File: grp.gd

package info (click to toggle)
gap 4.15.1-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 110,212 kB
  • sloc: ansic: 97,261; xml: 48,343; cpp: 13,946; sh: 4,900; perl: 1,650; javascript: 255; makefile: 252; ruby: 9
file content (4795 lines) | stat: -rw-r--r-- 159,086 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
#############################################################################
##
##  This file is part of GAP, a system for computational discrete algebra.
##  This file's authors include Thomas Breuer, Frank Celler, Bettina Eick,
##  Heiko Theißen.
##
##  Copyright of GAP belongs to its developers, whose names are too numerous
##  to list here. Please refer to the COPYRIGHT file for details.
##
##  SPDX-License-Identifier: GPL-2.0-or-later
##
##  This file contains the declarations of operations for groups.
##


#############################################################################
##
##  <#GAPDoc Label="[1]{grp}">
##  Unless explicitly declared otherwise, all subgroup series are descending.
##  That is they are stored in decreasing order.
##  <#/GAPDoc>
##
##  <#GAPDoc Label="[2]{grp}">
##  If a group <M>U</M> is created as a subgroup of another group <M>G</M>,
##  <M>G</M> becomes the parent of <M>U</M>.
##  There is no <Q>universal</Q> parent group,
##  parent-child chains can be arbitrary long.
##  &GAP; stores the result of some operations
##  (such as <Ref Oper="Normalizer" Label="for two groups"/>)
##  with the parent as an attribute.
##  <#/GAPDoc>
##


#############################################################################
##
#V  InfoGroup
##
##  <#GAPDoc Label="InfoGroup">
##  <ManSection>
##  <InfoClass Name="InfoGroup"/>
##
##  <Description>
##  is the info class for the generic group theoretic functions
##  (see&nbsp;<Ref Sect="Info Functions"/>).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareInfoClass( "InfoGroup" );


#############################################################################
##
#C  IsGroup( <obj> )
##
##  <#GAPDoc Label="IsGroup">
##  <ManSection>
##  <Filt Name="IsGroup" Arg='obj' Type='Category'/>
##
##  <Description>
##  A group is a magma-with-inverses (see&nbsp;<Ref Filt="IsMagmaWithInverses"/>)
##  and associative (see&nbsp;<Ref Prop="IsAssociative"/>) multiplication.
##  <P/>
##  <C>IsGroup</C> tests whether the object <A>obj</A> fulfills these conditions,
##  it does <E>not</E> test whether <A>obj</A> is a set of elements that forms a group
##  under multiplication;
##  use <Ref Attr="AsGroup"/> if you want to perform such a test.
##  (See&nbsp;<Ref Sect="Categories"/> for details about categories.)
##  <Example><![CDATA[
##  gap> IsGroup(g);
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareSynonym( "IsGroup", IsMagmaWithInverses and IsAssociative );

InstallTrueMethod( IsFiniteOrderElementCollection, IsGroup and IsFinite );


#############################################################################
##
#A  GeneratorsOfGroup( <G> )
##
##  <#GAPDoc Label="GeneratorsOfGroup">
##  <ManSection>
##  <Attr Name="GeneratorsOfGroup" Arg='G'/>
##
##  <Description>
##  returns a list of generators of the group <A>G</A>.
##  If <A>G</A> has been created by the command
##  <Ref Oper="GroupWithGenerators"/> with argument <A>gens</A>,
##  then the list returned by <Ref Attr="GeneratorsOfGroup"/>
##  will be equal to <A>gens</A>. For such a group, each generator
##  can also be accessed using the <C>.</C> operator
##  (see <Ref Attr="GeneratorsOfDomain"/>): for a positive integer
##  <M>i</M>, <C><A>G</A>.i</C> returns the <M>i</M>-th element of
##  the list returned by <Ref Attr="GeneratorsOfGroup"/>. Moreover,
##  if <A>G</A> is a free group, and <C>name</C> is the name of a
##  generator of <A>G</A> then <C><A>G</A>.name</C> also returns
##  this generator.
##  <Example><![CDATA[
##  gap> g:=GroupWithGenerators([(1,2,3,4),(1,2)]);
##  Group([ (1,2,3,4), (1,2) ])
##  gap> GeneratorsOfGroup(g);
##  [ (1,2,3,4), (1,2) ]
##  ]]></Example>
##  <P/>
##  While in this example &GAP; displays the group via the generating set
##  stored in the attribute <Ref Attr="GeneratorsOfGroup"/>,
##  the methods installed for <Ref Func="View"/> will in general display only
##  some information about the group which may even be just the fact that it
##  is a group.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareSynonymAttr( "GeneratorsOfGroup", GeneratorsOfMagmaWithInverses );


