File: field.gd

package info (click to toggle)
gap 4.15.1-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 110,212 kB
  • sloc: ansic: 97,261; xml: 48,343; cpp: 13,946; sh: 4,900; perl: 1,650; javascript: 255; makefile: 252; ruby: 9
file content (1019 lines) | stat: -rw-r--r-- 35,235 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
#############################################################################
##
##  This file is part of GAP, a system for computational discrete algebra.
##  This file's authors include Thomas Breuer.
##
##  Copyright of GAP belongs to its developers, whose names are too numerous
##  to list here. Please refer to the COPYRIGHT file for details.
##
##  SPDX-License-Identifier: GPL-2.0-or-later
##
##  This file declares the operations for division rings.
##


#############################################################################
##
##  <#GAPDoc Label="[1]{field}">
##  <Index>fields</Index>
##  <Index>division rings</Index>
##  A <E>division ring</E> is a ring (see Chapter&nbsp;<Ref Chap="Rings"/>)
##  in which every non-zero element has an inverse.
##  The most important class of division rings are the commutative ones,
##  which are called <E>fields</E>.
##  <P/>
##  &GAP; supports finite fields
##  (see Chapter&nbsp;<Ref Chap="Finite Fields"/>) and
##  abelian number fields
##  (see Chapter&nbsp;<Ref Chap="Abelian Number Fields"/>),
##  in particular the field of rationals
##  (see Chapter&nbsp;<Ref Chap="Rational Numbers"/>).
##  <P/>
##  This chapter describes the general &GAP; functions for fields and
##  division rings.
##  <P/>
##  If a field <A>F</A> is a subfield of a commutative ring <A>C</A>,
##  <A>C</A> can be considered as a vector space over the (left) acting
##  domain <A>F</A> (see Chapter&nbsp;<Ref Chap="Vector Spaces"/>).
##  In this situation, we call <A>F</A> the <E>field of definition</E> of
##  <A>C</A>.
##  <P/>
##  Each field in &GAP; is represented as a vector space over a subfield
##  (see&nbsp;<Ref Filt="IsField"/>), thus each field is in fact a
##  field extension in a natural way,
##  which is used by functions such as
##  <Ref Attr="Norm"/> and <Ref Attr="Trace" Label="for a field element"/>
##  (see&nbsp;<Ref Sect="Galois Action"/>).
##  <#/GAPDoc>
##


#T Note that the families of a division ring and of its left acting domain
#T may be different!!


#############################################################################
##
#P  IsField( <D> )
##
##  <#GAPDoc Label="IsField">
##  <ManSection>
##  <Filt Name="IsField" Arg='D'/>
##
##  <Description>
##  A <E>field</E> is a commutative division ring
##  (see&nbsp;<Ref Filt="IsDivisionRing"/>
##  and&nbsp;<Ref Prop="IsCommutative"/>).
##  <Example><![CDATA[
##  gap> IsField( GaloisField(16) );           # the field with 16 elements
##  true
##  gap> IsField( Rationals );                 # the field of rationals
##  true
##  gap> q:= QuaternionAlgebra( Rationals );;  # noncommutative division ring
##  gap> IsField( q );  IsDivisionRing( q );
##  false
##  true
##  gap> mat:= [ [ 1 ] ];;  a:= Algebra( Rationals, [ mat ] );;
##  gap> IsDivisionRing( a );   # algebra not constructed as a division ring
##  false
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareSynonymAttr( "IsField", IsDivisionRing and IsCommutative );

InstallTrueMethod( IsCommutative, IsDivisionRing and IsFinite );


#############################################################################
##
#A  PrimeField( <D> )
##
##  <#GAPDoc Label="PrimeField">
##  <ManSection>
##  <Attr Name="PrimeField" Arg='D'/>
##
##  <Description>
##  The <E>prime field</E> of a division ring <A>D</A> is the smallest field
##  which is contained in <A>D</A>.
##  For example, the prime field of any field in characteristic zero
##  is isomorphic to the field of rational numbers.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "PrimeField", IsDivisionRing );


#############################################################################
##
#P  IsPrimeField( <D> )
##
##  <#GAPDoc Label="IsPrimeField">
##  <ManSection>
##  <Prop Name="IsPrimeField" Arg='D'/>
##
##  <Description>
##  A division ring is a prime field if it is equal to its prime field
##  (see&nbsp;<Ref Attr="PrimeField"/>).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsPrimeField", IsDivisionRing );
InstallTrueMethod( IsField, IsPrimeField );

InstallIsomorphismMaintenance( IsPrimeField, IsField, IsField );


#############################################################################
##
#A  DefiningPolynomial( <F> )
##
##  <#GAPDoc Label="DefiningPolynomial">
##  <ManSection>
##  <Attr Name="DefiningPolynomial" Arg='F'/>
##
##  <Description>
##  is the defining polynomial of the field <A>F</A> as a field extension
##  over the left acting domain of <A>F</A>.
##  A root of the defining polynomial can be computed with
##  <Ref Attr="RootOfDefiningPolynomial"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "DefiningPolynomial", IsField );


