File: float.gd

package info (click to toggle)
gap 4.15.1-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 110,212 kB
  • sloc: ansic: 97,261; xml: 48,343; cpp: 13,946; sh: 4,900; perl: 1,650; javascript: 255; makefile: 252; ruby: 9
file content (461 lines) | stat: -rw-r--r-- 17,450 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
#############################################################################
##
##  This file is part of GAP, a system for computational discrete algebra.
##  This file's authors include Laurent Bartholdi.
##
##  Copyright of GAP belongs to its developers, whose names are too numerous
##  to list here. Please refer to the COPYRIGHT file for details.
##
##  SPDX-License-Identifier: GPL-2.0-or-later
##
##  This file deals with general float functions
##

#############################################################################
##
#C  Floateans
##
DeclareCategory("IsFloat", IsScalar and IsCommutativeElement and IsZDFRE);
DeclareCategory("IsRealFloat", IsFloat);
DeclareCategory("IsFloatInterval", IsFloat and IsCollection);
DeclareCategory("IsComplexFloat", IsFloat);
DeclareCategory("IsComplexFloatInterval", IsComplexFloat and IsFloatInterval);
DeclareCategoryFamily("IsFloat");
DeclareCategoryCollections("IsFloat");
DeclareCategoryCollections("IsFloatCollection");
DeclareConstructor("NewFloat", [IsFloat,IsObject]);
DeclareOperation("MakeFloat", [IsFloat,IsObject]);
#############################################################################

BindGlobal("DECLAREFLOATCREATOR", function(arg)
    DeclareConstructor("NewFloat",arg);
    DeclareOperation("MakeFloat",arg);
end);

BindGlobal("INSTALLFLOATCREATOR", function(arg)
    if Length(arg)=3 then
        InstallMethod(NewFloat,arg[1],arg[2],arg[3]);
        InstallMethod(MakeFloat,arg[1],arg[2],arg[3]);
    elif Length(arg)=4 then
        InstallMethod(NewFloat,arg[1],arg[2],arg[3],arg[4]);
        InstallMethod(MakeFloat,arg[1],arg[2],arg[3],arg[4]);
    else
        Error("INSTALLFLOATCREATOR only coded for 3-argument or 4-argument version");
    fi;
end);

