1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
|
#############################################################################
##
## This file is part of GAP, a system for computational discrete algebra.
## This file's authors include Andrew Solomon and Isabel Araújo.
##
## Copyright of GAP belongs to its developers, whose names are too numerous
## to list here. Please refer to the COPYRIGHT file for details.
##
## SPDX-License-Identifier: GPL-2.0-or-later
##
## This file contains the declarations for finitely
## presented semigroups.
#############################################################################
##
#C IsElementOfFpSemigroup(<elm>)
##
## <#GAPDoc Label="IsElementOfFpSemigroup">
## <ManSection>
## <Filt Name="IsElementOfFpSemigroup" Arg='elm' Type='Category'/>
## <Filt Name="IsElementOfFpMonoid" Arg='elm' Type='Category'/>
##
## <Description>
## returns true if <A>elm</A> is an element of a finitely presented
## semigroup or monoid.
## <P/>
## <Example><![CDATA[
## gap> f := FreeSemigroup( "a", "b" );;
## gap> IsFpSemigroup( f );
## false
## gap> s := f / [ [ f.1^2, f.2^2 ] ];;
## gap> IsFpSemigroup( s );
## true
## gap> t := Semigroup( [ s.1^2 ] );
## <commutative semigroup with 1 generator>
## gap> IsSubsemigroupFpSemigroup( t );
## true
## gap> IsSubsemigroupFpSemigroup( s );
## true
## gap> IsSubsemigroupFpSemigroup( f );
## false
## gap> IsElementOfFpSemigroup( t.1^3 );
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsElementOfFpSemigroup",
IsMultiplicativeElement and IsAssociativeElement );
#############################################################################
##
#O FpSemigroupOfElementOfFpSemigroup( <elm> )
##
## <ManSection>
## <Oper Name="FpSemigroupOfElementOfFpSemigroup" Arg='elm'/>
##
## <Description>
## returns the finitely presented semigroup to which <A>elm</A> belongs to
## </Description>
## </ManSection>
##
DeclareOperation( "FpSemigroupOfElementOfFpSemigroup",
[IsElementOfFpSemigroup]);
#############################################################################
##
#C IsElementOfFpSemigroupCollection(<e>)
##
## <ManSection>
## <Filt Name="IsElementOfFpSemigroupCollection" Arg='e' Type='Category'/>
##
## <Description>
## Created now so that lists of things in the category IsElementOfFpSemigroup
## are given the category CategoryCollections(IsElementOfFpSemigroup)
## Otherwise these lists (and other collections) won't create the
## collections category. See CollectionsCategory in the manual.
## </Description>
## </ManSection>
##
DeclareCategoryCollections("IsElementOfFpSemigroup");
#############################################################################
##
#A IsSubsemigroupFpSemigroup( <t> )
##
## <#GAPDoc Label="IsSubsemigroupFpSemigroup">
## <ManSection>
## <Filt Name="IsSubsemigroupFpSemigroup" Arg='t'/>
## <Filt Name="IsSubmonoidFpMonoid" Arg='t'/>
##
## <Description>
## The first function returns true if <A>t</A> is a finitely presented
## semigroup or a subsemigroup of a finitely presented semigroup.
## The second function does the equivalent thing for monoids.
## (Generally speaking, such a subsemigroup or monoid can be constructed
## with <C>Semigroup(<A>gens</A>)</C> or <C>Monoid(<A>gens</A>)</C>,
## where <A>gens</A> is a list of elements
## of a finitely presented semigroup or monoid.)
## <P/>
## A submonoid of a monoid has the same identity as the monoid.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonymAttr( "IsSubsemigroupFpSemigroup",
IsSemigroup and IsElementOfFpSemigroupCollection );
#############################################################################
##
#C IsElementOfFpSemigroupFamily
##
## <ManSection>
## <Filt Name="IsElementOfFpSemigroupFamily" Arg='obj' Type='Category'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareCategoryFamily( "IsElementOfFpSemigroup" );
#############################################################################
##
#F FactorFreeSemigroupByRelations( <f>, <rels> )
#F FactorFreeMonoidByRelations( <f>, <rels> )
