(X - kY,Y) )$
    # where $R_Y$ denotes the resultant with respect to the variable $Y$.
    # If $N(X)$ is not squarefree, increase $k$.
    T:= MinimalPolynomial( Rationals, theta, yind );
    repeat
      k:= k+1;
      N:= Resultant( T, Value( G, [ x, y ], [ x-k*y, y ] ), y );
    until DegreeOfUnivariateLaurentPolynomial( Gcd( N, Derivative(N) ) ) = 0;

    # Let $N = \prod_{i=1}^g N_i$ be a factorization of $N$.
    # For $1 \leq i \leq g$, set $A_i(X) = \gcd( U(X), N_i(X + k \theta) )$.
    # The desired factorization of $U(X)$ is $\prod_{i=1}^g A_i$.
    factors:= List( Factors( PolynomialRing( Rationals, [ xind ] ), N ),
                    f -> Gcd( R, U, Value( f, x + k*theta ) ) );
    return Filtered( factors,
                     x -> DegreeOfUnivariateLaurentPolynomial( x ) <> 0 );
    end );


#############################################################################
##
#M  Factors( <R>, <cycpol> )  .  for a polynomial over a field of cyclotomics
##
InstallMethod( Factors,
    "for a polynomial over a field of cyclotomics",
    IsCollsElms,
    [ IsAbelianNumberFieldPolynomialRing, IsUnivariatePolynomial ],
    function( R, pol )
    local irrfacs, coeffring, i, factors, ind, coeffs, val,
          lc, der, g, factor, q;

    if IsRationalsPolynomialRing( R ) then
      TryNextMethod();
    fi;

    # Check whether the desired factorization is already stored.
    irrfacs:= IrrFacsPol( pol );
    coeffring:= CoefficientsRing( R );
    i:= PositionProperty( irrfacs, pair -> pair[1] = coeffring );
    if i <> fail then
      return ShallowCopy(irrfacs[i][2]);
    fi;

    # Handle (at most) linear polynomials.
    if DegreeOfLaurentPolynomial( pol ) < 2  then
      factors:= [ pol ];
      StoreFactorsPol( coeffring, pol, factors );
      return factors;
    fi;

    # Compute the valuation, split off the indeterminate as a zero.
    ind:= IndeterminateNumberOfLaurentPolynomial( pol );
    coeffs:= CoefficientsOfLaurentPolynomial( pol );
    val:= coeffs[2];
    coeffs:= coeffs[1];
    factors:= ListWithIdenticalEntries( val,
                  IndeterminateOfUnivariateRationalFunction( pol ) );

    if Length( coeffs ) = 1 then

      # The polynomial is a power of the indeterminate.
      factors[1]:= coeffs[1] * factors[1];
      StoreFactorsPol( coeffring, pol, factors );
      return factors;

    elif Length( coeffs ) = 2 then

      # The polynomial is a linear polynomial times a power of the indet.
      factors[1]:= coeffs[2] * factors[1];
      factors[ val+1 ]:= LaurentPolynomialByExtRepNC( FamilyObj( pol ),
                             [ coeffs[1] / coeffs[2], 1 ], 0, ind );
      StoreFactorsPol( coeffring, pol, factors );
      return factors;

    fi;

    # We really have to compute the factorization.
    # First split the polynomial into leading coefficient and monic part.
    lc:= Last(coeffs);
    if not IsOne( lc ) then
      coeffs:= coeffs / lc;
    fi;
    if val = 0 then
      pol:= pol / lc;
    else
      pol:= LaurentPolynomialByExtRepNC( FamilyObj( pol ), coeffs, 0, ind );
    fi;

    # Now compute the quotient of `pol' by the g.c.d. with its derivative,
    # and factorize the squarefree part.
    der:= Derivative( pol );
    g:= Gcd( R, pol, der );
    if DegreeOfLaurentPolynomial( g ) = 0 then
      Append( factors, FactorsSquarefree( R, pol, rec() ) );
    else
      for factor in FactorsSquarefree( R, Quotient( R, pol, g ), rec() ) do
        Add( factors, factor );
        q:= Quotient( R, g, factor );
        while q <> fail do
          Add( factors, factor );
          g:= q;
          q:= Quotient( R, g, factor );
        od;
      od;
    fi;

    # Sort the factorization.
    Sort( factors );

    # Adjust the first factor by the constant term.
    Assert( 2, DegreeOfLaurentPolynomial(g) = 0 );
    if not IsOne( g ) then
      lc:= g * lc;
    fi;
    if not IsOne( lc ) then
      factors[1]:= lc * factors[1];
    fi;

    # Store the factorization.
    Assert( 2, Product( factors ) = lc * pol * IndeterminateOfUnivariateRationalFunction( pol )^val );
    StoreFactorsPol( coeffring, pol, factors );

    # Return the factorization.
    return factors;
    end );


#############################################################################
##
#F  DenominatorCyc( <cyc> )
##
InstallGlobalFunction( DenominatorCyc, function( cyc )
    if IsRat( cyc ) then
      return DenominatorRat( cyc );
    else
      return Lcm( List( COEFFS_CYC( cyc ), DenominatorRat ) );
    fi;
    end );