#############################################################################
##
#A  DegreeOverPrimeField( <F> )
##
##  <#GAPDoc Label="DegreeOverPrimeField">
##  <ManSection>
##  <Attr Name="DegreeOverPrimeField" Arg='F'/>
##
##  <Description>
##  is the degree of the field <A>F</A> over its prime field
##  (see&nbsp;<Ref Attr="PrimeField"/>).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "DegreeOverPrimeField", IsDivisionRing );

InstallIsomorphismMaintenance( DegreeOverPrimeField,
    IsDivisionRing, IsDivisionRing );


#############################################################################
##
#A  GeneratorsOfDivisionRing( <D> )
##
##  <#GAPDoc Label="GeneratorsOfDivisionRing">
##  <ManSection>
##  <Attr Name="GeneratorsOfDivisionRing" Arg='D'/>
##
##  <Description>
##  generators with respect to addition, multiplication, and taking inverses
##  (the identity cannot be omitted ...)
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "GeneratorsOfDivisionRing", IsDivisionRing );


#############################################################################
##
#A  GeneratorsOfField( <F> )
##
##  <#GAPDoc Label="GeneratorsOfField">
##  <ManSection>
##  <Attr Name="GeneratorsOfField" Arg='F'/>
##
##  <Description>
##  generators with respect to addition, multiplication, and taking
##  inverses.
##  This attribute is the same as <Ref Attr="GeneratorsOfDivisionRing"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareSynonymAttr( "GeneratorsOfField", GeneratorsOfDivisionRing );


#############################################################################
##
#A  NormalBase( <F>[, <elm>] )
##
##  <#GAPDoc Label="NormalBase">
##  <ManSection>
##  <Attr Name="NormalBase" Arg='F[, elm]'/>
##
##  <Description>
##  Let <A>F</A> be a field that is a Galois extension of its subfield
##  <C>LeftActingDomain( <A>F</A> )</C>.
##  Then <Ref Attr="NormalBase"/> returns a list of elements in <A>F</A>
##  that form a normal basis of <A>F</A>, that is,
##  a vector space basis that is closed under the action of the Galois group
##  (see&nbsp;<Ref Attr="GaloisGroup" Label="of field"/>) of <A>F</A>.
##  <P/>
##  If a second argument <A>elm</A> is given,
##  it is used as a hint for the algorithm to find a normal basis with the
##  algorithm described in&nbsp;<Cite Key="Art68"/>.
##  <Example><![CDATA[
##  gap> NormalBase( CF(5) );
##  [ -E(5), -E(5)^2, -E(5)^3, -E(5)^4 ]
##  gap> NormalBase( CF(4) );
##  [ 1/2-1/2*E(4), 1/2+1/2*E(4) ]
##  gap> NormalBase( GF(3^6) );
##  [ Z(3^6)^2, Z(3^6)^6, Z(3^6)^18, Z(3^6)^54, Z(3^6)^162, Z(3^6)^486 ]
##  gap> NormalBase( GF( GF(8), 2 ) );
##  [ Z(2^6), Z(2^6)^8 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "NormalBase", IsField );
DeclareOperation( "NormalBase", [ IsField, IsScalar ] );


#############################################################################
##
#A  PrimitiveElement( <D> )
##
##  <#GAPDoc Label="PrimitiveElement">
##  <ManSection>
##  <Attr Name="PrimitiveElement" Arg='D'/>
##
##  <Description>
##  is an element of <A>D</A> that generates <A>D</A> as a division ring
##  together with the left acting domain.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "PrimitiveElement", IsDivisionRing );


#############################################################################
##
#A  PrimitiveRoot( <F> )
##
##  <#GAPDoc Label="PrimitiveRoot">
##  <ManSection>
##  <Attr Name="PrimitiveRoot" Arg='F'/>
##
##  <Description>
##  A <E>primitive root</E> of a finite field is a generator of its
##  multiplicative group.
##  A primitive root is always a primitive element
##  (see&nbsp;<Ref Attr="PrimitiveElement"/>),
##  the converse is in general not true.
##  <!-- % For example, <C>Z(9)^2</C> is a primitive element for <C>GF(9)</C> but not a -->
##  <!-- % primitive root. -->
##  <Example><![CDATA[
##  gap> f:= GF( 3^5 );
##  GF(3^5)
##  gap> PrimitiveRoot( f );
##  Z(3^5)
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "PrimitiveRoot", IsField and IsFinite );


