File: gpprmsya.gd

package info (click to toggle)
gap 4.15.1-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 110,212 kB
  • sloc: ansic: 97,261; xml: 48,343; cpp: 13,946; sh: 4,900; perl: 1,650; javascript: 255; makefile: 252; ruby: 9
file content (181 lines) | stat: -rw-r--r-- 5,566 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
#############################################################################
##
##  This file is part of GAP, a system for computational discrete algebra.
##  This file's authors include Frank Celler, Alexander Hulpke.
##
##  Copyright of GAP belongs to its developers, whose names are too numerous
##  to list here. Please refer to the COPYRIGHT file for details.
##
##  SPDX-License-Identifier: GPL-2.0-or-later
##
##  This file contains the declarations for symmetric and alternating
##  permutation groups
##


#############################################################################
##
#P  IsNaturalSymmetricGroup( <group> )
#P  IsNaturalAlternatingGroup( <group> )
##
##  <#GAPDoc Label="IsNaturalSymmetricGroup">
##  <ManSection>
##  <Prop Name="IsNaturalSymmetricGroup" Arg='group'/>
##  <Prop Name="IsNaturalAlternatingGroup" Arg='group'/>
##
##  <Description>
##  A group is a natural symmetric or alternating group if it is
##  a permutation group acting as symmetric or alternating group,
##  respectively, on its moved points.
##  <P/>
##  For groups that are known to be natural symmetric or natural alternating
##  groups, very efficient methods for computing membership,
##  conjugacy classes, Sylow subgroups etc.&nbsp;are used.
##  <P/>
##  <Example><![CDATA[
##  gap> g:=Group((1,5,7,8,99),(1,99,13,72));;
##  gap> IsNaturalSymmetricGroup(g);
##  true
##  gap> g;
##  Sym( [ 1, 5, 7, 8, 13, 72, 99 ] )
##  gap> IsNaturalSymmetricGroup( Group( (1,2)(4,5), (1,2,3)(4,5,6) ) );
##  false
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsNaturalSymmetricGroup", IsPermGroup );
InstallTrueMethod( IsPermGroup, IsNaturalSymmetricGroup );

DeclareProperty( "IsNaturalAlternatingGroup", IsPermGroup );
InstallTrueMethod( IsPermGroup, IsNaturalAlternatingGroup );


#############################################################################
##
#P  IsAlternatingGroup( <group> )
##
##  <#GAPDoc Label="IsAlternatingGroup">
##  <ManSection>
##  <Prop Name="IsAlternatingGroup" Arg='group'/>
##
##  <Description>
##  is <K>true</K> if the group <A>group</A> is isomorphic to an
##  alternating group.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsAlternatingGroup", IsGroup );
InstallTrueMethod( IsGroup, IsAlternatingGroup );


#############################################################################
##
#M  IsAlternatingGroup( <nat-alt-grp> )
##
InstallTrueMethod( IsAlternatingGroup, IsNaturalAlternatingGroup );


#############################################################################
##
#P  IsSymmetricGroup( <group> )
##
##  <#GAPDoc Label="IsSymmetricGroup">
##  <ManSection>
##  <Prop Name="IsSymmetricGroup" Arg='group'/>
##
##  <Description>
##  is <K>true</K> if the group <A>group</A> is isomorphic to a
##  symmetric group.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsSymmetricGroup", IsGroup );
InstallTrueMethod( IsGroup, IsSymmetricGroup );


#############################################################################
##
#M  IsSymmetricGroup( <nat-sym-grp> )
##
InstallTrueMethod( IsSymmetricGroup, IsNaturalSymmetricGroup );


#############################################################################
##
#A  SymmetricParentGroup( <grp> )
##
##  <#GAPDoc Label="SymmetricParentGroup">
##  <ManSection>
##  <Attr Name="SymmetricParentGroup" Arg='grp'/>
##
##  <Description>
##  For a permutation group <A>grp</A> this function returns the symmetric
##  group that moves the same points as <A>grp</A> does.
##  <Example><![CDATA[
##  gap> SymmetricParentGroup( Group( (1,2), (4,5), (7,8,9) ) );
##  Sym( [ 1, 2, 4, 5, 7, 8, 9 ] )
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("SymmetricParentGroup",IsPermGroup);

#############################################################################
##
#A  AlternatingSubgroup( <grp> )
##
##  <ManSection>
##  <Attr Name="AlternatingSubgroup" Arg='grp'/>
##
##  <Description>
##  returns the intersection of <A>grp</A> with the alternating group on the
##  points moved by <A>grp</A>.
##  </Description>
##  </ManSection>
##
DeclareAttribute("AlternatingSubgroup",IsPermGroup);

#############################################################################
##
#A  OrbitStabilizingParentGroup( <grp> )
##
##  <ManSection>
##  <Attr Name="OrbitStabilizingParentGroup" Arg='grp'/>
##
##  <Description>
##  returns the subgroup of <C>SymmetricParentGroup(<A>grp</A>)</C> which stabilizes
##  the orbits of <A>grp</A> setwise. (So it is a direct product of wreath
##  products of symmetric groups.) It is a natural supergroup for the
##  normalizer.
##  </Description>
##  </ManSection>
##
DeclareAttribute("OrbitStabilizingParentGroup",IsPermGroup);

DeclareGlobalFunction("NormalizerParentSA");

#############################################################################
##
#F  MaximalSubgroupsSymmAlt( <grp> [,<onlyprimitive>] )
##
##  <ManSection>
##  <Func Name="MaximalSubgroupsSymmAlt" Arg='grp [,onlyprimitive]'/>
##
##  <Description>
##  For a symmetric or alternating group <A>grp</A>, this function returns
##  representatives of the classes of maximal subgroups.
##  <P/>
##  If the parameter <A>onlyprimitive</A> is given and set to <K>true</K> only the
##  primitive maximal subgroups are computed.
##  <P/>
##  No parameter test is performed. (The function relies on the primitive
##  groups library for its functionality.)
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("MaximalSubgroupsSymmAlt");