1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
|
#############################################################################
##
## This file is part of GAP, a system for computational discrete algebra.
## This file's authors include Isabel Araújo.
##
## Copyright of GAP belongs to its developers, whose names are too numerous
## to list here. Please refer to the COPYRIGHT file for details.
##
## SPDX-License-Identifier: GPL-2.0-or-later
##
#############################################################################
##
## 1. methods for elements of fp monoids
##
#############################################################################
##
#M ElementOfFpMonoid( <fam>, <elm> )
##
InstallMethod( ElementOfFpMonoid,
"for a family of f.p. monoid elements, and an assoc. word",
true,
[ IsElementOfFpMonoidFamily, IsAssocWordWithOne ],
0,
function( fam, elm )
return Objectify( fam!.defaultType, [ Immutable( elm ) ] );
end );
#############################################################################
##
#M UnderlyingElement( <elm> ) . . . . . . for element of fp monoid
##
InstallMethod( UnderlyingElement,
"for an element of an fp monoid (default repres.)",
true,
[ IsElementOfFpMonoid and IsPackedElementDefaultRep ],
0,
obj -> obj![1] );
#############################################################################
##
#M \*( <x1>, <x2> )
##
InstallMethod( \*,
"for two elements of a fp monoid",
IsIdenticalObj,
[ IsElementOfFpMonoid, IsElementOfFpMonoid],
0,
function( x1, x2 )
return ElementOfFpMonoid(FamilyObj(x1),
UnderlyingElement(x1)*UnderlyingElement(x2));
end );
#############################################################################
##
#M \<( <x1>, <x2> )
##
## This method now uses the rws for monoids (30/01/2002)
##
InstallMethod( \<,
"for two elements of a f.p. monoid",
IsIdenticalObj,
[ IsElementOfFpMonoid, IsElementOfFpMonoid],
0,
function( x1, x2 )
local s,rws ;
s := CollectionsFamily(FamilyObj(x1))!.wholeMonoid;
rws := ReducedConfluentRewritingSystem(s);
return ReducedForm(rws, UnderlyingElement(x1)) <
ReducedForm(rws, UnderlyingElement(x2));
end );
#############################################################################
##
#M \=( <x1>, <x2> )
##
InstallMethod( \=,
"for two elements of a f.p. monoid",
IsIdenticalObj,
[ IsElementOfFpMonoid, IsElementOfFpMonoid],
0,
function( x1, x2 )
local m,rws;
m := CollectionsFamily(FamilyObj(x1))!.wholeMonoid;
rws:= ReducedConfluentRewritingSystem(m);
return ReducedForm(rws, UnderlyingElement(x1)) =
ReducedForm(rws, UnderlyingElement(x2));
end );
#############################################################################
##
#M One( <fam> ) . . . . . . . . . . . . . for family of fp monoid elements
##
InstallOtherMethod( One,
"for a family of fp monoid elements",
true,
[ IsElementOfFpMonoidFamily ],
0,
fam -> ElementOfFpMonoid( fam, One( fam!.freeMonoid) ) );
#############################################################################
##
#M One( <elm> ) . . . . . . . . . . . . . . . . . for element of fp monoid
##
InstallMethod( One, "for an fp monoid element", true, [ IsElementOfFpMonoid ],
0, obj -> One( FamilyObj( obj ) ) );
# a^0 calls OneOp, so we have to catch this as well.
InstallMethod( OneOp, "for an fp monoid element", true, [ IsElementOfFpMonoid ],
0, obj -> One( FamilyObj( obj ) ) );
#############################################################################
##
#M PrintObj( <elm> )
##
InstallMethod( PrintObj, "for an fp monoid element",
true, [ IsElementOfFpMonoid], 0,
function( elm )
PrintObj(elm![1]);
end );
#############################################################################
##
#M String( <elm> )
##
InstallMethod( String, "for an fp monoid element",
true, [ IsElementOfFpMonoid], 0,
function( elm )
return String(elm![1]);
end );
#############################################################################
##
#M FpMonoidOfElementOfFpMonoid( <elm> )
##
InstallMethod( FpMonoidOfElementOfFpMonoid,
"for an fp monoid element", true,
[IsElementOfFpMonoid], 0,
elm -> CollectionsFamily(FamilyObj(elm))!.wholeMonoid);
#############################################################################
##
#M FpGrpMonSmgOfFpGrpMonSmgElement( <elm> )
##
## for an fp monoid element <elm> returns the fp monoid to which
## <elm> belongs to
##
InstallMethod(FpGrpMonSmgOfFpGrpMonSmgElement,
"for an element of an fp monoid", true,
[IsElementOfFpMonoid], 0,
x -> CollectionsFamily(FamilyObj(x))!.wholeMonoid);
