File: float.gi

package info (click to toggle)
gap 4.15.1-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 110,212 kB
  • sloc: ansic: 97,261; xml: 48,343; cpp: 13,946; sh: 4,900; perl: 1,650; javascript: 255; makefile: 252; ruby: 9
file content (1071 lines) | stat: -rw-r--r-- 34,088 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
#############################################################################
##
##  This file is part of GAP, a system for computational discrete algebra.
##  This file's authors include Steve Linton, Laurent Bartholdi.
##
##  Copyright of GAP belongs to its developers, whose names are too numerous
##  to list here. Please refer to the COPYRIGHT file for details.
##
##  SPDX-License-Identifier: GPL-2.0-or-later
##
##  This file deals with floats, and sets up a default interface, within GAP,
##  to deal with floateans.
##

#############################################################################
## a category describing the "fields" of floating-point numbers
## we must put it here, because float.gd is read too early for "IsAlgebra"
## this is used mainly to create polynomials
DeclareCategory("IsFloatPseudoField", IsAlgebra);

## these things should also be in float.gd, but require IsRationalFunction
DeclareCategory("IsFloatRationalFunction", IsRationalFunction);
DeclareSynonym("IsFloatPolynomial", IsFloatRationalFunction and IsPolynomial);
DeclareSynonym("IsFloatUnivariatePolynomial", IsFloatRationalFunction and IsUnivariatePolynomial);
DeclareOperation("Value", [IsFloatRationalFunction,IsFloat]);
DeclareOperation("ValueInterval", [IsFloatRationalFunction,IsFloat]);
#############################################################################

MAX_FLOAT_LITERAL_CACHE_SIZE := 0; # cache all float literals by default.

FLOAT_DEFAULT_REP := fail;
FLOAT_STRING := fail;
FLOAT_PSEUDOFIELD := fail;
FLOAT := fail; # holds the constants
if IsHPCGAP then
    BindGlobal("EAGER_FLOAT_LITERAL_CONVERTERS", AtomicRecord());
else
    BindGlobal("EAGER_FLOAT_LITERAL_CONVERTERS", rec());
fi;

InstallGlobalFunction(SetFloats, function(arg)
    local i, r, prec, install;

    r := fail;
    prec := fail;
    install := true;
    for i in [1..Length(arg)] do
        if IsRecord(arg[i]) and i=1 then
            r := arg[1];
        elif IsBool(arg[i]) then
            install := arg[i];
        elif IsPosInt(arg[i]) then
            prec := arg[i];
        else
            r := fail;
            break;
        fi;
    od;
    while r=fail do
        Error("SetFloats requires a record, and optional precision(posint) and install(bool), not ",arg);
    od;

    if install then
        if IsBound(r.filter) then
            FLOAT_DEFAULT_REP := r.filter;
        fi;
        if IsBound(r.constants) then
            FLOAT := r.constants;
        fi;
        if IsBound(r.creator) then
            FLOAT_STRING := r.creator;
        fi;
        if IsBound(r.field) then
            FLOAT_PSEUDOFIELD := r.field;
        fi;
    fi;

    if IsBound(r.creator) and IsBound(r.eager) then
        EAGER_FLOAT_LITERAL_CONVERTERS.([r.eager]) := r.creator;
    fi;

    FLUSH_FLOAT_LITERAL_CACHE();

    if prec<>fail then
        r.constants.MANT_DIG := prec;
        if IsBound(r.constants.recompute) then
            r.constants.recompute(r.constants,prec);
        fi;
    fi;
end);

################################################################
# creators
################################################################
InstallGlobalFunction(Float, function(obj)
    if not IsString(obj) and IsList(obj) then
        return List(obj,Float);
    else
        return NewFloat(FLOAT_DEFAULT_REP,obj);
    fi;
end);

BindGlobal("INSTALLFLOATCONSTRUCTORS", function(arg)
    local filter, float, constants, i;

    if IsRecord(arg[1]) then
        filter := arg[1].filter;
    else
        filter := arg[1];
    fi;

    # we intentionally provide no default method for converting rationals, as
    # implementing this accurately depends a lot on the specific floatean type

    InstallMethod(NewFloat, [filter,IsInfinity], -1, function(filter,obj)
        return Inverse(NewFloat(filter,0));
    end);

    InstallMethod(NewFloat, [filter,IsNegInfinity], -1, function(filter,obj)
        return -Inverse(NewFloat(filter,0));
    end);

    InstallMethod(NewFloat, [filter,IsList], -1, function(filter,mantexp)
        if mantexp[1]=0 then
            if mantexp[2]=0 then return NewFloat(filter,0);
            elif mantexp[2]=1 then return Inverse(-Inverse(NewFloat(filter,0)));
            elif mantexp[2]=2 then return Inverse(NewFloat(filter,0));
            elif mantexp[2]=3 then return -Inverse(NewFloat(filter,0));
            else return NewFloat(filter,0)/NewFloat(filter,0);
            fi;
        fi;
        return NewFloat(filter,mantexp[1])*2^(mantexp[2]-LogInt(AbsoluteValue(mantexp[1]),2)-1);
    end);