#############################################################################
##
#O  GroupString( <G>, <name> )
##
##  <ManSection>
##  <Oper Name="GroupString" Arg='G, name'/>
##
##  <Description>
##  returns a short string (usually less than one line) with information
##  about the group <A>G</A>. <A>name</A> is a display name if the group <A>G</A> does
##  not have one.
##  </Description>
##  </ManSection>
##
DeclareOperation( "GroupString", [IsGroup,IsString] );


#############################################################################
##
#P  IsCyclic( <G> )
##
##  <#GAPDoc Label="IsCyclic">
##  <ManSection>
##  <Prop Name="IsCyclic" Arg='G'/>
##
##  <Description>
##  A group is <E>cyclic</E> if it can be generated by one element.
##  For a cyclic group, one can compute a generating set consisting of only
##  one element using <Ref Attr="MinimalGeneratingSet"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsCyclic", IsGroup );

InstallSubsetMaintenance( IsCyclic, IsGroup and IsCyclic, IsGroup );

InstallFactorMaintenance( IsCyclic,
    IsGroup and IsCyclic, IsObject, IsGroup );

InstallTrueMethod( IsCyclic, IsGroup and IsTrivial );

InstallTrueMethod( IsCommutative, IsGroup and IsCyclic );


#############################################################################
##
#P  IsElementaryAbelian( <G> )
##
##  <#GAPDoc Label="IsElementaryAbelian">
##  <ManSection>
##  <Prop Name="IsElementaryAbelian" Arg='G'/>
##
##  <Description>
##  A group <A>G</A> is elementary abelian if it is commutative and if there is a
##  prime <M>p</M> such that the order of each element in <A>G</A> divides <M>p</M>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsElementaryAbelian", IsGroup );

InstallSubsetMaintenance( IsElementaryAbelian,
    IsGroup and IsElementaryAbelian, IsGroup );

InstallFactorMaintenance( IsElementaryAbelian,
    IsGroup and IsElementaryAbelian, IsObject, IsGroup );

InstallTrueMethod( IsElementaryAbelian, IsGroup and IsTrivial );

InstallTrueMethod( IsCommutative, IsGroup and IsElementaryAbelian );


#############################################################################
##
#P  IsFinitelyGeneratedGroup( <G> )
##
##  <#GAPDoc Label="IsFinitelyGeneratedGroup">
##  <ManSection>
##  <Prop Name="IsFinitelyGeneratedGroup" Arg='G'/>
##
##  <Description>
##  tests whether the group <A>G</A> can be generated by a finite number of
##  generators. (This property is mainly used to obtain finiteness
##  conditions.)
##  <P/>
##  Note that this is a pure existence statement. Even if a group is known
##  to be generated by a finite number of elements, it can be very hard or
##  even impossible to obtain such a generating set if it is not known.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsFinitelyGeneratedGroup", IsGroup );
InstallTrueMethod( IsGroup, IsFinitelyGeneratedGroup );

InstallFactorMaintenance( IsFinitelyGeneratedGroup,
    IsGroup and IsFinitelyGeneratedGroup, IsObject, IsGroup );

# make IsFinitelyGeneratedGroup equivalent to IsGroup and IsFinitelyGeneratedMagma
InstallTrueMethod( IsFinitelyGeneratedGroup, IsGroup and IsFinitelyGeneratedMagma );
InstallTrueMethod( HasIsFinitelyGeneratedGroup, IsGroup and HasIsFinitelyGeneratedMagma );
InstallTrueMethod( IsFinitelyGeneratedMagma, IsFinitelyGeneratedGroup );
InstallTrueMethod( HasIsFinitelyGeneratedMagma, HasIsFinitelyGeneratedGroup );