#############################################################################
##
## 2. methods for fp monoids
##
#############################################################################
##
#M FactorFreeMonoidByRelations(<F>,<rels>) .. Create an FpMonoid
##
## Note: If the monoid has fewer relations than generators,
## then the monoid is certainly infinite.
##
InstallGlobalFunction(FactorFreeMonoidByRelations,
function( F, rels )
local s, fam, gens, r;
# Check that the relations are all lists of length 2
for r in rels do
if Length(r) <> 2 then
Error("A relation should be a list of length 2");
fi;
od;
if not (HasIsFreeMonoid(F) and IsFreeMonoid(F)) then
Error("first argument <F> should be a free monoid");
fi;
# Create a new family.
fam := NewFamily( "FamilyElementsFpMonoid", IsElementOfFpMonoid);
# Create the default type for the elements -
# putting IsElementOfFpMonoid ensures that lists of these things
# have CategoryCollections(IsElementOfFpMonoid).
fam!.freeMonoid:= F;
fam!.relations := Immutable( rels );
fam!.defaultType := NewType( fam, IsElementOfFpMonoid
and IsPackedElementDefaultRep );
# Create the monoid
s := Objectify(
NewType( CollectionsFamily( fam ),
IsMonoid and IsFpMonoid and IsAttributeStoringRep),
rec() );
# Mark <s> to be the 'whole monoid' of its later submonoids.
FamilyObj( s )!.wholeMonoid:= s;
SetOne(s,ElementOfFpMonoid(fam,One(F)));
# Create generators of the monoid.
gens:= List( GeneratorsOfMonoid( F ),
s -> ElementOfFpMonoid( fam, s ) );
SetGeneratorsOfMonoid( s, gens );
if Length(gens) > Length(rels) then
SetIsFinite(s, false);
fi;
return s;
end);
#############################################################################
##
#M ViewObj( S )
##
## View an fp monoid S
##
InstallMethod( ViewObj,
"for a fp monoid with generators",
true,
[ IsSubmonoidFpMonoid and IsWholeFamily and IsMonoid
and HasGeneratorsOfMagma ], 0,
function( S )
Print( "<fp monoid on the generators ",
FreeGeneratorsOfFpMonoid(S),">");
end );
#############################################################################
##
#M FreeGeneratorsOfFpMonoid( S )
##
## Generators of the underlying free monoid
##
InstallMethod( FreeGeneratorsOfFpMonoid,
"for a finitely presented monoid",
true,
[ IsSubmonoidFpMonoid and IsWholeFamily ], 0,
T -> GeneratorsOfMonoid( FreeMonoidOfFpMonoid( T ) ) );
#############################################################################
##
#M FreeMonoidOfFpMonoid( S )
##
## Underlying free monoid of an fpmonoid
##
InstallMethod( FreeMonoidOfFpMonoid,
"for a finitely presented monoid",
true,
[ IsSubmonoidFpMonoid and IsWholeFamily ], 0,
T -> ElementsFamily( FamilyObj( T ) )!.freeMonoid);
#############################################################################
##
#M RelationsOfFpMonoid( F )
##
InstallOtherMethod( RelationsOfFpMonoid, "method for a free monoid",
true,
[ IsFreeMonoid], 0,
F -> [] );
InstallMethod( RelationsOfFpMonoid,
"for finitely presented monoid",
true,
[ IsSubmonoidFpMonoid and IsWholeFamily ], 0,
S -> ElementsFamily( FamilyObj( S ) )!.relations );
#############################################################################
##
#M HomomorphismFactorSemigroup(<F>, <C> )
##
## for a free monoid and congruence
##
InstallOtherMethod(HomomorphismFactorSemigroup,
"for a free monoid and a congruence",
true,
[ IsFreeMonoid, IsMagmaCongruence ],
0,
function(s, c)
local
fp; # the monoid under construction
if not s = Source(c) then
TryNextMethod();
fi;
fp := FactorFreeMonoidByRelations(s, GeneratingPairsOfMagmaCongruence(c));
return MagmaHomomorphismByFunctionNC(s, fp,
x->ElementOfFpMonoid(ElementsFamily(FamilyObj(fp)),x) );
end);
#############################################################################
##
#M HomomorphismFactorSemigroup(<F>, <C> )
##
## for fp monoid and congruence
##
InstallMethod(HomomorphismFactorSemigroup,
"for an fp monoid and a congruence",
true,
[ IsFpMonoid, IsSemigroupCongruence ],
0,
function(s, c)
local
srels, # the relations of c