#############################################################################
##
#A  RootOfDefiningPolynomial( <F> )
##
##  <#GAPDoc Label="RootOfDefiningPolynomial">
##  <ManSection>
##  <Attr Name="RootOfDefiningPolynomial" Arg='F'/>
##
##  <Description>
##  is a root in the field <A>F</A> of its defining polynomial as a field
##  extension over the left acting domain of <A>F</A>.
##  The defining polynomial can be computed with
##  <Ref Attr="DefiningPolynomial"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "RootOfDefiningPolynomial", IsField );


#############################################################################
##
#O  AsDivisionRing( [<F>, ]<C> )
#O  AsField( [<F>, ]<C> )
##
##  <#GAPDoc Label="AsDivisionRing">
##  <ManSection>
##  <Oper Name="AsDivisionRing" Arg='[F, ]C'/>
##  <Oper Name="AsField" Arg='[F, ]C'/>
##
##  <Description>
##  If the collection <A>C</A> can be regarded as a division ring then
##  <C>AsDivisionRing( <A>C</A> )</C> is the division ring that consists of
##  the elements of <A>C</A>, viewed as a vector space over its prime field;
##  otherwise <K>fail</K> is returned.
##  <P/>
##  In the second form, if <A>F</A> is a division ring contained in <A>C</A>
##  then the returned division ring is viewed as a vector space over
##  <A>F</A>.
##  <P/>
##  <Ref Oper="AsField"/> is just a synonym for <Ref Oper="AsDivisionRing"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "AsDivisionRing", [ IsCollection ] );
DeclareOperation( "AsDivisionRing", [ IsDivisionRing, IsCollection ] );

DeclareSynonym( "AsField", AsDivisionRing );


#############################################################################
##
#O  ClosureDivisionRing( <D>, <obj> )
##
##  <ManSection>
##  <Oper Name="ClosureDivisionRing" Arg='D, obj'/>
##
##  <Description>
##  <Ref Func="ClosureDivisionRing"/> returns the division ring generated by
##  the elements of the division ring <A>D</A> and <A>obj</A>,
##  which can be either an element or a collection of elements,
##  in particular another division ring.
##  The left acting domain of the result equals that of <A>D</A>.
##  </Description>
##  </ManSection>
##
DeclareOperation( "ClosureDivisionRing", [ IsDivisionRing, IsObject ] );

DeclareSynonym( "ClosureField", ClosureDivisionRing );


#############################################################################
##
#A  Subfields( <F> )
##
##  <#GAPDoc Label="Subfields">
##  <ManSection>
##  <Attr Name="Subfields" Arg='F'/>
##
##  <Description>
##  is the set of all subfields of the field <A>F</A>.
##  <!-- or shall we allow to ask, e.g., for subfields of quaternion algebras?-->
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "Subfields", IsField );


#############################################################################
##
#O  FieldExtension( <F>, <poly> )
##
##  <#GAPDoc Label="FieldExtension">
##  <ManSection>
##  <Oper Name="FieldExtension" Arg='F, poly'/>
##
##  <Description>
##  is the field obtained on adjoining a root of the irreducible polynomial
##  <A>poly</A> to the field <A>F</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "FieldExtension", [ IsField, IsUnivariatePolynomial ] );


#############################################################################
##
##  <#GAPDoc Label="[2]{field}">
##  Let <M>L > K</M> be a field extension of finite degree.
##  Then to each element <M>\alpha \in L</M>, we can associate a
##  <M>K</M>-linear mapping <M>\varphi_{\alpha}</M> on <M>L</M>,
##  and for a fixed <M>K</M>-basis of <M>L</M>,
##  we can associate to <M>\alpha</M> the matrix <M>M_{\alpha}</M>
##  (over <M>K</M>) of this mapping.
##  <P/>
##  The <E>norm</E> of <M>\alpha</M> is defined as the determinant of
##  <M>M_{\alpha}</M>,
##  the <E>trace</E> of <M>\alpha</M> is defined as the trace of
##  <M>M_{\alpha}</M>,
##  the <E>minimal polynomial</E> <M>\mu_{\alpha}</M> and the
##  <E>trace polynomial</E> <M>\chi_{\alpha}</M> of <M>\alpha</M>
##  are defined as the minimal polynomial
##  (see&nbsp;<Ref Sect="MinimalPolynomial" Label="over a field"/>)
##  and the characteristic polynomial
##  (see&nbsp;<Ref Attr="CharacteristicPolynomial"/> and
##  <Ref Oper="TracePolynomial"/>) of <M>M_{\alpha}</M>.
##  (Note that <M>\mu_{\alpha}</M> depends only on <M>K</M> whereas
##  <M>\chi_{\alpha}</M> depends on both <M>L</M> and <M>K</M>.)
##  <P/>
##  Thus norm and trace of <M>\alpha</M> are elements of <M>K</M>,
##  and <M>\mu_{\alpha}</M> and <M>\chi_{\alpha}</M> are polynomials over
##  <M>K</M>, <M>\chi_{\alpha}</M> being a power of <M>\mu_{\alpha}</M>,
##  and the degree of <M>\chi_{\alpha}</M> equals the degree of the field
##  extension <M>L > K</M>.
##  <P/>
##  The <E>conjugates</E> of <M>\alpha</M> in <M>L</M> are those roots of
##  <M>\chi_{\alpha}</M> (with multiplicity) that lie in <M>L</M>;
##  note that if only <M>L</M> is given, there is in general no way to access
##  the roots outside <M>L</M>.
##  <P/>
##  Analogously, the <E>Galois group</E> of the extension <M>L > K</M> is
##  defined as the group of all those field automorphisms of <M>L</M> that
##  fix <M>K</M> pointwise.
##  <P/>
##  If <M>L > K</M> is a Galois extension then the conjugates of
##  <M>\alpha</M> are all roots of <M>\chi_{\alpha}</M> (with multiplicity),
##  the set of conjugates equals the roots of <M>\mu_{\alpha}</M>,
##  the norm of <M>\alpha</M> equals the product and the trace of
##  <M>\alpha</M> equals the sum of the conjugates of <M>\alpha</M>,
##  and the Galois group in the sense of the above definition equals
##  the usual Galois group,
##  <P/>
##  Note that <C>MinimalPolynomial( <A>F</A>, <A>z</A> )</C> is a polynomial
##  <E>over</E> <A>F</A>,
##  whereas <C>Norm( <A>F</A>, <A>z</A> )</C> is the norm of the element
##  <A>z</A> <E>in</E> <A>F</A>
##  w.r.t.&nbsp;the field extension
##  <C><A>F</A> &gt; LeftActingDomain( <A>F</A> )</C>.
##  <#/GAPDoc>
##