#############################################################################
##
#P  IsSubsetLocallyFiniteGroup(<U>) . . . . test if a group is locally finite
##
##  <#GAPDoc Label="IsSubsetLocallyFiniteGroup">
##  <ManSection>
##  <Prop Name="IsSubsetLocallyFiniteGroup" Arg='U'/>
##
##  <Description>
##  A group is called locally finite if every finitely generated subgroup is
##  finite. This property checks whether the group <A>U</A> is a subset of a
##  locally finite group. This is used to check whether finite generation
##  will imply finiteness, as it does for example for permutation groups.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsSubsetLocallyFiniteGroup", IsGroup );

# this true method will enforce that many groups are finite, which is needed
# implicitly
InstallTrueMethod( IsFinite, IsFinitelyGeneratedGroup and IsGroup
                             and IsSubsetLocallyFiniteGroup );

InstallTrueMethod( IsSubsetLocallyFiniteGroup, IsFinite and IsGroup );

InstallSubsetMaintenance( IsSubsetLocallyFiniteGroup,
    IsGroup and IsSubsetLocallyFiniteGroup, IsGroup );


#############################################################################
##
#M  IsSubsetLocallyFiniteGroup( <G> ) . . .  for magmas with inverses of FFEs
##
InstallTrueMethod( IsSubsetLocallyFiniteGroup,
    IsFFECollection and IsMagmaWithInverses );


#############################################################################
##
##  <#GAPDoc Label="[3]{grp}">
##  The following filters and operations indicate capabilities of &GAP;.
##  They can be used in the method selection or algorithms to check whether
##  it is feasible to compute certain operations for a given group.
##  In general, they return <K>true</K> if good algorithms for the given arguments
##  are available in &GAP;.
##  An answer <K>false</K> indicates that no method for this group may exist,
##  or that the existing methods might run into problems.
##  <P/>
##  Typical examples when this might happen is with finitely presented
##  groups, for which many of the methods cannot be guaranteed to succeed in
##  all situations.
##  <P/>
##  The willingness of &GAP; to perform certain operations may change,
##  depending on which further information is known about the arguments.
##  Therefore the filters used are not implemented as properties but as
##  <Q>other filters</Q> (see&nbsp;<Ref Sect="Properties"/> and&nbsp;<Ref Sect="Other Filters"/>).
##  <#/GAPDoc>
##


#############################################################################
##
#F  CanEasilyTestMembership( <G> )
##
##  <#GAPDoc Label="CanEasilyTestMembership">
##  <ManSection>
##  <Filt Name="CanEasilyTestMembership" Arg='G'/>
##
##  <Description>
##  This filter indicates whether &GAP; can test membership of elements in
##  the group <A>G</A>
##  (via the operation <Ref Oper="\in" Label="for a collection"/>)
##  in reasonable time.
##  It is used by the method selection to decide whether an algorithm
##  that relies on membership tests may be used.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareFilter( "CanEasilyTestMembership" );


#############################################################################
##
#F  CanEasilyComputeWithIndependentGensAbelianGroup( <G> )
##
##  <#GAPDoc Label="CanEasilyComputeWithIndependentGensAbelianGroup">
##  <ManSection>
##  <Filt Name="CanEasilyComputeWithIndependentGensAbelianGroup" Arg='G'/>
##
##  <Description>
##  This filter indicates whether &GAP; can in reasonable time compute
##  independent abelian generators of the group <A>G</A>
##  (via <Ref Attr="IndependentGeneratorsOfAbelianGroup"/>) and
##  then can decompose arbitrary group elements with respect to these
##  generators using <Ref Oper="IndependentGeneratorExponents"/>.
##
##  It is used by the method selection to decide whether an algorithm
##  that relies on these two operations may be used.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareFilter( "CanEasilyComputeWithIndependentGensAbelianGroup" );