#############################################################################
##
#O Unary operations
##
## <#GAPDoc Label="Float-Math-Commands">
## <ManSection>
##   <Heading>Standard mathematical operations</Heading>
##   <Attr Name="Sin" Arg="f"/>
##   <Attr Name="Cos" Arg="f"/>
##   <Attr Name="Tan" Arg="f"/>
##   <Attr Name="Sec" Arg="f"/>
##   <Attr Name="Csc" Arg="f"/>
##   <Attr Name="Cot" Arg="f"/>
##   <Attr Name="Asin" Arg="f"/>
##   <Attr Name="Acos" Arg="f"/>
##   <Attr Name="Atan" Arg="f"/>
##   <Attr Name="Sinh" Arg="f"/>
##   <Attr Name="Cosh" Arg="f"/>
##   <Attr Name="Tanh" Arg="f"/>
##   <Attr Name="Sech" Arg="f"/>
##   <Attr Name="Csch" Arg="f"/>
##   <Attr Name="Coth" Arg="f"/>
##   <Attr Name="Asinh" Arg="f"/>
##   <Attr Name="Acosh" Arg="f"/>
##   <Attr Name="Atanh" Arg="f"/>
##   <Oper Name="Log" Arg="f"/>
##   <Attr Name="Log2" Arg="f"/>
##   <Attr Name="Log10" Arg="f"/>
##   <Attr Name="Exp" Arg="f"/>
##   <Attr Name="Exp2" Arg="f"/>
##   <Attr Name="Exp10" Arg="f"/>
##   <Attr Name="CubeRoot" Arg="f"/>
##   <Attr Name="Square" Arg="f"/>
##   <Oper Name="Hypothenuse" Arg="x y"/>
##   <Attr Name="Ceil" Arg="f"/>
##   <Attr Name="Floor" Arg="f"/>
##   <Attr Name="Round" Arg="f"/>
##   <Attr Name="Trunc" Arg="f"/>
##   <Attr Name="FrExp" Arg="f"/>
##   <Oper Name="LdExp" Arg="f exp"/>
##   <Attr Name="AbsoluteValue" Arg="f" Label="for floats"/>
##   <Attr Name="Norm" Arg="f" Label="for floats"/>
##   <Attr Name="Frac" Arg="f"/>
##   <Attr Name="Zeta" Arg="f"/>
##   <Attr Name="Gamma" Arg="f"/>
##   <Description>
##     Standard math functions.
##     Functions ending in an integer like <C>Log2</C>, <C>Log10</C>, <C>Exp2</C> and <C>Exp10</C> indicate the base used, in <C>log</C> and <C>exp</C> the natural base is used, i.e. <M>e</M>.
##   </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute("Cos", IsFloat);
DeclareAttribute("Sin", IsFloat);
DeclareAttribute("Tan", IsFloat);
DeclareAttribute("Sec", IsFloat);
DeclareAttribute("Csc", IsFloat);
DeclareAttribute("Cot", IsFloat);
DeclareAttribute("Asin", IsFloat);
DeclareAttribute("Acos", IsFloat);
DeclareAttribute("Atan", IsFloat);
DeclareAttribute("Cosh", IsFloat);
DeclareAttribute("Sinh", IsFloat);
DeclareAttribute("Tanh", IsFloat);
DeclareAttribute("Sech", IsFloat);
DeclareAttribute("Csch", IsFloat);
DeclareAttribute("Coth", IsFloat);
DeclareAttribute("Asinh", IsFloat);
DeclareAttribute("Acosh", IsFloat);
DeclareAttribute("Atanh", IsFloat);
DeclareOperation("Log", [IsFloat]);
DeclareAttribute("Log2", IsFloat);
DeclareAttribute("Log10", IsFloat);
DeclareAttribute("Exp", IsFloat);
DeclareAttribute("Exp2", IsFloat);
DeclareAttribute("Exp10", IsFloat);
DeclareAttribute("CubeRoot", IsFloat);
DeclareAttribute("Square", IsFloat);
DeclareAttribute("Ceil", IsFloat);
DeclareAttribute("Floor", IsFloat);
DeclareAttribute("Round", IsFloat);
DeclareAttribute("Trunc", IsFloat);
DeclareAttribute("FrExp", IsFloat);
DeclareOperation("LdExp", [IsFloat, IsInt]);
DeclareAttribute("AbsoluteValue", IsFloat);
#DeclareAttribute("Norm", IsFloat); # already defined
DeclareOperation("Hypothenuse", [IsFloat, IsFloat]);
DeclareAttribute("Frac", IsFloat);
DeclareAttribute("Zeta", IsFloat);
DeclareAttribute("Gamma", IsFloat);