#############################################################################


#
# The following code is meant to allow comparisons between some select
# cyclotomics domains. So you can do things like
#   Integers = GaussianRationals;
#   IsSubset(Rationals, PositiveIntegers);
# without GAP running into an error. However, this code currently only
# works for a small fixed set of domains. It will not, for example, work
# with cyclotomic field extensions, or manually defined rings over the
# integers such as ClosureRing(1, E(3)).
# It would be nice if we eventually, were able to compare and intersect
# such objects, too.
#

# The following are three lists of equal length. At position i of the first
# list is a certain known cyclotomic (semi)ring. At position i of the second
# list is the corresponding filter. At position i of the third list is a
# finite list which can act as a "proxy" for the corresponding semiring when
# it comes to comparing it for inclusion resp. computing intersections with
# any of the other semirings.
# To simplify the code using these lists, the final entry of each list is
# fail, resp. the trivial filter IsObject.
BindGlobal("CompareCyclotomicCollectionHelper_Semirings", MakeImmutable( [
        PositiveIntegers, NonnegativeIntegers,
        Integers, GaussianIntegers,
        Rationals, GaussianRationals,
        Cyclotomics, fail
] ) );

BindGlobal("CompareCyclotomicCollectionHelper_Filters", MakeImmutable( [
        IsPositiveIntegers, IsNonnegativeIntegers,
        IsIntegers, IsGaussianIntegers,
        IsRationals, IsGaussianRationals,
        HasIsWholeFamily and IsWholeFamily, IsObject
] ) );

BindGlobal("CompareCyclotomicCollectionHelper_Proxies", MakeImmutable( [
        [ 1 ], [ 0, 1 ],
        [ -1, 0, 1 ], [ -1, 0, 1, E(4) ],
        [ -1, 0, 1/2, 1 ], [ -1, 0, 1/2, 1, E(4), 1/2+E(4) ],
        [ -1, 0, 1/2, 1, E(4), 1/2+E(4), E(9) ], fail
] ) );

ForAll(CompareCyclotomicCollectionHelper_Proxies, IsSet);
if IsHPCGAP then
    MakeReadOnlySingleObj(CompareCyclotomicCollectionHelper_Semirings);
    MakeReadOnlyObj(CompareCyclotomicCollectionHelper_Filters);
fi;


BindGlobal("CompareCyclotomicCollectionHelper", function (A, B)
  local a, b;
  a := PositionProperty( CompareCyclotomicCollectionHelper_Filters, p -> p(A) );
  b := PositionProperty( CompareCyclotomicCollectionHelper_Filters, p -> p(B) );
  return CompareCyclotomicCollectionHelper_Proxies{[a,b]};
end );


InstallMethod( \=, "for certain cyclotomic semirings",
             [IsCyclotomicCollection and IsSemiringWithOne,
              IsCyclotomicCollection and IsSemiringWithOne],
function (A,B)
  local ab;
  ab := CompareCyclotomicCollectionHelper(A, B);
  # It suffices if we "recognize" at least on of A and B; but if we
  # recognize neither, we give up.
  if ab = [fail,fail] then TryNextMethod(); fi;
  return ab[1] = ab[2];
end );


InstallMethod( IsSubset, "for certain cyclotomic semirings",
             [IsCyclotomicCollection and IsSemiringWithOne,
              IsCyclotomicCollection and IsSemiringWithOne],
function (A,B)
  local ab;
  ab := CompareCyclotomicCollectionHelper(A, B);
  # Verify that we recognized both A and B, otherwise give up.
  if fail in ab then TryNextMethod(); fi;
  return IsSubset(ab[1], ab[2]);
end );


InstallMethod( Intersection2, "for certain cyclotomic semirings",
             [IsCyclotomicCollection and IsSemiringWithOne,
              IsCyclotomicCollection and IsSemiringWithOne],
function (A,B)
  local ab, i;
  ab := CompareCyclotomicCollectionHelper(A, B);
  # Verify that we recognized both A and B, otherwise give up.
  if fail in ab then TryNextMethod(); fi;
  i := Position( CompareCyclotomicCollectionHelper_Proxies, Intersection2( ab[1], ab[2] ) );
  return CompareCyclotomicCollectionHelper_Semirings[i];
end );


InstallMethod( Union2, "for certain cyclotomic semirings",
             [IsCyclotomicCollection and IsSemiringWithOne,
              IsCyclotomicCollection and IsSemiringWithOne],
function (A,B)
  local ab, i;
  ab := CompareCyclotomicCollectionHelper(A, B);
  # Verify that we recognized both A and B, otherwise give up.
  if fail in ab then TryNextMethod(); fi;
  i := Position( CompareCyclotomicCollectionHelper_Proxies, Union2( ab[1], ab[2] ) );
  if i = fail then TryNextMethod(); fi;
  return CompareCyclotomicCollectionHelper_Semirings[i];
end );