#############################################################################
##
#F  CanComputeSizeAnySubgroup( <G> )
##
##  <#GAPDoc Label="CanComputeSizeAnySubgroup">
##  <ManSection>
##  <Filt Name="CanComputeSizeAnySubgroup" Arg='G'/>
##
##  <Description>
##  This filter indicates whether &GAP; can easily compute the size of any
##  subgroup of the group <A>G</A>.
##  (This is for example advantageous if one can test that a stabilizer index
##  equals the length of the orbit computed so far to stop early.)
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareFilter( "CanComputeSizeAnySubgroup" );

InstallTrueMethod(CanEasilyTestMembership,
  IsFinite and CanComputeSizeAnySubgroup);
InstallTrueMethod(CanComputeSize,CanComputeSizeAnySubgroup);

InstallTrueMethod( CanComputeSize, IsTrivial );

# these implications can create problems with some fp groups. Therefore we
# are a bit less eager
#InstallTrueMethod( CanComputeSizeAnySubgroup, IsTrivial );
#InstallTrueMethod( CanEasilyTestMembership, IsTrivial );


#############################################################################
##
#F  CanComputeIndex( <G>, <H> )
##
##  <#GAPDoc Label="CanComputeIndex">
##  <ManSection>
##  <Oper Name="CanComputeIndex" Arg='G, H'/>
##
##  <Description>
##  This function indicates whether the index <M>[<A>G</A>:<A>H</A>]</M>
##  (which might be <Ref Var="infinity"/>) can be computed.
##  It assumes that <M><A>H</A> \leq <A>G</A></M>
##  (see <Ref Oper="CanComputeIsSubset"/>).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "CanComputeIndex", [IsGroup,IsGroup] );


#############################################################################
##
#P  KnowsHowToDecompose( <G>[, <gens>] )
##
##  <#GAPDoc Label="KnowsHowToDecompose">
##  <ManSection>
##  <Prop Name="KnowsHowToDecompose" Arg='G[, gens]'/>
##
##  <Description>
##  Tests whether the group <A>G</A> can decompose elements in the generators
##  <A>gens</A>.
##  If <A>gens</A> is not given it tests, whether it can decompose in the
##  generators given in the <Ref Attr="GeneratorsOfGroup"/> value of
##  <A>G</A>.
##  <P/>
##  This property can be used for example to check whether a
##  group homomorphism by images
##  (see <Ref Func="GroupHomomorphismByImages"/>) can be reasonably defined
##  from this group.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "KnowsHowToDecompose", IsGroup );
DeclareOperation( "KnowsHowToDecompose", [ IsGroup, IsList ] );


#############################################################################
##
#P  IsPGroup( <G> ) . . . . . . . . . . . . . . . . .  is a group a p-group ?
##
##  <#GAPDoc Label="IsPGroup">
##  <ManSection>
##  <Prop Name="IsPGroup" Arg='G'/>
##
##  <Description>
##  <Index Key="p-group"><M>p</M>-group</Index>
##  A <E><M>p</M>-group</E> is a group in which the order
##  (see&nbsp;<Ref Attr="Order"/>) of every element is of the form <M>p^n</M>
##  for a prime integer <M>p</M> and a nonnegative integer <M>n</M>.
##  <Ref Prop="IsPGroup"/> returns <K>true</K> if <A>G</A> is a
##  <M>p</M>-group, and <K>false</K> otherwise.
##  <P/>
##  Finite <M>p</M>-groups are precisely those groups whose order
##  (see&nbsp;<Ref Attr="Size"/>) is <M>1</M> or a prime power
##  (see&nbsp;<Ref Func="IsPrimePowerInt"/>,
##  and are always nilpotent.
##  <P/>
##  Note that <M>p</M>-groups can also be infinite, and in that case,
##  need not be nilpotent.
##  <P/>
##  <Example><![CDATA[
##  gap> IsPGroup( DihedralGroup( 8 ) );
##  true
##  gap> IsPGroup( TrivialGroup() );
##  true
##  gap> IsPGroup( DihedralGroup( 10 ) );
##  false
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsPGroup", IsGroup );
InstallTrueMethod( IsGroup, IsPGroup );