################################################################
## <#GAPDoc Label="Float-Extra">
## <ManSection>
##   <Oper Name="EqFloat" Arg="x y"/>
##   <Returns>Whether the floateans <A>x</A> and <A>y</A> are equal</Returns>
##   <Description>
##     This function compares two floating-point numbers, and returns
##     <K>true</K> if they are equal, and <K>false</K> otherwise; with the
##     exception that <K>NaN</K> is always considered to be different from
##     itself.
##   </Description>
## </ManSection>
##
## <ManSection>
##   <Attr Name="PrecisionFloat" Arg="x"/>
##   <Returns>The precision of <A>x</A></Returns>
##   <Description>
##     This function returns the precision, counted in number of binary digits,
##     of the floating-point number <A>x</A>.
##   </Description>
## </ManSection>
##
## <ManSection>
##   <Attr Name="SignBit" Arg="x"/>
##   <Attr Name="SignFloat" Arg="x"/>
##   <Returns>The sign of <A>x</A>.</Returns>
##   <Description>
##       The first function <C>SignBit</C> returns the sign bit of the
##       floating-point number <A>x</A>: <K>true</K> if <A>x</A> is negative
##       (including <C>-0.</C>) and <K>false</K> otherwise.
##
##       <P/> The second function <C>SignFloat</C> returns the integer
##       <K>-1</K> if <A>x&lt;0</A>, <K>0</K> if <A>x=0</A> and <K>1</K>
##       if <A>x&gt;0</A>.
##   </Description>
## </ManSection>
##
## <ManSection>
##   <Attr Name="SinCos" Arg="x"/>
##   <Returns>The list <C>[sin(x), cos(x)]</C>.</Returns>
##   <Description>
##       The function returns a list with <C>sin</C> and <C>cos</C> of <A>x</A>.
##   </Description>
## </ManSection>
##
## <ManSection>
##   <Oper Name="Atan2" Arg="y x"/>
##   <Returns>The polar angle of <A>(x, y)</A> in the plane as float.</Returns>
##   <Description>
##        Returns the principal value of the argument (polar angle) of <M>(<A>x</A>, <A>y</A>)</M> in the plane.
##        The returned value will always be in <M>(-\pi , \pi]</M> and is not defined on <M>(0,0)</M>.
##        This function is defined in accordance with IEEE 1788-2015 and imported from IEEE 754.
##   </Description>
## </ManSection>
##
## <ManSection>
##   <Attr Name="Log1p" Arg="x"/>
##   <Attr Name="Expm1" Arg="x"/>
##   <Returns>The natural logarithm of <M><A>x</A>+1</M> or exponential <M>-1</M> of <A>x</A> respectively.</Returns>
##   <Description>
##       The first function <C>Log1p</C> returns the natural logarithm <M>log(<A>x</A>+1)</M>.
##
##       <P/> The second function <C>Expm1</C> returns the exponential function <M>exp(<A>x</A>)-1</M>
##
##       <P/> These two functions are inverse to each other.
##   </Description>
## </ManSection>
##
## <ManSection>
##   <Oper Name="Erf" Arg="x"/>
##   <Returns>The error function given by the Gaussian integral</Returns>
##   <Description>
##        Returns the error function imported from IEEE 754 given by the formula:
##        <Display> Erf(x) := \frac{2}{\sqrt{\pi}} \int_{0}^{x} exp(- t^2 ) dt </Display>
##   </Description>
## </ManSection>
## <#/GAPDoc>
DeclareOperation("EqFloat", [IsFloat, IsFloat]);
DeclareAttribute("PrecisionFloat", IsFloat);
DeclareAttribute("SignBit", IsFloat);
DeclareAttribute("SignFloat", IsFloat);
DeclareAttribute("SinCos", IsFloat);
DeclareOperation("Atan2", [IsFloat, IsFloat]);
DeclareAttribute("Log1p", IsFloat);
DeclareAttribute("Expm1", IsFloat);
DeclareAttribute("Erf", IsFloat);
################################################################

################################################################
##
## <#GAPDoc Label="Float-Infinities">
## <ManSection>
##   <Heading>Infinity testers</Heading>
##   <Prop Name="IsPInfinity" Arg="x"/>
##   <Prop Name="IsNInfinity" Arg="x"/>
##   <Prop Name="IsXInfinity" Arg="x"/>
##   <Prop Name="IsFinite" Arg="x" Label="for floats"/>
##   <Prop Name="IsNaN" Arg="x"/>
##   <Description>
##     Returns <K>true</K> if the floating-point number <A>x</A> is
##     respectively <M>+\infty</M>, <M>-\infty</M>, <M>\pm\infty</M>,
##     finite, or `not a number', such as the result of <C>0.0/0.0</C>.
##   </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty("IsPInfinity", IsFloat);
DeclareProperty("IsNInfinity", IsFloat);
DeclareProperty("IsXInfinity", IsFloat);
DeclareProperty("IsFinite", IsFloat);
DeclareProperty("IsNaN", IsFloat);
################################################################

################################################################
##
## <#GAPDoc Label="Float-Complex">
## <ManSection>
##   <Attr Name="Argument" Arg="z" Label="for complex floats"/>
##   <Description>
##     Returns the argument of the complex number <A>z</A>, namely the value
##     <C>Atan2(ImaginaryPart(z),RealPart(z))</C>.
##   </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute("Argument", IsComplexFloat);
################################################################