frels, # srels converted into pairs of words in the free monoid
fp; # the monoid under construction
if not s = Source(c) then
TryNextMethod();
fi;
# make the relations, relations of the free monoid
srels := GeneratingPairsOfMagmaCongruence(c);
frels := List(srels, x->[UnderlyingElement(x[1]),UnderlyingElement(x[2])]);
fp := FactorFreeMonoidByRelations(FreeMonoidOfFpMonoid(s),
Concatenation(frels, RelationsOfFpMonoid(s)));
return MagmaHomomorphismByFunctionNC(s, fp,
x->ElementOfFpMonoid(ElementsFamily(FamilyObj(fp)),UnderlyingElement(x)) );
end);
#############################################################################
##
#M NaturalHomomorphismByGenerators( S )
##
BindGlobal("FreeMonoidNatHomByGeneratorsNC",
function(f, s)
return MagmaHomomorphismByFunctionNC(f, s,
function(w)
local
i, # loop var
prodt, # product in the target monoid
gens, # generators of the target monoid
v; # ext rep as <gen>, <exp> pairs
if Length(w) = 0 then
return One(Representative(s));
fi;
gens := GeneratorsOfMonoid(s);
v := ExtRepOfObj(w);
prodt := gens[v[1]]^v[2];
for i in [2 .. Length(v)/2] do
prodt := prodt*gens[v[2*i-1]]^v[2*i];
od;
return prodt;
end);
end);
InstallMethod( NaturalHomomorphismByGenerators,
"for a free monoid and monoid",
true,
[ IsFreeMonoid, IsMonoid and HasGeneratorsOfMagmaWithOne], 0,
function(f, s)
if Size(GeneratorsOfMagmaWithOne(f)) <> Size(GeneratorsOfMagmaWithOne(s)) then
Error("Monoid must have the same rank.");
fi;
return FreeMonoidNatHomByGeneratorsNC(f, s);
end);
InstallMethod( NaturalHomomorphismByGenerators,
"for an fp monoid and monoid",
true,
[ IsFpMonoid, IsMonoid and HasGeneratorsOfMonoid], 0,
function(f, s)
local
psi; # the homom from the free monoid
if Size(GeneratorsOfMonoid(f)) <> Size(GeneratorsOfMonoid(s)) then
Error("Monoids must have the same rank.");
fi;
psi := FreeMonoidNatHomByGeneratorsNC(FreeMonoidOfFpMonoid(f), s);
# check that the relations hold
if Length(
Filtered(RelationsOfFpMonoid(f), x->x[1]^psi <> x[2]^psi))>0 then
return fail;
fi;
# now create the homomorphism from the fp mon
return MagmaHomomorphismByFunctionNC(f, s, e->UnderlyingElement(e)^psi);
end);
InstallMethod(IsomorphismFpSemigroup, "for an fp monoid", [IsFpMonoid],
function(M)
local FMtoFS, FStoFM, FM, FS, id, rels, next, S, map, inv, x, rel;
# Convert a word in the free monoid into a word in the free semigroup
FMtoFS := function(id, w)
local wlist, i;
wlist := ExtRepOfObj(w);
if Length(wlist) = 0 then # it is the identity
return id;
fi;
# have to increment the generators by one to shift past the identity
# generator
wlist := ShallowCopy(wlist);
for i in [1 .. 1 / 2 * (Length(wlist))] do
wlist[2 * i - 1] := wlist[2 * i - 1] + 1;
od;
return ObjByExtRep(FamilyObj(id), wlist);
end;
# Convert a word in the free semigroup into a word in the free monoid.
FStoFM := function(id, w)
local wlist, i;
wlist := ExtRepOfObj(w);
if Length(wlist) = 0 or (wlist = [1, 1]) then # it is the identity
return id;
fi;
# have to decrease each entry by one because of the identity generator
wlist := ShallowCopy(wlist);
for i in [1 .. 1 / 2 * (Length(wlist))] do
wlist[2 * i - 1] := wlist[2 * i - 1] - 1;
od;
return ObjByExtRep(FamilyObj(id), wlist);
end;
FM := FreeMonoidOfFpMonoid(M);
FS := FreeSemigroup(List(GeneratorsOfSemigroup(FM), String));
id := FS.(Position(GeneratorsOfSemigroup(FM), One(FM)));
# Add the relations that make id an identity
rels := [[id * id, id]];
for x in GeneratorsOfSemigroup(FS) do
if x <> id then
Add(rels, [id * x, x]);
Add(rels, [x * id, x]);
fi;
od;
# Rewrite the fp monoid relations as relations over FS
for rel in RelationsOfFpMonoid(M) do
next := [FMtoFS(id, rel[1]), FMtoFS(id, rel[2])];
Add(rels, next);
od;
# finally create the fp semigroup
S := FS / rels;
map := x -> ElementOfFpSemigroup(FamilyObj(S.1),
FMtoFS(id, UnderlyingElement(x)));
inv := x -> Image(NaturalHomomorphismByGenerators(FM, M),
FStoFM(One(FM), UnderlyingElement(x)));
return MagmaIsomorphismByFunctionsNC(M, S, map, inv);
end);
|