    InstallMethod(NewFloat, [filter,filter], -1, function(filter,obj)
        return obj; # floats are immutable, no harm to return the same one
    end);

    InstallMethod(MakeFloat, [filter,IsInfinity], -1, function(filter,obj)
        return Inverse(MakeFloat(filter,0));
    end);

    InstallMethod(MakeFloat, [filter,IsNegInfinity], -1, function(filter,obj)
        return -Inverse(MakeFloat(filter,0));
    end);

    InstallMethod(MakeFloat, [filter,IsList], -1, function(filter,mantexp)
        if mantexp[1]=0 then
            if mantexp[2]=0 then return MakeFloat(filter,0);
            elif mantexp[2]=1 then return Inverse(-Inverse(MakeFloat(filter,0)));
            elif mantexp[2]=2 then return Inverse(MakeFloat(filter,0));
            elif mantexp[2]=3 then return -Inverse(MakeFloat(filter,0));
            else return MakeFloat(filter,0)/MakeFloat(filter,0);
            fi;
        fi;
        return MakeFloat(filter,mantexp[1])*2^(mantexp[2]-LogInt(AbsoluteValue(mantexp[1]),2)-1);
    end);

    InstallMethod(MakeFloat, [filter,filter], -1, function(filter,obj)
        return obj; # floats are immutable, no harm to return the same one
    end);

    if IsRecord(arg[1]) and IsBound(arg[1].constants) then
        float := arg[1].constants;
        constants := [["E","2.7182818284590452354"],
                      ["LOG2E", "1.4426950408889634074"],
                      ["LOG10E", "0.43429448190325182765"],
                      ["LN2", "0.69314718055994530942"],
                      ["LN10", "2.30258509299404568402"],
                      ["PI", "3.14159265358979323846"],
                      ["2PI", "6.28318530717958647692"],
                      ["PI_2", "1.57079632679489661923"],
                      ["PI_4", "0.78539816339744830962"],
                      ["1_PI", "0.31830988618379067154"],
                      ["2_PI", "0.63661977236758134308"],
                      ["2_SQRTPI", "1.12837916709551257390"],
                      ["SQRT2", "1.41421356237309504880"],
                      ["SQRT1_2", "0.70710678118654752440"]];
        for i in constants do
            if not IsBound(float.(i[1])) then
                float.(i[1]) := NewFloat(filter,i[2]);
            fi;
        od;
    fi;
end);
################################################################
# inner converter from string to float
################################################################
BindGlobal("CONVERT_FLOAT_LITERAL", function(s)
    local i,f,s1;
    f:= FLOAT_STRING(s);
    if f<>fail then return f; fi;

    s1 := "";
    for i in [1..LENGTH(s)] do
        if s[i] in ".0123456789eE+-" then
            s1[i] := s[i];
        elif s[i] in "dDqQ" then
            s1[i] := 'e';
        else
            s1 := fail; break;
        fi;
    od;
    if s1<>fail then
        f := FLOAT_STRING(s1);
        if f<>fail then return f; fi;
    fi;

    return fail; # conversion failure; signal the kernel that something went wrong
end);

BindGlobal("CONVERT_FLOAT_LITERAL_EAGER", function(s,mark)
    local f;
    if mark = '\000' then
        return CONVERT_FLOAT_LITERAL(s);
    else
        if not IsBound(EAGER_FLOAT_LITERAL_CONVERTERS.([mark])) then
            Error("Unknown float literal conversion ",mark);
        else
            f := EAGER_FLOAT_LITERAL_CONVERTERS.([mark]);
            if not IsFunction(f) then
                Error("Float literal conversion for ",mark," bound to non-function");
            fi;
            return f(s);
        fi;
    fi;
end);

################################################################
# zeros
################################################################
InstallGlobalFunction(RootsFloat, function(arg)
    local l;
    if Length(arg)=1 and IsList(arg[1]) then
        l := arg[1];
    elif ForAll(arg,IsFloat) then
        l := arg;
    elif Length(arg)=1 and IsUnivariatePolynomial(arg[1]) then
        l := CoefficientsOfUnivariatePolynomial(arg[1]);
    else
        Error("RootsFloat: expected coefficients, a list of coefficients, or a polynomial, not ",arg);
    fi;
    if Length(l)=0 then return []; fi;
    return RootsFloatOp(l,l[1]);
end);

#############################################################################
## Default methods
##
## These methods have priority -1, because they are inefficient.
## Hopefully every float implementation implements them better.
#############################################################################
InstallMethod( Diameter, "for a float interval", [ IsFloatInterval ],
        AbsoluteDiameter );

InstallMethod( AbsoluteValue, "for real floats", [ IsRealFloat ], -1,
        function ( x )
    if x < Zero(x) then return -x; else return x; fi;
end );

InstallMethod( Norm, "for real floats", [ IsRealFloat ], -1,
        function ( x )
    return x*x;
end );