################################################################
##
## <#GAPDoc Label="Float-Roots">
## <ManSection>
##   <Func Name="RootsFloat" Arg="p" Label="for a polynomial"/>
##   <Func Name="RootsFloat" Arg="list" Label="for coefficients"/>
##   <Description>
##     Returns the roots of the polynomial <A>p</A>, or of the polynomial
##     given by the list <A>list</A> of its coefficients, with <C>list[i]</C>
##     the coefficient of degree <C>i-1</C>.
##
##    <P/>There is no default implementation of <C>RootsFloat</C> in the
##    &GAP; kernel; these are supplied by packages such as
##    <Package>float</Package>.
##   </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation("RootsFloatOp", [IsList,IsFloat]);
DeclareGlobalFunction("RootsFloat");
################################################################

################################################################
##
## <#GAPDoc Label="Float-Intervals">
## <ManSection>
##   <Attr Name="Sup" Arg="x"/>
##   <Description>
##     Returns the supremum of the interval <A>x</A>.
##   </Description>
## </ManSection>
## <ManSection>
##   <Attr Name="Inf" Arg="x"/>
##   <Description>
##     Returns the infimum of the interval <A>x</A>.
##   </Description>
## </ManSection>
## <ManSection>
##   <Attr Name="Mid" Arg="x"/>
##   <Description>
##     Returns the midpoint of the interval <A>x</A>.
##   </Description>
## </ManSection>
## <ManSection>
##   <Attr Name="AbsoluteDiameter" Arg="x"/>
##   <Oper Name="Diameter" Arg="x"/>
##   <Description>
##     Returns the absolute diameter of the interval <A>x</A>, namely
##     the difference <C>Sup(x)-Inf(x)</C>.
##   </Description>
## </ManSection>
## <ManSection>
##   <Attr Name="RelativeDiameter" Arg="x"/>
##   <Description>
##     Returns the relative diameter of the interval <A>x</A>, namely
##     <C>(Sup(x)-Inf(x))/AbsoluteValue(Min(x))</C>.
##   </Description>
## </ManSection>
## <ManSection>
##   <Oper Name="IsDisjoint" Arg="x1 x2"/>
##   <Description>
##     Returns <K>true</K> if the two intervals <A>x1</A>, <A>x2</A>
##     are disjoint.
##   </Description>
## </ManSection>
## <ManSection>
##   <Oper Name="IsSubset" Arg="x1 x2" Label="for interval floats"/>
##   <Description>
##     Returns <K>true</K> if the interval <A>x1</A> contains <A>x2</A>.
##   </Description>
## </ManSection>
## <ManSection>
##   <Oper Name="IncreaseInterval" Arg="x delta"/>
##   <Description>
##     Returns an interval with same midpoint as <A>x</A> but absolute diameter increased by
##     <A>delta</A>.
##   </Description>
## </ManSection>
## <ManSection>
##   <Oper Name="BlowupInterval" Arg="x ratio"/>
##   <Description>
##     Returns an interval with same midpoint as <A>x</A> but relative diameter increased by
##     <A>ratio</A>.
##   </Description>
## </ManSection>
## <ManSection>
##   <Oper Name="BisectInterval" Arg="x"/>
##   <Description>
##     Returns a list of two intervals whose union equals the interval <A>x</A>.
##   </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute("Sup", IsFloatInterval);
DeclareAttribute("Inf", IsFloatInterval);
DeclareAttribute("Mid", IsFloatInterval);
DeclareAttribute("AbsoluteDiameter", IsFloatInterval);
DeclareAttribute("RelativeDiameter", IsFloatInterval);
DeclareOperation("Diameter", [IsFloat]);
DeclareOperation("IsDisjoint", [IsFloatInterval, IsFloatInterval]);
DeclareOperation("IncreaseInterval", [IsFloatInterval, IsFloat]);
DeclareOperation("BlowupInterval", [IsFloatInterval, IsFloat]);
DeclareOperation("BisectInterval", [IsFloatInterval]);
################################################################