#############################################################################
##
##  <#GAPDoc Label="[3]{field}">
##  The default methods for field elements are as follows.
##  <Ref Oper="MinimalPolynomial"/> solves a system of linear equations,
##  <Ref Oper="TracePolynomial"/> computes the appropriate power of the
##  minimal
##  polynomial,
##  <Ref Attr="Norm"/> and <Ref Attr="Trace" Label="for a field element"/>
##  values are obtained as coefficients of the characteristic polynomial,
##  and <Ref Attr="Conjugates"/> uses the factorization of the
##  characteristic polynomial.
##  <P/>
##  For elements in finite fields and cyclotomic fields, one wants to do the
##  computations in a different way since the field extensions in question
##  are Galois extensions, and the Galois groups are well-known in these
##  cases.
##  More general,
##  if a field is in the category
##  <C>IsFieldControlledByGaloisGroup</C> then
##  the default methods are the following.
##  <Ref Attr="Conjugates"/> returns the sorted list of images
##  (with multiplicity) of the element under the Galois group,
##  <Ref Attr="Norm"/> computes the product of the conjugates,
##  <Ref Attr="Trace" Label="for a field element"/> computes the sum of the
##  conjugates,
##  <Ref Oper="TracePolynomial"/> and <Ref Oper="MinimalPolynomial"/> compute
##  the product of linear factors <M>x - c</M> with <M>c</M> ranging over the
##  conjugates and the set of conjugates, respectively.
##  <#/GAPDoc>
##


#############################################################################
##
#C  IsFieldControlledByGaloisGroup( <obj> )
##
##  <ManSection>
##  <Filt Name="IsFieldControlledByGaloisGroup" Arg='obj' Type='Category'/>
##
##  <Description>
##  (The meaning is explained above.)
##  </Description>
##  </ManSection>
##
DeclareCategory( "IsFieldControlledByGaloisGroup", IsField );


#############################################################################
##
#M  IsFieldControlledByGaloisGroup( <finfield> )
##
##  For finite fields and abelian number fields
##  (independent of the representation of their elements),
##  we know the Galois group and have a method for `Conjugates' that does
##  not use `MinimalPolynomial'.
##  Currently fields created with `AlgebraicExtension' do not support this
##  approach, so we do not install the implication from
##  `IsField and IsFinite'.
##
InstallTrueMethod( IsFieldControlledByGaloisGroup,
    IsField and IsFFECollection );