InstallMethod( SignFloat, "for real floats", [ IsRealFloat ], -1,
        function ( x )
    if IsZero( x ) then
        return 0;
    elif x < Zero( x ) then
        return -1;
    else
        return 1;
    fi;
end );

InstallMethod( Exp2, "for floats", [ IsFloat ], -1,
        function ( x )
    return Exp(Log(MakeFloat(x,2))*x);
end );

InstallMethod( Exp10, "for floats", [ IsFloat ], -1,
        function ( x )
    return Exp(Log(MakeFloat(x,10))*x);
end );

InstallMethod( Expm1, "for floats", [ IsFloat ], -1,
        function ( x )
    return Exp(x)-MakeFloat(x,1);
end );

InstallMethod( Log2, "for floats", [ IsFloat ], -1,
        function ( x )
    return Log(x) / Log(MakeFloat(x,2));
end );

InstallMethod( Log10, "for floats", [ IsFloat ], -1,
        function ( x )
    return Log(x) / Log(MakeFloat(x,10));
end );

InstallMethod( Log1p, "for floats", [ IsFloat ], -1,
        function ( x )
    return Log(MakeFloat(x,1)+x);
end );

InstallMethod( Sec, "for floats", [ IsFloat ], -1,
        function ( x )
    return Inverse(Cos(x));
end );

InstallMethod( Csc, "for floats", [ IsFloat ], -1,
        function ( x )
    return Inverse(Sin(x));
end );

InstallMethod( Cot, "for floats", [ IsFloat ], -1,
        function ( x )
    return Inverse(Tan(x));
end );

InstallMethod( Sech, "for floats", [ IsFloat ], -1,
        function ( x )
    return Inverse(Cosh(x));
end );

InstallMethod( Csch, "for floats", [ IsFloat ], -1,
        function ( x )
    return Inverse(Sinh(x));
end );

InstallMethod( Coth, "for floats", [ IsFloat ], -1,
        function ( x )
    return Inverse(Tanh(x));
end );

InstallMethod( CubeRoot, "for floats", [ IsFloat ], -1,
        function ( x )
    if x>Zero(x) then
        return Exp(Log(x)/3);
    elif IsZero(x) then
        return x;
    else
        return -Exp(Log(-x)/3);
    fi;
end );

InstallMethod( Square, "for floats", [ IsFloat ], -1,
        function ( x )
    return x*x;
end );

InstallMethod( Hypothenuse, "for floats", [ IsFloat, IsFloat ], -1,
        function ( x, y )
    return Sqrt(x*x+y*y);
end );

InstallMethod( Ceil, "for real floats", [ IsRealFloat ], -1,
        function ( x )
    return -Floor(-x);
end );

# this is disabled because it's so bad... it loses an ulp in fringe cases.
#InstallMethod( Round, "for floats", [ IsFloat ], -1,
#        function ( x )
#    return Floor(x+MakeFloat(x,1/2));
#end );

InstallMethod( Trunc, "for real floats", [ IsRealFloat ], -1,
        function ( x )
    if x>Zero(x) then
        return Floor(x);
    else
        return -Floor(-x);
    fi;
end );

InstallMethod( Frac, "for floats", [ IsFloat ], -1,
        function ( x )
    return x-Floor(x);
end );

InstallMethod( SinCos, "for floats", [ IsFloat ], -1,
        function ( x )
    return [Sin(x), Cos(x)];
end );

InstallMethod( Hypothenuse, "for floats", [ IsFloat, IsFloat ], -1,
        function ( x, y )
    return Sqrt(x*x+y*y);
end );

InstallMethod( FrExp, "for floats", [ IsFloat ], -1,
        function(obj)
    local m, e;
    if IsZero(obj) then return [0,0]; fi;
    if obj<=Zero(obj) then obj := -obj; fi;
    e := Int(Log2(obj))+1;
    m := obj/2^e;
    return [m,e];
end);

InstallMethod( LdExp, "for floats", [ IsFloat, IsInt ], -1,
        function(m,e)
    return m*2^e;
end);

InstallMethod( ExtRepOfObj, "for floats", [ IsFloat ], -1,
        function(obj)
    local p, v;
    if IsZero(obj) then # special treatment for 0 and -0
        if 1/obj > Zero(obj) then
            return [0,0];
        else
            return [0,1];
        fi;
    elif IsPInfinity(obj) then
        return [0,2];
    elif IsNInfinity(obj) then
        return [0,3];
    elif IsNaN(obj) then
        return [0,4];
    fi;

    p := FrExp(obj);
    v := p[1];
    while v mod One(v) <> Zero(v) do v := 2*v; od;
    return [Int(v),p[2]];
end);