##
## <#GAPDoc Label="FactorFreeSemigroupByRelations">
## <ManSection>
## <Func Name="FactorFreeSemigroupByRelations" Arg='f, rels'/>
## <Func Name="FactorFreeMonoidByRelations" Arg='f, rels'/>
##
## <Description>
## for a free semigroup or free monoid <A>f</A>
## and a list <A>rels</A> of pairs of elements of <A>f</A>.
## Returns the finitely presented semigroup or monoid
## which is the quotient of <A>f</A> by the least congruence on <A>f</A>
## generated by the pairs in <A>rels</A>.
## <P/>
## Users should be aware that much of the code described in this chapter
## is in need of substantial revision.
## In particular, the two functions described here are <E>not</E>
## called by the operation <C>\/</C> of the previous subsection,
## and so are liable to be removed in due course.
## <P/>
## <Example><![CDATA[
## gap> fm := FreeMonoid( 3 );;
## gap> y := GeneratorsOfMonoid( fm );;
## gap> m := FactorFreeMonoidByRelations( fm,
## > [ [ y[1] * y[2] * y[1], y[1] ],[ y[2]^4, y[1] ] ] );
## <fp monoid on the generators [ m1, m2, m3 ]>
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("FactorFreeSemigroupByRelations");
#############################################################################
##
#O ElementOfFpSemigroup( <fam>, <word> )
#O ElementOfFpMonoid( <fam>, <word> )
##
## <#GAPDoc Label="ElementOfFpSemigroup">
## <ManSection>
## <Oper Name="ElementOfFpSemigroup" Arg='fam, word'/>
## <Oper Name="ElementOfFpMonoid" Arg='fam, word'/>
##
## <Description>
## for a family <A>fam</A> of elements of a finitely presented semigroup
## or monoid and a word <A>word</A> in the free generators underlying this
## finitely presented semigroup or monoid.
## Returns the element of the finitely presented semigroup or monoid
## with the representative <A>word</A> in the free semigroup or free monoid.
## These operations are inverse to <C>UnderlyingElement</C>.
## <P/>
## <Example><![CDATA[
## gap> fam := FamilyObj( genm[1] );;
## gap> w := y[1]^3 * y[2]^4 * y[3]^5;
## m1^3*m2^4*m3^5
## gap> ew := ElementOfFpMonoid( fam, w );
## m1^3*m2^4*m3^5
## gap> ew in fm;
## false
## gap> ew in m;
## true
## gap> w = UnderlyingElement( ew );
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "ElementOfFpSemigroup",
[ IsElementOfFpSemigroupFamily, IsAssocWord ] );
#############################################################################
##
#P IsFpSemigroup(<s>)
##
## <#GAPDoc Label="IsFpSemigroup">
## <ManSection>
## <Filt Name="IsFpSemigroup" Arg='s'/>
## <Filt Name="IsFpMonoid" Arg='m'/>
##
## <Description>
## The first function is a synonym for
## <C>IsSubsemigroupFpSemigroup(<A>s</A>)</C> and
## <C>IsWholeFamily(<A>s</A>)</C> (this is because a subsemigroup
## of a finitely presented semigroup is not necessarily finitely presented).
## <P/>
## Similarly, the second function is a synonym for
## <C>IsSubmonoidFpMonoid(<A>m</A>)</C> and <C>IsWholeFamily(<A>m</A>)</C>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "IsFpSemigroup",IsSubsemigroupFpSemigroup and IsWholeFamily);
#############################################################################
##
#A FreeGeneratorsOfFpSemigroup( <s> )
#A FreeGeneratorsOfFpMonoid( <m> )
##
## <#GAPDoc Label="FreeGeneratorsOfFpSemigroup">
## <ManSection>
## <Attr Name="FreeGeneratorsOfFpSemigroup" Arg='s'/>
## <Attr Name="FreeGeneratorsOfFpMonoid" Arg='m'/>
##
## <Description>
## returns the underlying free generators corresponding to the generators of
## the finitely presented semigroup <A>s</A> or monoid <A>m</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute("FreeGeneratorsOfFpSemigroup", IsFpSemigroup );
#############################################################################
##
#A FreeSemigroupOfFpSemigroup( <s> )
#A FreeMonoidOfFpMonoid( <m> )