#############################################################################
##
#A  Conjugates( [<L>, [<K>, ]]<z> ) . . . . . . conjugates of a field element
##
##  <#GAPDoc Label="Conjugates">
##  <ManSection>
##  <Attr Name="Conjugates" Arg='[L, [K, ]]z'/>
##
##  <Description>
##  <Ref Attr="Conjugates"/> returns the list of <E>conjugates</E>
##  of the field element <A>z</A>.
##  If two fields <A>L</A> and <A>K</A> are given then the conjugates are
##  computed w.r.t.&nbsp;the field extension <A>L</A><M> > </M><A>K</A>,
##  if only one field <A>L</A> is given then
##  <C>LeftActingDomain( <A>L</A> )</C> is taken as default for the subfield
##  <A>K</A>,
##  and if no field is given then <C>DefaultField( <A>z</A> )</C> is taken
##  as default for <A>L</A>.
##  <P/>
##  The result list will contain duplicates if <A>z</A> lies in a
##  proper subfield of <A>L</A>, or of the default field of <A>z</A>,
##  respectively.
##  The result list need not be sorted.
##  <P/>
##  <Example><![CDATA[
##  gap> Norm( E(8) );  Norm( CF(8), E(8) );
##  1
##  1
##  gap> Norm( CF(8), CF(4), E(8) );
##  -E(4)
##  gap> Norm( AsField( CF(4), CF(8) ), E(8) );
##  -E(4)
##  gap> Trace( E(8) );  Trace( CF(8), CF(8), E(8) );
##  0
##  E(8)
##  gap> Conjugates( CF(8), E(8) );
##  [ E(8), E(8)^3, -E(8), -E(8)^3 ]
##  gap> Conjugates( CF(8), CF(4), E(8) );
##  [ E(8), -E(8) ]
##  gap> Conjugates( CF(16), E(8) );
##  [ E(8), E(8)^3, -E(8), -E(8)^3, E(8), E(8)^3, -E(8), -E(8)^3 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "Conjugates", IsScalar );
DeclareOperation( "Conjugates", [ IsField, IsField, IsScalar ] );
DeclareOperation( "Conjugates", [ IsField, IsScalar ] );


#############################################################################
##
#A  Norm( [<L>, [<K>, ]]<z> )  . . . . . . . . . . .  norm of a field element
##
##  <#GAPDoc Label="Norm">
##  <ManSection>
##  <Attr Name="Norm" Arg='[L, [K, ]]z'/>
##
##  <Description>
##  <Ref Attr="Norm"/> returns the norm of the field element <A>z</A>.
##  If two fields <A>L</A> and <A>K</A> are given then the norm is computed
##  w.r.t.&nbsp;the field extension <A>L</A><M> > </M><A>K</A>,
##  if only one field <A>L</A> is given then
##  <C>LeftActingDomain( <A>L</A> )</C> is taken as
##  default for the subfield <A>K</A>,
##  and if no field is given then <C>DefaultField( <A>z</A> )</C> is taken
##  as default for <A>L</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "Norm", IsScalar );
DeclareOperation( "Norm", [ IsField, IsScalar ] );
DeclareOperation( "Norm", [ IsField, IsField, IsScalar ] );


#############################################################################
##
#A  Trace( [<L>, [<K>, ]]<z> )  . . . . . . . . . .  trace of a field element
#A  Trace( <mat> )  . . . . . . . . . . . . . . . . . . . . trace of a matrix
##
##  <#GAPDoc Label="Trace">
##  <ManSection>
##  <Heading>Traces of field elements and matrices</Heading>
##  <Attr Name="Trace" Arg='[L, [K, ]]z' Label="for a field element"/>
##  <Attr Name="Trace" Arg='mat' Label="for a matrix"/>
##
##  <Description>
##  <Ref Attr="Trace" Label="for a field element"/> returns the trace of the
##  field element <A>z</A>.
##  If two fields <A>L</A> and <A>K</A> are given then the trace is computed
##  w.r.t.&nbsp;the field extension <M><A>L</A> > <A>K</A></M>,
##  if only one field <A>L</A> is given then
##  <C>LeftActingDomain( <A>L</A> )</C> is taken as
##  default for the subfield <A>K</A>,
##  and if no field is given then <C>DefaultField( <A>z</A> )</C> is taken
##  as default for <A>L</A>.
##  <P/>
##  The <E>trace of a matrix</E> is the sum of its diagonal entries.
##  Note that this is <E>not</E> compatible with the definition of
##  <Ref Attr="Trace" Label="for a field element"/> for field elements,
##  so the one-argument version is not suitable when matrices shall be
##  regarded as field elements.
##  <!-- forbid <C>Trace</C> as short form for <C>TraceMat</C>?-->
##  <!-- crossref. to <C>TraceMat</C>?-->
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "Trace", IsScalar );
DeclareAttribute( "Trace", IsMatrix );
DeclareOperation( "Trace", [ IsField, IsScalar ] );
DeclareOperation( "Trace", [ IsField, IsField, IsScalar ] );