InstallMethod( ObjByExtRep, "for floats", [ IsFloatFamily, IsCyclotomicCollection ], -1,
        function(fam,obj)
    if obj[1]=0 then
        if obj[2]=0 then
            return 0.0; # 0
        elif obj[2]=1 then
            return 1/(-(1.0/0.0)); # -0
        elif obj[2]=2 then
            return 1.0/0.0; # inf
        elif obj[2]=3 then
            return -1.0/0.0; # -inf
        elif obj[2]=4 then
            return 0.0/0.0; # NaN
        elif obj[2]=5 then
            return -0.0/0.0; # -NaN
        else
            Error("Unknown external float representation ",obj);
        fi;
    fi;
    return LdExp(Float(obj[1]),obj[2]-LogInt(AbsInt(obj[1]),2)-1);
end);

InstallMethod( ViewObj, "for floats", [ IsFloat ],
        function ( x )
    Print(ViewString(x));
end);

InstallMethod( Display, "for floats", [ IsFloat ],
        function ( x )
    Print(DisplayString(x));
end);

InstallMethod( PrintObj, "for floats", [ IsFloat ],
        function ( x )
    Print(String(x));
end);

InstallMethod( DisplayString, "for floats", [ IsFloat ], f->Concatenation(String(f),"\n"));

InstallMethod( ViewString, "for floats", [ IsFloat ], String );

InstallMethod( IsPInfinity, "for floats", [ IsFloat ], -1,
        x->x=x+x and x>-x);

InstallMethod( IsNInfinity, "for floats", [ IsFloat ], -1,
        x->x=x+x and x<-x);

InstallMethod( IsXInfinity, "for floats", [ IsFloat ], -1,
        x->x=x+x and x<>-x);

InstallMethod( IsFinite, "for floats", [ IsFloat ], -1,
        x->not IsXInfinity(x) and not IsNaN(x));

InstallMethod( IsNaN, "for floats", [ IsFloat ], -1, # IEEE754, not GAP standard
        x->x<>x+Zero(x));

InstallMethod( EqFloat, "for floats", [ IsFloat, IsFloat ], -1,
        function(x,y)
    return (not IsNaN(x)) and x=y;
end);

InstallMethod( Zero, "for floats", [ IsFloat ], -1,
        function(x)
    return MakeFloat(x,0);
end);

InstallMethod( One, "for floats", [ IsFloat ], -1,
        function(x)
    return MakeFloat(x,1);
end);
#############################################################################
##
#M  Rat( x ) . . . . . . . . . . . . . . . . . . . . . . . . . . . for macfloats
##
InstallOtherMethod( Rat, "for floats", [ IsFloat ],
        function ( x )

    local  M, a_i, i, sign, maxdenom, maxpartial;

    if not IsFinite(x) then
        Error("cannot convert float ", x, " to rational");
    fi;

    i := 0; M := [[1,0],[0,1]];
    maxdenom := ValueOption("maxdenom");
    maxpartial := ValueOption("maxpartial");
    if maxpartial=fail then maxpartial := 10000; fi;
    if maxdenom=fail then maxdenom := 10^QuoInt(FLOAT.DECIMAL_DIG,2); fi;

    if x < Zero(x) then sign := -1; x := -x; else sign := 1; fi;
    repeat
      a_i := Int(x);
      if i >= 1 and a_i > maxpartial then break; fi;
      M := M * [[a_i,1],[1,0]];
      if x = Float(a_i) then break; fi;
      x := One(x) / (x - a_i);
      i := i+1;
    until M[2][1] > maxdenom;
    return sign * M[1][1]/M[2][1];
end );

InstallOtherMethod( Rat, "for float intervals", [ IsFloatInterval ],
        function ( x )
    local M, a;

    if x < Zero(x) then
        M := [[-1,0],[0,1]]; x := -x;
    else
        M := [[1,0],[0,1]];
    fi;
    repeat
        a := Int(Sup(x));
        M := M * [[a,1],[1,0]];
        x := x-a;
        if Zero(x) in x then break; fi;
        x := Inverse(x);
    until AbsoluteDiameter(x) >= One(x);
    return M[1][1]/M[2][1];
end);

BindGlobal("CYC_FLOAT_DEGREE", function(x,n,prec)
    local i, m, b, phi;

    phi := Phi(n);
    m := IdentityMat(phi+1);
    b := [];
    for i in [1..phi] do
        Add(m[i],Int(LdExp(Cos(FLOAT.2PI*(i-1)/n),prec)));
        Add(m[i],Int(LdExp(Sin(FLOAT.2PI*(i-1)/n),prec)));
        b[i] := E(n)^(i-1);
    od;
    Add(m[phi+1],Int(LdExp(RealPart(x),prec)));
    Add(m[phi+1],Int(LdExp(ImaginaryPart(x),prec)));

    m := First(LLLReducedBasis(m).basis,r->r[phi+1]<>0);

    return -b*m{[1..phi]}/m[phi+1];
end);

BindGlobal("CYC_FLOAT", function(x,prec)
    local n, len, e, minlen, minn, mine;

    n := 2;
    minlen := infinity;
    repeat
        e := CYC_FLOAT_DEGREE(x,n,prec);
        len := n*Norm(DenominatorCyc(e)*e)^2;
        if len < minlen then
            Info(InfoWarning,2,"Degree ",n,": ",e);
            minlen := len;
            minn := n;
            mine := e;
        fi;
        n := n+1;
    until n > 2*minn+4;
    return mine;
end);