InstallSubsetMaintenance( IsPGroup, IsPGroup, IsGroup );
InstallFactorMaintenance( IsPGroup, IsPGroup, IsObject, IsGroup );

InstallTrueMethod( IsPGroup, IsGroup and IsTrivial );
InstallTrueMethod( IsPGroup, IsGroup and IsElementaryAbelian );

#############################################################################
##
#P  IsPowerfulPGroup( <G> ) . . . . . . . . . is a group a powerful p-group ?
##
##  <#GAPDoc Label="IsPowerfulPGroup">
##  <ManSection>
##  <Prop Name="IsPowerfulPGroup" Arg='G'/>
##
##  <Description>
##  <Index Key="PowerfulPGroup">Powerful <M>p</M>-group</Index>
##  A finite <M>p</M>-group <A>G</A> is said to be a <E>powerful <M>p</M>-group</E>
##  if the commutator subgroup <M>[<A>G</A>,<A>G</A>]</M> is contained in
##  <M><A>G</A>^{p}</M> if the prime <M>p</M> is odd, or if
##  <M>[<A>G</A>,<A>G</A>]</M> is contained in <M><A>G</A>^{4}</M>
##  if <M>p = 2</M>. The subgroup <M><A>G</A>^{p}</M> is called the first
##  Agemo subgroup, (see&nbsp;<Ref Func="Agemo"/>).
##  <Ref Prop="IsPowerfulPGroup"/> returns <K>true</K> if <A>G</A> is a
##  powerful <M>p</M>-group, and <K>false</K> otherwise.
##  <E>Note: </E>This function returns <K>true</K> if <A>G</A> is the trivial
##  group.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsPowerfulPGroup", IsGroup );
InstallTrueMethod( IsPGroup, IsPowerfulPGroup );

#Quotients of powerful p-groups are powerful
InstallFactorMaintenance( IsPowerfulPGroup,
    IsPowerfulPGroup, IsGroup, IsGroup );
#abelian p-groups are powerful
InstallTrueMethod( IsPowerfulPGroup, IsFinite and IsPGroup and IsAbelian );

#############################################################################
##
#P  IsRegularPGroup( <G> ) . . . . . . . . . . is a group a regular p-group ?
##
##  <#GAPDoc Label="IsRegularPGroup">
##  <ManSection>
##  <Prop Name="IsRegularPGroup" Arg='G'/>
##
##  <Description>
##  <Index Key="RegularPGroup">Regular <M>p</M>-group</Index>
##  A finite <M>p</M>-group <A>G</A> is a <E>regular <M>p</M>-group</E>
##  if for all <M>a,b</M> in <A>G</A>, one has <M>a^p b^p = (a b)^p c^p</M>
##  where <M>c</M> is an element of the derived subgroup of the group generated
##  by <M>a</M> and <M>b</M> (see&nbsp;<Cite Key="Hal34"/>).
##  <Ref Prop="IsRegularPGroup"/> returns <K>true</K> if <A>G</A> is a
##  regular <M>p</M>-group, and <K>false</K> otherwise.
##  <E>Note: </E>This function returns <K>true</K> if <A>G</A> is the trivial
##  group.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsRegularPGroup", IsGroup );
InstallTrueMethod( IsPGroup, IsRegularPGroup );

InstallSubsetMaintenance( IsRegularPGroup, IsRegularPGroup, IsGroup );
InstallFactorMaintenance( IsPGroup, IsRegularPGroup, IsObject, IsGroup );

#abelian p-groups are regular
InstallTrueMethod( IsRegularPGroup, IsFinite and IsPGroup and IsAbelian );