#############################################################################
##
#O  TracePolynomial( <L>, <K>, <z>[, <inum>] )
##
##  <#GAPDoc Label="TracePolynomial">
##  <ManSection>
##  <Oper Name="TracePolynomial" Arg='L, K, z[, inum]'/>
##
##  <Description>
##  <Index Subkey="for field elements">characteristic polynomial</Index>
##  returns the polynomial that is the product of <M>(X - c)</M>
##  where <M>c</M> runs over the conjugates of <A>z</A>
##  in the field extension <A>L</A> over <A>K</A>.
##  The polynomial is returned as a univariate polynomial over <A>K</A>
##  in the indeterminate number <A>inum</A> (defaulting to 1).
##  <P/>
##  This polynomial is sometimes also called the
##  <E>characteristic polynomial</E> of <A>z</A> w.r.t.&nbsp;the field
##  extension <M><A>L</A> > <A>K</A></M>.
##  Therefore methods are installed for
##  <Ref Attr="CharacteristicPolynomial"/>
##  that call <Ref Oper="TracePolynomial"/> in the case of field extensions.
##  <P/>
##  <Example><![CDATA[
##  gap> TracePolynomial( CF(8), Rationals, E(8) );
##  x_1^4+1
##  gap> TracePolynomial( CF(16), Rationals, E(8) );
##  x_1^8+2*x_1^4+1
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "TracePolynomial", [ IsField, IsField, IsScalar ] );
DeclareOperation( "TracePolynomial",
    [ IsField, IsField, IsScalar, IsPosInt ] );


#############################################################################
##
#A  GaloisGroup( <F> )
##
##  <#GAPDoc Label="GaloisGroup:field">
##  <ManSection>
##  <Attr Name="GaloisGroup" Arg='F' Label="of field"/>
##
##  <Description>
##  The <E>Galois group</E> of a field <A>F</A> is the group of all
##  field automorphisms of <A>F</A> that fix the subfield
##  <M>K = </M><C>LeftActingDomain( <A>F</A> )</C> pointwise.
##  <P/>
##  Note that the field extension <M><A>F</A> > K</M> need <E>not</E> be
##  a Galois extension.
##  <Example><![CDATA[
##  gap> g:= GaloisGroup( AsField( GF(2^2), GF(2^12) ) );;
##  gap> Size( g );  IsCyclic( g );
##  6
##  true
##  gap> h:= GaloisGroup( CF(60) );;
##  gap> Size( h );  IsAbelian( h );
##  16
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "GaloisGroup", IsField );


#############################################################################
##
#A  ComplexConjugate( <z> )
#A  RealPart( <z> )
#A  ImaginaryPart( <z> )
##
##  <#GAPDoc Label="ComplexConjugate">
##  <ManSection>
##  <Attr Name="ComplexConjugate" Arg='z'/>
##  <Attr Name="RealPart" Arg='z'/>
##  <Attr Name="ImaginaryPart" Arg='z'/>
##
##  <Description>
##  For a cyclotomic number <A>z</A>,
##  <Ref Attr="ComplexConjugate"/> returns
##  <C>GaloisCyc( <A>z</A>, -1 )</C>,
##  see&nbsp;<Ref Oper="GaloisCyc" Label="for a cyclotomic"/>.
##  For a quaternion <M><A>z</A> = c_1 e + c_2 i + c_3 j + c_4 k</M>,
##  <Ref Attr="ComplexConjugate"/> returns
##  <M>c_1 e - c_2 i - c_3 j - c_4 k</M>,
##  see&nbsp;<Ref Filt="IsQuaternion"/>.
##  <P/>
##  When <Ref Attr="ComplexConjugate"/> is called with a list then the result
##  is the list of return values of <Ref Attr="ComplexConjugate"/>
##  for the list entries in the corresponding positions.
##  <P/>
##  When <Ref Attr="ComplexConjugate"/> is defined for an object <A>z</A>
##  then <Ref Attr="RealPart"/> and <Ref Attr="ImaginaryPart"/> return
##  <C>(<A>z</A> + ComplexConjugate( <A>z</A> )) / 2</C> and
##  <C>(<A>z</A> - ComplexConjugate( <A>z</A> )) / 2 i</C>, respectively,
##  where <C>i</C> denotes the corresponding imaginary unit.
##  <P/>
##  <Example><![CDATA[
##  gap> GaloisCyc( E(5) + E(5)^4, 2 );
##  E(5)^2+E(5)^3
##  gap> GaloisCyc( E(5), -1 );           # the complex conjugate
##  E(5)^4
##  gap> GaloisCyc( E(5) + E(5)^4, -1 );  # this value is real
##  E(5)+E(5)^4
##  gap> GaloisCyc( E(15) + E(15)^4, 3 );
##  E(5)+E(5)^4
##  gap> ComplexConjugate( E(7) );
##  E(7)^6
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "ComplexConjugate", IsScalar );
DeclareAttribute( "ComplexConjugate", IsList );
DeclareAttribute( "RealPart", IsScalar );
DeclareAttribute( "RealPart", IsList );
DeclareAttribute( "ImaginaryPart", IsScalar );
DeclareAttribute( "ImaginaryPart", IsList );