InstallMethod( Cyc, "for floats, degree", [ IsFloat, IsPosInt ], -1,
        function(x,n)
    local prec;

    prec := ValueOption("bits");
    if not IsPosInt(prec) then prec := PrecisionFloat(x); fi;

    return CYC_FLOAT_DEGREE(x,n,prec);
end);

InstallMethod( Cyc, "for intervals, degree", [ IsFloatInterval, IsPosInt ], -1,
        function(x,n)
    local diam;

    diam := AbsoluteDiameter(x);
    if IsZero(diam) then
        return CYC_FLOAT_DEGREE(Mid(x),n,PrecisionFloat(x));
    else
        return CYC_FLOAT_DEGREE(Mid(x),n,1+LogInt(1+Int(Inverse(diam)),2));
    fi;
end);

InstallMethod( Cyc, "for floats", [ IsFloat ], -1,
        function(x)
    local prec;

    prec := ValueOption("bits");
    if not IsPosInt(prec) then prec := PrecisionFloat(x); fi;

    return CYC_FLOAT(x,prec);
end);

InstallMethod( Cyc, "for intervals", [ IsFloatInterval ], -1,
        function(x)
    local diam;

    diam := AbsoluteDiameter(x);
    if IsZero(diam) then
        return CYC_FLOAT(Mid(x),PrecisionFloat(x));
    else
        return CYC_FLOAT(Mid(x),1+LogInt(1+Int(Inverse(diam)),2));
    fi;
end);

BindGlobal("FLOAT_MINIMALPOLYNOMIAL", function(x,n,ind,prec)
    local z, i, m;

    m := IdentityMat(n);
    z := LdExp(One(x),prec);
    for i in [1..n] do
        Add(m[i],Int(RealPart(z)));
        Add(m[i],Int(ImaginaryPart(z)));
        z := z*x;
    od;

    m := LLLReducedBasis(m).basis[1];

    return UnivariatePolynomialByCoefficients(CyclotomicsFamily,m{[n,n-1..1]},ind);
end);

InstallMethod( MinimalPolynomial, "for floats", [ IsRationals, IsFloat, IsPosInt ],
        function(ring,x,ind)
    local n, len, p, lastlen, lastp, prec;

    prec := ValueOption("bits");
    if not IsPosInt(prec) then
        prec := PrecisionFloat(x);
        if IsFloatInterval(x) then
            p := AbsoluteDiameter(x);
            if not IsZero(x) then
                prec := 1+LogInt(1+Int(Inverse(p)),2);
            fi;
        fi;
    fi;
    if IsFloatInterval(x) then
        x := Mid(x);
    fi;

    n := ValueOption("degree");
    if IsPosInt(n) then
        return FLOAT_MINIMALPOLYNOMIAL(x,n+1,ind,prec);
    fi;
    n := 1;
    len := infinity;
    p := fail;
    repeat
        lastlen := len;
        lastp := p;
        p := FLOAT_MINIMALPOLYNOMIAL(x,n+1,ind,prec);
        len := (CoefficientsOfUnivariatePolynomial(p)^2)^n;
        n := n+1;
    until len > lastlen;
    return lastp;
end);

################################################################
# rational functions
################################################################
# we need a new method, so that we keep track of the 0 and 1 of the
# specific pseudofield
InstallOtherMethod(RationalFunctionsFamily, "floats pseudofield",
        [IsFloatPseudoField],
        function(pf)
  local   fam;

  # create a new family in the category <IsRationalFunctionsFamily>
  fam := NewFamily("RationalFunctionsFamily(...)",
                 IsPolynomialFunction and IsPolynomialFunctionsFamilyElement
                 and IsFloatRationalFunction and IsRationalFunctionsFamilyElement,
                 CanEasilySortElements,
          IsPolynomialFunctionsFamily and CanEasilySortElements and
          IsRationalFunctionsFamily);

  # default type for polynomials
  fam!.defaultPolynomialType := NewType( fam,
          IsPolynomial and IsPolynomialDefaultRep and
          HasExtRepPolynomialRatFun);

  # default type for univariate laurent polynomials
  fam!.threeLaurentPolynomialTypes :=
    [ NewType( fam,
          IsLaurentPolynomial
          and IsLaurentPolynomialDefaultRep and
          HasIndeterminateNumberOfLaurentPolynomial and
          HasCoefficientsOfLaurentPolynomial),

          NewType( fam,
            IsLaurentPolynomial
            and IsLaurentPolynomialDefaultRep and
            HasIndeterminateNumberOfLaurentPolynomial and
            HasCoefficientsOfLaurentPolynomial and
            IsConstantRationalFunction and IsUnivariatePolynomial),

          NewType( fam,
            IsLaurentPolynomial and IsLaurentPolynomialDefaultRep and
            HasIndeterminateNumberOfLaurentPolynomial and
            HasCoefficientsOfLaurentPolynomial and
            IsUnivariatePolynomial)];