##
## <#GAPDoc Label="FreeSemigroupOfFpSemigroup">
## <ManSection>
## <Attr Name="FreeSemigroupOfFpSemigroup" Arg='s'/>
## <Attr Name="FreeMonoidOfFpMonoid" Arg='m'/>
##
## <Description>
## returns the underlying free semigroup or free monoid
## for the finitely presented semigroup <A>s</A> or monoid <A>m</A>,
## i.e. the free semigroup or free monoid over which <A>s</A> or <A>m</A>
## is defined as a quotient.
## (This is the free semigroup or free monoid generated by the free generators
## provided by <C>FreeGeneratorsOfFpSemigroup(<A>s</A>)</C>
## or <C>FreeGeneratorsOfFpMonoid(<A>m</A>)</C>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute("FreeSemigroupOfFpSemigroup", IsFpSemigroup);
############################################################################
##
#A RelationsOfFpSemigroup(<s>)
#A RelationsOfFpMonoid(<m>)
##
## <#GAPDoc Label="RelationsOfFpSemigroup">
## <ManSection>
## <Attr Name="RelationsOfFpSemigroup" Arg='s'/>
## <Attr Name="RelationsOfFpMonoid" Arg='m'/>
##
## <Description>
## returns the relations of the finitely presented semigroup <A>s</A>
## or monoid <A>m</A> as pairs of words in the free generators provided by
## <C>FreeGeneratorsOfFpSemigroup(<A>s</A>)</C> or
## <C>FreeGeneratorsOfFpMonoid(<A>m</A>)</C>.
## <P/>
## <Example><![CDATA[
## gap> fs = FreeSemigroupOfFpSemigroup( s );
## true
## gap> FreeGeneratorsOfFpMonoid( m );
## [ m1, m2, m3 ]
## gap> RelationsOfFpSemigroup( s );
## [ [ s1*s2*s1, s1 ], [ s2^4, s1 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute("RelationsOfFpSemigroup",IsFpSemigroup);
############################################################################
##
#A IsomorphismFpSemigroup( <m> )
#A IsomorphismFpMonoid( <g> )
##
## <#GAPDoc Label="IsomorphismFpSemigroup">
## <ManSection>
## <Attr Name="IsomorphismFpSemigroup" Arg='m'/>
## <Attr Name="IsomorphismFpMonoid" Arg='g'/>
##
## <Description>
## for a finitely presented monoid <A>m</A>
## or a finitely presented group <A>g</A>.
## Returns an isomorphism from <A>m</A> or <A>g</A>
## to a finitely presented semigroup or monoid.
## <P/>
## <Example><![CDATA[
## gap> phis := IsomorphismFpSemigroup( m );
## MappingByFunction( <fp monoid on the generators
## [ m1, m2, m3 ]>, <fp semigroup on the generators [ <identity ...>, m1, m2, m3
## ]>, function( x ) ... end, function( x ) ... end )
## gap> fg := FreeGroup( 2 );;
## gap> g := fg / [ fg.1^4, fg.2^5 ];
## <fp group on the generators [ f1, f2 ]>
## gap> phim := IsomorphismFpMonoid( g );
## MappingByFunction( <fp group on the generators
## [ f1, f2 ]>, <fp monoid on the generators [ f1, f1^-1, f2, f2^-1
## ]>, function( x ) ... end, function( x ) ... end )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute("IsomorphismFpSemigroup",IsSemigroup);
############################################################################
##
#O FpGrpMonSmgOfFpGrpMonSmgElement( <elm> )
##
## <#GAPDoc Label="FpGrpMonSmgOfFpGrpMonSmgElement">
## <ManSection>
## <Oper Name="FpGrpMonSmgOfFpGrpMonSmgElement" Arg='elm'/>
##
## <Description>
## returns the finitely presented group, monoid or semigroup to which
## <A>elm</A> belongs.
## <P/>
## <Example><![CDATA[
## gap> s = FpGrpMonSmgOfFpGrpMonSmgElement( s.1 );
## true
## gap> s = FpGrpMonSmgOfFpGrpMonSmgElement( t.1 );
## true
## gap> f := FreeMonoid( 2 );;
## gap> m := f / [ [ f.1^2, f.2^2 ] ];
## <fp monoid on the generators [ m1, m2 ]>
## gap> m = FpGrpMonSmgOfFpGrpMonSmgElement( m.1 * m.2 );
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation("FpGrpMonSmgOfFpGrpMonSmgElement",[IsMultiplicativeElement]);
|