#############################################################################
##
#A  PrimePGroup( <G> )
##
##  <#GAPDoc Label="PrimePGroup">
##  <ManSection>
##  <Attr Name="PrimePGroup" Arg='G'/>
##
##  <Description>
##  If <A>G</A> is a nontrivial <M>p</M>-group
##  (see&nbsp;<Ref Prop="IsPGroup"/>), <Ref Attr="PrimePGroup"/> returns
##  the prime integer <M>p</M>;
##  if <A>G</A> is trivial then <Ref Attr="PrimePGroup"/> returns
##  <K>fail</K>.
##  Otherwise an error is issued.
##  <P/>
##  (One should avoid a common error of writing
##  <C>if IsPGroup(g) then ... PrimePGroup(g) ...</C> where the code
##  represented by dots assumes that <C>PrimePGroup(g)</C> is an integer.)
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "PrimePGroup", IsPGroup );


#############################################################################
##
#A  PClassPGroup( <G> )
##
##  <#GAPDoc Label="PClassPGroup">
##  <ManSection>
##  <Attr Name="PClassPGroup" Arg='G'/>
##
##  <Description>
##  The <M>p</M>-class of a <M>p</M>-group <A>G</A>
##  (see&nbsp;<Ref Prop="IsPGroup"/>)
##  is the length of the lower <M>p</M>-central series
##  (see&nbsp;<Ref Oper="PCentralSeries"/>) of <A>G</A>.
##  If <A>G</A> is not a <M>p</M>-group then an error is issued.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "PClassPGroup", IsPGroup );


#############################################################################
##
#A  RankPGroup( <G> )
##
##  <#GAPDoc Label="RankPGroup">
##  <ManSection>
##  <Attr Name="RankPGroup" Arg='G'/>
##
##  <Description>
##  For a <M>p</M>-group <A>G</A> (see&nbsp;<Ref Prop="IsPGroup"/>),
##  <Ref Attr="RankPGroup"/> returns the <E>rank</E> of <A>G</A>,
##  which is defined as the minimal size of a generating system of <A>G</A>.
##  If <A>G</A> is not a <M>p</M>-group then an error is issued.
##  <Example><![CDATA[
##  gap> h:=Group((1,2,3,4),(1,3));;
##  gap> PClassPGroup(h);
##  2
##  gap> RankPGroup(h);
##  2
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "RankPGroup", IsPGroup );


#############################################################################
##
#P  IsNilpotentGroup( <G> )
##
##  <#GAPDoc Label="IsNilpotentGroup">
##  <ManSection>
##  <Prop Name="IsNilpotentGroup" Arg='G'/>
##
##  <Description>
##  A group is <E>nilpotent</E> if the lower central series
##  (see&nbsp;<Ref Attr="LowerCentralSeriesOfGroup"/> for a definition)
##  reaches the trivial subgroup in a finite number of steps.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsNilpotentGroup", IsGroup );
InstallTrueMethod( IsGroup, IsNilpotentGroup );

InstallSubsetMaintenance( IsNilpotentGroup,
    IsGroup and IsNilpotentGroup, IsGroup );

InstallFactorMaintenance( IsNilpotentGroup,
    IsGroup and IsNilpotentGroup, IsObject, IsGroup );

InstallTrueMethod( IsNilpotentGroup, IsGroup and IsCommutative );

InstallTrueMethod( IsNilpotentGroup, IsGroup and IsPGroup and IsFinite );

#############################################################################
##
#P  IsPerfectGroup( <G> )
##
##  <#GAPDoc Label="IsPerfectGroup">
##  <ManSection>
##  <Prop Name="IsPerfectGroup" Arg='G'/>
##
##  <Description>
##  A group is <E>perfect</E> if it equals its derived subgroup
##  (see&nbsp;<Ref Attr="DerivedSubgroup"/>).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsPerfectGroup", IsGroup );
InstallTrueMethod( IsGroup, IsPerfectGroup );

InstallIsomorphismMaintenance( IsPerfectGroup, IsGroup, IsGroup );

InstallFactorMaintenance( IsPerfectGroup,
    IsGroup and IsPerfectGroup, IsObject, IsGroup );

InstallTrueMethod( IsPerfectGroup, IsGroup and IsTrivial );