  # default type for univariate rational functions
  fam!.univariateRatfunType := NewType( fam,
          IsUnivariateRationalFunctionDefaultRep  and
          HasIndeterminateNumberOfLaurentPolynomial and
          HasCoefficientsOfUnivariateRationalFunction);

  fam!.defaultRatFunType := NewType( fam,
          IsRationalFunctionDefaultRep and
          HasExtRepNumeratorRatFun and HasExtRepDenominatorRatFun);

  # functions to add zipped lists
  fam!.zippedSum := [ MONOM_GRLEX, \+ ];

  # functions to multiply zipped lists
  fam!.zippedProduct := [ MONOM_PROD,
                          MONOM_GRLEX, \+, \* ];

  # set the one and zero coefficient
  fam!.zeroCoefficient := Zero(pf);
  fam!.oneCoefficient  := One(pf);
  fam!.oneCoefflist  := Immutable([fam!.oneCoefficient]);

  # set the coefficients
  SetCoefficientsFamily( fam, FamilyObj(fam!.zeroCoefficient) );

  SetCharacteristic( fam, 0 );

  # and set one and zero
  SetZero( fam, PolynomialByExtRepNC(fam,[]));
  SetOne( fam, PolynomialByExtRepNC(fam,[[],fam!.oneCoefficient]));

  # we will store separate `one's for univariate polynomials. This will
  # allow to keep univariate calculations in this one indeterminate.
  fam!.univariateOnePolynomials:=[];
  fam!.univariateZeroPolynomials:=[];

  # assign a names list
  fam!.namesIndets := [];

  # and return
  return fam;
end);

InstallOtherMethod( UnivariatePolynomialByCoefficients, "ring",
        [IsFloatPseudoField,IsList,IsInt],
        function(r,cofs,ind)
    return LaurentPolynomialByCoefficients(r,cofs,0,ind);
end );

InstallOtherMethod( LaurentPolynomialByCoefficients, "ring",
        [IsFloatPseudoField,IsList,IsInt,IsInt],
        function(r,cofs,val,ind)
    local lc, fam;
    lc := Length(cofs);
    fam := RationalFunctionsFamily(r);
    if lc > 0 and (IsZero( cofs[1] ) or IsZero( cofs[lc] ))  then
        cofs := ShallowCopy( cofs );
        val := val + RemoveOuterCoeffs( cofs, fam!.zeroCoefficient );
    fi;
    return LaurentPolynomialByExtRepNC( fam, cofs, val, ind );
end );

InstallOtherMethod( UnivariateRationalFunctionByCoefficients, "ring",
        [IsFloatPseudoField,IsList,IsList,IsInt],
        function(r,ncof,dcof,val)
    return UnivariateRationalFunctionByCoefficients(r,ncof,dcof,val,1);
end );

InstallOtherMethod( UnivariateRationalFunctionByCoefficients, "ring",
        [IsFloatPseudoField,IsList,IsList,IsInt,IsInt],
        function(r,ncof,dcof,val,ind)
    local fam;
    fam := RationalFunctionsFamily( r );
    if Length( ncof ) > 0 and (IsZero( ncof[1] ) or IsZero( Last( ncof ) ))  then
        if not IsMutable( ncof )  then
            ncof := ShallowCopy( ncof );
        fi;
        val := val + RemoveOuterCoeffs( ncof, fam!.zeroCoefficient );
    fi;
    if Length( dcof ) > 0 and (IsZero( dcof[1] ) or IsZero( Last( dcof ) ))  then
        if not IsMutable( dcof )  then
            dcof := ShallowCopy( dcof );
        fi;
        val := val - RemoveOuterCoeffs( dcof, fam!.zeroCoefficient );
    fi;
    return UnivariateRationalFunctionByExtRepNC( fam, ncof, dcof, val, ind );
end );

InstallMethod( PolynomialRing,"indetlist", true, [ IsFloatPseudoField, IsList ],
  1,
function( r, n )
    local   rfun,  zero,  one,  ind,  i,  type,  prng;

    if IsPolynomialFunctionCollection(n) and ForAll(n,IsLaurentPolynomial) then
      n:=List(n,IndeterminateNumberOfLaurentPolynomial);
    fi;
    if IsEmpty(n) or not IsInt(n[1]) then
      TryNextMethod();
    fi;

    # get the rational functions of the elements family
    rfun := RationalFunctionsFamily(r);

    # cache univariate rings - they might be created often
    if not IsBound(r!.univariateRings) then
      r!.univariateRings:=[];
    fi;

    if Length(n)=1
      # some bozo might put in a ridiculous number
      and n[1]<10000
      # only cache for the prime field
      and IsField(r)
      and IsBound(r!.univariateRings[n[1]]) then
      return r!.univariateRings[n[1]];
    fi;

    # first the indeterminates
    zero := Zero(r);
    one  := One(r);
    ind  := [];
    for i  in n  do
        Add( ind, LaurentPolynomialByCoefficients(r,[one],1,i) );
    od;