#############################################################################
##
#O Constructor
##
## <#GAPDoc Label="Float">
## <ManSection>
##   <Heading>Float creators</Heading>
##   <Func Name="Float" Arg="obj"/>
##   <Constr Name="NewFloat" Arg="filter, obj"/>
##   <Oper Name="MakeFloat" Arg="sample obj, obj"/>
##   <Returns>A new floating-point number, based on <A>obj</A></Returns>
##   <Description>
##     This function creates a new floating-point number.
##
##     <P/> If <A>obj</A> is a rational number, the created number is created
##     with sufficient precision so that the number can (usually) be converted
##     back to the original number (see <Ref Attr="Rat" BookName="ref"/> and
##     <Ref Attr="Rat"/>). For an integer, the precision, if unspecified, is
##     chosen sufficient so that <C>Int(Float(obj))=obj</C> always holds, but
##     at least 64 bits.
##
##     <P/> <A>obj</A> may also be a string, which may be of the form
##     <C>"3.14e0"</C> or <C>".314e1"</C> or <C>".314@1"</C> etc.
##
##     <P/> An option may be passed to specify, it bits, a desired precision.
##     The format is <C>Float("3.14":PrecisionFloat:=1000)</C> to create
##     a 1000-bit approximation of <M>3.14</M>.
##
##     <P/> In particular, if <A>obj</A> is already a floating-point number,
##     then <C>Float(obj:PrecisionFloat:=prec)</C> creates a copy of
##     <A>obj</A> with a new precision.
##     prec
##   </Description>
## </ManSection>
##
## <ManSection>
##   <Attr Name="Rat" Arg="f" Label="for floats"/>
##   <Returns>A rational approximation to <A>f</A></Returns>
##   <Description>
##     This command constructs a rational approximation to the
##     floating-point number <A>f</A>. Of course, it is not guaranteed to
##     return the original rational number <A>f</A> was created from, though
##     it returns the most `reasonable' one given the precision of
##     <A>f</A>.
##
##     <P/> Two options control the precision of the rational approximation:
##     In the form <C>Rat(f:maxdenom:=md,maxpartial:=mp)</C>, the rational
##     returned is such that the denominator is at most <A>md</A> and the
##     partials in its continued fraction expansion are at most <A>mp</A>.
##     The default values are <C>maxpartial:=10000</C> and
##     <C>maxdenom:=2^(precision/2)</C>.
##   </Description>
## </ManSection>
##
## <ManSection>
##   <Oper Name="Cyc" Arg="f [degree]" Label="for floats"/>
##   <Returns>A cyclotomic approximation to <A>f</A></Returns>
##   <Description>
##     This command constructs a cyclotomic approximation to the
##     floating-point number <A>f</A>. Of course, it is not guaranteed to
##     return the original rational number <A>f</A> was created from, though
##     it returns the most `reasonable' one given the precision of
##     <A>f</A>. An optional argument <A>degree</A> specifies the maximal
##     degree of the cyclotomic to be constructed.
##
##     <P/> The method used is LLL lattice reduction.
##   </Description>
## </ManSection>
##
## <ManSection>
##   <Func Name="SetFloats" Arg="rec [bits] [install]"/>
##   <Description>
##     Installs a new interface to floating-point numbers in &GAP;, optionally
##     with a desired precision <A>bits</A> in binary digits. The last
##     optional argument <A>install</A> is a boolean value; if false, it
##     only installs the eager handler and the precision for the floateans,
##     without making them the default.
##   </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("Float");
DeclareGlobalFunction("SetFloats");
DeclareOperation("Cyc", [IsFloat, IsPosInt]);
DeclareOperation("Cyc", [IsFloat]);
#############################################################################

# these variables are read-write
FLOAT := fail; # record holding all float information

# MAX_FLOAT_LITERAL_CACHE_SIZE := 1000; # this could be set to avoid saturating the cache, in case some code evaluates lots of function expressions