#############################################################################
##
#P  IsSimpleGroup( <G> )
#P  IsNonabelianSimpleGroup( <G> )
##
##  <#GAPDoc Label="IsSimpleGroup">
##  <ManSection>
##  <Prop Name="IsSimpleGroup" Arg='G'/>
##  <Prop Name="IsNonabelianSimpleGroup" Arg='G'/>
##
##  <Description>
##  A group is <E>simple</E> if it is nontrivial and has no nontrivial normal
##  subgroups. A <E>nonabelian simple</E> group is simple and not abelian.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsSimpleGroup", IsGroup );
InstallTrueMethod( IsGroup and IsNonTrivial, IsSimpleGroup );

DeclareSynonymAttr( "IsNonabelianSimpleGroup", IsSimpleGroup and IsPerfectGroup );
# ... implies not abelian, not nilpotent (also not solvable, but
# HasIsSolvableGroup only gets defined later)
InstallTrueMethod( HasIsAbelian, IsNonabelianSimpleGroup );
InstallTrueMethod( HasIsNilpotentGroup, IsNonabelianSimpleGroup );
#InstallTrueMethod( HasIsSolvableGroup, IsNonabelianSimpleGroup );

InstallIsomorphismMaintenance( IsSimpleGroup, IsGroup, IsGroup );

# abelian simple groups are cyclic p-groups and not perfect
InstallTrueMethod( IsCyclic, IsSimpleGroup and IsAbelian );
InstallTrueMethod( IsPGroup, IsSimpleGroup and IsAbelian );
InstallTrueMethod( HasIsPerfectGroup, IsSimpleGroup and IsAbelian );
InstallTrueMethod( HasIsNonabelianSimpleGroup, IsSimpleGroup and IsAbelian );

#############################################################################
##
#P  IsSporadicSimpleGroup( <G> )
##
##  <ManSection>
##  <Prop Name="IsSporadicSimpleGroup" Arg='G'/>
##
##  <Description>
##  A group is <E>sporadic simple</E> if it is one of the
##  <M>26</M> sporadic simple groups;
##  these are (in &ATLAS; notation, see&nbsp;<Cite Key="CCN85"/>)
##  <M>M_{11}</M>, <M>M_{12}</M>, <M>J_1</M>, <M>M_{22}</M>, <M>J_2</M>,
##  <M>M_{23}</M>, <M>HS</M>, <M>J_3</M>, <M>M_{24}</M>, <M>M^cL</M>,
##  <M>He</M>, <M>Ru</M>, <M>Suz</M>, <M>O'N</M>, <M>Co_3</M>, <M>Co_2</M>,
##  <M>Fi_{22}</M>, <M>HN</M>, <M>Ly</M>, <M>Th</M>, <M>Fi_{23}</M>,
##  <M>Co_1</M>, <M>J_4</M>, <M>Fi_{24}'</M>, <M>B</M>, and <M>M</M>.
##  <P/>
##  This property can be used for example for selecting the character tables
##  of the sporadic simple groups,
##  see the documentation of the &GAP; package <Package>CTblLib</Package>.
##  </Description>
##  </ManSection>
##
DeclareProperty( "IsSporadicSimpleGroup", IsGroup );
InstallTrueMethod( IsNonabelianSimpleGroup, IsSporadicSimpleGroup );

InstallIsomorphismMaintenance( IsSporadicSimpleGroup, IsGroup, IsGroup );