    # construct a polynomial ring
    type := IsPolynomialRing and IsAttributeStoringRep and IsFreeLeftModule and IsAlgebraWithOne;

    if Length(n) = 1 then
        type := type and IsUnivariatePolynomialRing and IsEuclideanRing;
                     #and IsAlgebraWithOne; # done above already
    fi;

    prng := Objectify( NewType( CollectionsFamily(rfun), type ), rec() );

    # set the left acting domain
    SetLeftActingDomain( prng, r );

    # set the indeterminates
    SetIndeterminatesOfPolynomialRing( prng, ind );

    # set known properties
    SetIsFinite( prng, false );
    SetIsFiniteDimensional( prng, false );
    SetSize( prng, infinity );

    # set the coefficients ring
    SetCoefficientsRing( prng, r );

    # set one and zero
    SetOne(  prng, ind[1]^0 );
    SetZero( prng, ind[1]*zero );

    # set the generators left operator ring-with-one if the rank is one
    if IsRingWithOne(r) then
        SetGeneratorsOfLeftOperatorRingWithOne( prng, ind );
    fi;


    if Length(n)=1 and n[1]<10000
      # only cache for the prime field
      and IsField(r) then
      r!.univariateRings[n[1]]:=prng;
    fi;

    # and return
    return prng;
end );

InstallOtherMethod( Indeterminate, [IsFloatFamily,IsPosInt],
        function(fam,ind)
    Error("`Indeterminate(<family>,<ind>)' cannot be used with floats; use `Indeterminate(<float pseudofield>,<ind>)'");
end);

InstallOtherMethod( Indeterminate,"number", true, [ IsFloatPseudoField,IsPosInt ],0,
function( r,n )
  return LaurentPolynomialByCoefficients(r,[One(r)],1,n);
end);

InstallOtherMethod( Indeterminate,"number 1", true, [ IsFloatPseudoField ],0,
function( r )
  return LaurentPolynomialByCoefficients(r,[One(r)],1,1);
end);

InstallOtherMethod( Indeterminate,"number, avoid", true, [ IsFloatPseudoField,IsList ],0,
function( r,a )
  if not IsRationalFunction(a[1]) then
    TryNextMethod();
  fi;
  return LaurentPolynomialByCoefficients(r,[One(r)],1,
          GiveNumbersNIndeterminates(RationalFunctionsFamily(r),1,[],a)[1]);
end);

InstallOtherMethod( Indeterminate,"number, name", true, [ IsFloatPseudoField,IsString ],0,
function( r,n )
  if not IsString(n) then
    TryNextMethod();
  fi;
  return LaurentPolynomialByCoefficients(r,[One(r)],1,
          GiveNumbersNIndeterminates(RationalFunctionsFamily(r),1,[n],[])[1]);
end);

InstallOtherMethod( Indeterminate,"number, name, avoid",true,
  [ IsFloatPseudoField,IsString,IsList ],0,
function( r,n,a )
  if not IsString(n) then
    TryNextMethod();
  fi;
  return LaurentPolynomialByCoefficients(r,[One(r)],1,
          GiveNumbersNIndeterminates(RationalFunctionsFamily(r),1,[n],a)[1]);
end);

# we must avoid over/underflow here; hence the specific method
InstallOtherMethod(ReduceCoeffs, "for float vectors",
        [IsFloatCollection, IsInt, IsFloatCollection, IsInt],
        function (l1, n1, l2, n2)
    local l, q, i, x;
    if 0 = n2  then
        Error("<l2> must be non-zero");
    elif 0 = n1  then
        return n1;
    fi;
    while 0 < n2 and IsZero(l2[n2]) do n2 := n2 - 1; od;
    if 0 = n2 then
        Error("<l2> must be non-zero");
    fi;
    while 0 < n1 and IsZero(l1[n1]) do n1 := n1 - 1; od;
    while n1 >= n2  do
        q := l1[n1] / l2[n2];
        l := n1-n2;
        for i in [ n1-n2+1 .. n1 ] do
            x := l1[i] - q * l2[i-n1+n2];
            if i=n1 or l1[i] - x/2 = l1[i] then # epsilon-small value
                l1[i] := Zero(l1[i]);
            else
                l1[i] := x;
                l := i;
            fi;
        od;
        n1 := l;
    od;
    return n1;
end);

InstallMethod( Derivative, "for float laurent polynomial",
        [IsFloatRationalFunction and IsUnivariateRationalFunction and IsLaurentPolynomial],
        function(f)
    local  c, d, e, i, ind, fam;
    ind := IndeterminateNumberOfUnivariateRationalFunction( f );
    fam := FamilyObj(f);
    e := CoefficientsOfLaurentPolynomial( f );
    c := e[1];
    if Length( c ) = 0  then
        return f;
    fi;
    e := e[2];
    d := [  ];
    for i  in [ 1 .. Length(c) ]  do
        d[i] := (i + e - 1) * c[i];
    od;
    e := e-1 + RemoveOuterCoeffs(d, fam!.zeroCoefficient);
    return LaurentPolynomialByExtRepNC( fam, d, e, ind );
end );