#############################################################################
##
#O  DivisionRingByGenerators( [<F>, ]<gens> ) . . . . div. ring by generators
##
##  <#GAPDoc Label="DivisionRingByGenerators">
##  <ManSection>
##  <Oper Name="DivisionRingByGenerators" Arg='[F, ]gens'/>
##  <Oper Name="FieldByGenerators" Arg='[F, ]gens'/>
##
##  <Description>
##  Called with a field <A>F</A> and a list <A>gens</A> of scalars,
##  <Ref Oper="DivisionRingByGenerators"/> returns the division ring over
##  <A>F</A> generated by <A>gens</A>.
##  The unary version returns the division ring as vector space over
##  <C>FieldOverItselfByGenerators( <A>gens</A> )</C>.
##  <P/>
##  <Ref Oper="FieldByGenerators"/> is just a synonym for
##  <Ref Oper="DivisionRingByGenerators"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "DivisionRingByGenerators",
        [ IsDivisionRing, IsCollection ] );

DeclareSynonym( "FieldByGenerators", DivisionRingByGenerators );


#############################################################################
##
#O  FieldOverItselfByGenerators( [ <z>, ... ] )
##
##  <#GAPDoc Label="FieldOverItselfByGenerators">
##  <ManSection>
##  <Oper Name="FieldOverItselfByGenerators" Arg='[ z, ... ]'/>
##
##  <Description>
##  This  operation is  needed for  the  call of
##  <Ref Func="Field" Label="for several generators"/> or
##  <Ref Oper="FieldByGenerators"/> without explicitly given subfield,
##  in order to construct a left acting domain for such a field.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "FieldOverItselfByGenerators", [ IsCollection ] );


#############################################################################
##
#O  DefaultFieldByGenerators( [ <z>, ... ] )  . . default field by generators
##
##  <#GAPDoc Label="DefaultFieldByGenerators">
##  <ManSection>
##  <Oper Name="DefaultFieldByGenerators" Arg='[ z, ... ]'/>
##
##  <Description>
##  returns the default field containing the elements <A>z</A>, <M>\ldots</M>.
##  This field may be bigger than the smallest field containing these
##  elements.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "DefaultFieldByGenerators", [ IsCollection ] );


#############################################################################
##
#F  Field( <z>, ... ) . . . . . . . . . field generated by a list of elements
#F  Field( [<F>, ]<list> )
##
##  <#GAPDoc Label="Field">
##  <ManSection>
##  <Func Name="Field" Arg='z, ...' Label="for several generators"/>
##  <Func Name="Field" Arg='[F, ]list'
##   Label="for (a field and) a list of generators"/>
##
##  <Description>
##  <Ref Func="Field" Label="for several generators"/> returns the smallest
##  field <M>K</M> that contains all the elements <M><A>z</A>, \ldots</M>,
##  or the smallest field <M>K</M> that contains all elements in the list
##  <A>list</A>.
##  If no subfield <A>F</A> is given, <M>K</M> is constructed as a field over
##  itself, i.e. the left acting domain of <M>K</M> is <M>K</M>.
##  Called with a field <A>F</A> and a list <A>list</A>,
##  <Ref Func="Field" Label="for (a field and) a list of generators"/>
##  constructs the field generated by <A>F</A> and the elements in
##  <A>list</A>, as a vector space over <A>F</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "Field" );
#T why not `DivisionRing', and `Field' as a (more or less) synonym?


#############################################################################
##
#F  DefaultField( <z>, ... )  . . . . . default field containing a collection
#F  DefaultField( <list> )
##
##  <#GAPDoc Label="DefaultField">
##  <ManSection>
##  <Func Name="DefaultField" Arg='z, ...' Label="for several generators"/>
##  <Func Name="DefaultField" Arg='list' Label="for a list of generators"/>
##
##  <Description>
##  <Ref Func="DefaultField" Label="for several generators"/> returns a field
##  <M>K</M> that contains all the elements <M><A>z</A>, \ldots</M>,
##  or a field <M>K</M> that contains all elements in the list <A>list</A>.
##  <P/>
##  This field need not be the smallest field in which the elements lie,
##  cf.&nbsp;<Ref Func="Field" Label="for several generators"/>.
##  For example, for elements from cyclotomic fields
##  <Ref Func="DefaultField" Label="for several generators"/> returns
##  the smallest cyclotomic field in which the elements lie,
##  but the elements may lie in a smaller number field
##  which is not a cyclotomic field.
##  <Example><![CDATA[
##  gap> Field( Z(4) );  Field( [ Z(4), Z(8) ] );  # finite fields
##  GF(2^2)
##  GF(2^6)
##  gap> Field( E(9) );  Field( CF(4), [ E(9) ] ); # abelian number fields
##  CF(9)
##  AsField( GaussianRationals, CF(36) )
##  gap> f1:= Field( EB(5) );  f2:= DefaultField( EB(5) );
##  NF(5,[ 1, 4 ])
##  CF(5)
##  gap> f1 = f2;  IsSubset( f2, f1 );
##  false
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "DefaultField" );


#############################################################################
##
#F  Subfield( <F>, <gens> ) . . . . . . . subfield of <F> generated by <gens>
#F  SubfieldNC( <F>, <gens> )
##
##  <#GAPDoc Label="Subfield">
##  <ManSection>
##  <Func Name="Subfield" Arg='F, gens'/>
##  <Func Name="SubfieldNC" Arg='F, gens'/>
##
##  <Description>
##  Constructs the subfield of <A>F</A> generated by <A>gens</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "Subfield" );
DeclareGlobalFunction( "SubfieldNC" );


#############################################################################
##
#A  FrobeniusAutomorphism( <F> )  .  Frobenius automorphism of a finite field
##
##  <#GAPDoc Label="FrobeniusAutomorphism">
##  <ManSection>
##  <Attr Name="FrobeniusAutomorphism" Arg='F'/>
##
##  <Description>
##  <Index Subkey="Frobenius, field">homomorphisms</Index>
##  <Index Subkey="Frobenius">field homomorphisms</Index>
##  <Index Key="CompositionMapping" Subkey="for Frobenius automorphisms">
##  <C>CompositionMapping</C></Index>
##  returns the Frobenius automorphism of the finite field <A>F</A>
##  as a field homomorphism (see&nbsp;<Ref Sect="Ring Homomorphisms"/>).
##  <P/>
##  <Index>Frobenius automorphism</Index>
##  The <E>Frobenius automorphism</E> <M>f</M> of a finite field <M>F</M> of
##  characteristic <M>p</M> is the function that takes each element <M>z</M>
##  of <M>F</M> to its <M>p</M>-th power.
##  Each field automorphism of <M>F</M> is a power of <M>f</M>.
##  Thus <M>f</M> is a generator for the Galois group of <M>F</M> relative to
##  the prime field of <M>F</M>,
##  and an appropriate power of <M>f</M> is a generator of the Galois group
##  of <M>F</M> over a subfield
##  (see&nbsp;<Ref Attr="GaloisGroup" Label="of field"/>).
##  <P/>
##  <Example><![CDATA[
##  gap> f := GF(16);
##  GF(2^4)
##  gap> x := FrobeniusAutomorphism( f );
##  FrobeniusAutomorphism( GF(2^4) )
##  gap> Z(16) ^ x;
##  Z(2^4)^2
##  gap> x^2;
##  FrobeniusAutomorphism( GF(2^4) )^2
##  ]]></Example>
##  <P/>
##  <Index Key="Image" Subkey="for Frobenius automorphisms"><C>Image</C>
##  </Index>
##  The image of an element <M>z</M> under the <M>i</M>-th power of <M>f</M>
##  is computed as the <M>p^i</M>-th power of <M>z</M>.
##  The product of the <M>i</M>-th power and the <M>j</M>-th power of
##  <M>f</M> is the <M>k</M>-th power of <M>f</M>, where <M>k</M> is
##  <M>i j \bmod </M> <C>Size(<A>F</A>)</C><M>-1</M>.
##  The zeroth power of <M>f</M> is <C>IdentityMapping( <A>F</A> )</C>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "FrobeniusAutomorphism", IsField );


#############################################################################
##
#F  IsFieldElementsSpace( <V> )
##
##  <ManSection>
##  <Func Name="IsFieldElementsSpace" Arg='V'/>
##
##  <Description>
##  If an <M>F</M>-vector space <A>V</A> is in the filter <C>IsFieldElementsSpace</C> then
##  this expresses that <A>V</A> consists of elements in a field, and that <A>V</A> is
##  handled via the mechanism of nice bases (see&nbsp;<Ref ???="..."/>) in the following way.
##  Let <M>K</M> be the default field generated by the vector space generators of
##  <A>V</A>.
##  Then the <C>NiceFreeLeftModuleInfo</C> value of <A>V</A> is an <M>F</M>-basis <M>B</M> of <M>K</M>,
##  and the <C>NiceVector</C> value of <M>v \in <A>V</A></M> is defined as
##  <C>Coefficients</C><M>( B, v )</M>.
##  <P/>
##  So it is assumed that methods for computing a basis for the
##  <M>F</M>-vector space <M>K</M> are known;
##  for example, one can compute a Lenstra basis (see&nbsp;<Ref ???="..."/>) if <M>K</M> is an
##  abelian number field,
##  and take successive powers of a primitive root if <M>K</M> is a finite field
##  (see&nbsp;<Ref ???="..."/>).
##  </Description>
##  </ManSection>
##
DeclareHandlingByNiceBasis( "IsFieldElementsSpace",
    "for free left modules of field elements" );


#############################################################################
##
#O  NthRoot( <F>, <a>, <n> )
##
##  <ManSection>
##  <Oper Name="NthRoot" Arg='F, a, n'/>
##
##  <Description>
##  returns one <A>n</A>th root of <A>a</A> if such a root exists in <A>F</A>
##  and returns <K>fail</K> otherwise.
##  </Description>
##  </ManSection>
##
DeclareOperation( "NthRoot", [ IsField, IsScalar, IsPosInt ] );