#############################################################################
##
#M  \<, \+, ... for float and rat
##

# we say that all floateans are after all rationals, to sort them
BindGlobal("COMPARE_FLOAT_ANY", function(x,y)
    local z;
    if IsFloat(x) then z := y; else z := x; fi;
    Error("Comparison of float and ",z," is not supported. Please refer to the manual section on floats for details");
end);

InstallMethod( \<, "for rational and float", [ IsRat, IsFloat ], -1, COMPARE_FLOAT_ANY );
InstallMethod( \<, "for float and rational", [ IsFloat, IsRat ], -1, COMPARE_FLOAT_ANY );
InstallMethod( \<, "for floats", [ IsFloat, IsFloat ], -1,
        function(x,y) return x < MakeFloat(x,y); end);

InstallMethod( \=, "for rational and float", [ IsRat, IsFloat ], -1, COMPARE_FLOAT_ANY );
InstallMethod( \=, "for float and rational", [ IsFloat, IsRat ], -1, COMPARE_FLOAT_ANY );
InstallMethod( \=, "for floats", [ IsFloat, IsFloat ], -1,
        function(x,y) return x = MakeFloat(x,y); end);

InstallMethod( \+, "for rational and float", ReturnTrue, [ IsRat, IsFloat ], -1,
        function ( x, y ) return MakeFloat(y,x) + y; end );
InstallMethod( \+, "for float and rational", ReturnTrue, [ IsFloat, IsRat ], -1,
        function ( x, y ) return x + MakeFloat(x,y); end );
InstallMethod( \+, "for floats", ReturnTrue, [ IsFloat, IsFloat ], -1,
        function ( x, y ) return x + MakeFloat(x,y); end );

InstallMethod( \-, "for rational and float", ReturnTrue, [ IsRat, IsFloat ], -1,
        function ( x, y ) return MakeFloat(y,x) - y; end );
InstallMethod( \-, "for float and rational", ReturnTrue, [ IsFloat, IsRat ], -1,
        function ( x, y ) return x - MakeFloat(x,y); end );
InstallMethod( \-, "for floats", ReturnTrue, [ IsFloat, IsFloat ], -1,
        function ( x, y ) return x - MakeFloat(x,y); end );

InstallMethod( \*, "for rational and float", ReturnTrue, [ IsRat, IsFloat ], -1,
        function ( x, y ) return MakeFloat(y,x) * y; end );
InstallMethod( \*, "for float and rational", ReturnTrue, [ IsFloat, IsRat ], -1,
        function ( x, y ) return x * MakeFloat(x,y); end );
InstallMethod( \*, "for floats", ReturnTrue, [ IsFloat, IsFloat ], -1,
        function ( x, y ) return x * MakeFloat(x,y); end );

InstallMethod( \/, "for rational and float", ReturnTrue, [ IsRat, IsFloat ], -1,
        function ( x, y ) return MakeFloat(y,x) / y; end );
InstallMethod( \/, "for float and rational", ReturnTrue, [ IsFloat, IsRat ], -1,
        function ( x, y ) return x / MakeFloat(x,y); end );
InstallMethod( \/, "for floats", ReturnTrue, [ IsFloat, IsFloat ], -1,
        function ( x, y ) return x / MakeFloat(x,y); end );

InstallMethod( LQUO, "for rational and float", ReturnTrue, [ IsRat, IsFloat ], -1,
        function ( x, y ) return LQUO(MakeFloat(y,x),y); end );
InstallMethod( LQUO, "for float and rational", ReturnTrue, [ IsFloat, IsRat ], -1,
        function ( x, y ) return LQUO(x,MakeFloat(x,y)); end );
InstallMethod( LQUO, "for floats", ReturnTrue, [ IsFloat, IsFloat ], -1,
        function ( x, y ) return LQUO(x,MakeFloat(x,y)); end );

InstallOtherMethod( \/, "for empty list", [ IsEmpty, IsFloat ],
        function ( x, y ) return x; end );

InstallMethod( \^, "for rational and float", ReturnTrue, [ IsRat, IsFloat ], -1,
        function ( x, y ) return MakeFloat(y,x) ^ y; end );
InstallMethod( \^, "for float and rational", ReturnTrue, [ IsFloat, IsRat ], -1,
        function ( x, y )
    if IsInt(y) then TryNextMethod(); fi;
    return x ^ MakeFloat(x,y);
end );
InstallMethod( \^, "for floats", ReturnTrue, [ IsFloat, IsFloat ], -1,
        function ( x, y ) return x ^ MakeFloat(x,y); end );


InstallMethod( IsGeneratorsOfMagmaWithInverses,
    "for a collection of floats (return false)",
    [ IsFloatCollection ],
    SUM_FLAGS, # override everything else
    function( gens )
    Info( InfoWarning, 1,
          "no groups of floats allowed because of incompatible ^" );
    return false;
    end );