#############################################################################
##
#P  IsAlmostSimpleGroup( <G> )
##
##  <#GAPDoc Label="IsAlmostSimpleGroup">
##  <ManSection>
##  <Prop Name="IsAlmostSimpleGroup" Arg='G'/>
##
##  <Description>
##  A group <A>G</A> is <E>almost simple</E> if a nonabelian simple group
##  <M>S</M> exists such that <A>G</A> is isomorphic to a subgroup of the
##  automorphism group of <M>S</M> that contains all inner automorphisms of
##  <M>S</M>.
##  <P/>
##  Equivalently, <A>G</A> is almost simple if and only if it has a unique
##  minimal normal subgroup <M>N</M> and if <M>N</M> is a nonabelian simple
##  group.
##  <P/>
##  <!--
##  (Note that the centralizer of <M>N</M> in <A>G</A> is trivial because
##  it is a normal subgroup of <A>G</A> that intersects <M>N</M>
##  trivially,
##  so if it would be nontrivial then it would contain another minimal normal
##  subgroup of <A>G</A>.
##  Hence the conjugation action of <A>G</A> on <M>N</M> defines an embedding
##  of <A>G</A> into the automorphism group of <M>N</M>,
##  and this embedding maps <M>N</M> to the group of inner automorphisms of
##  <M>N</M>.)
##  <P/>
##  -->
##  Note that an almost simple group is <E>not</E> defined as an extension of
##  a simple group by outer automorphisms,
##  since we want to exclude extensions of groups of prime order.
##  In particular, a <E>simple</E> group is <E>almost simple</E> if and only
##  if it is nonabelian.
##  <P/>
##  <Example><![CDATA[
##  gap> IsAlmostSimpleGroup( AlternatingGroup( 5 ) );
##  true
##  gap> IsAlmostSimpleGroup( SymmetricGroup( 5 ) );
##  true
##  gap> IsAlmostSimpleGroup( SymmetricGroup( 3 ) );
##  false
##  gap> IsAlmostSimpleGroup( SL( 2, 5 ) );
##  false
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsAlmostSimpleGroup", IsGroup );
InstallTrueMethod( IsGroup and IsNonTrivial, IsAlmostSimpleGroup );

# nonabelian simple groups are almost simple
InstallTrueMethod( IsAlmostSimpleGroup, IsNonabelianSimpleGroup );

#############################################################################
##
#P  IsQuasisimpleGroup( <G> )
##
##  <#GAPDoc Label="IsQuasisimpleGroup">
##  <ManSection>
##  <Prop Name="IsQuasisimpleGroup" Arg='G'/>
##
##  <Description>
##  A group <A>G</A> is <E>quasisimple</E> if <A>G</A> is perfect
##  (see <Ref Prop="IsPerfectGroup"/>)
##  and if <A>G</A><M>/Z(</M><A>G</A><M>)</M> is simple
##  (see <Ref Prop="IsSimpleGroup"/>), where <M>Z(</M><A>G</A><M>)</M>
##  is the centre of <A>G</A> (see <Ref Attr="Centre"/>).
##  <P/>
##  <Example><![CDATA[
##  gap> IsQuasisimpleGroup( AlternatingGroup( 5 ) );
##  true
##  gap> IsQuasisimpleGroup( SymmetricGroup( 5 ) );
##  false
##  gap> IsQuasisimpleGroup( SL( 2, 5 ) );
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsQuasisimpleGroup", IsGroup );
InstallTrueMethod( IsGroup and IsNonTrivial, IsQuasisimpleGroup );

# Nonabelian simple groups are quasisimple, quasisimple groups are perfect.
InstallTrueMethod( IsQuasisimpleGroup, IsNonabelianSimpleGroup );
InstallTrueMethod( IsPerfectGroup, IsQuasisimpleGroup );

# We can expect that people will try the name with capital s.
DeclareSynonymAttr( "IsQuasiSimpleGroup", IsQuasisimpleGroup );

#############################################################################
##
#P  IsSupersolvableGroup( <G> )
##
##  <#GAPDoc Label="IsSupersolvableGroup">
##  <ManSection>
##  <Prop Name="IsSupersolvableGroup" Arg='G'/>
##
##  <Description>
##  A finite group is <E>supersolvable</E> if it has a normal series
##  with cyclic factors.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsSupersolvableGroup", IsGroup );
InstallTrueMethod( IsGroup, IsSupersolvableGroup );

InstallSubsetMaintenance( IsSupersolvableGroup,
    IsGroup and IsSupersolvableGroup, IsGroup );

InstallFactorMaintenance( IsSupersolvableGroup,
    IsGroup and IsSupersolvableGroup, IsObject, IsGroup );

InstallTrueMethod( IsSupersolvableGroup, IsNilpotentGroup );


#############################################################################
##
#P  IsMonomialGroup( <G> )
##
##  <#GAPDoc Label="IsMonomialGroup">
##  <ManSection>
##  <Prop Name="IsMonomialGroup" Arg='G'/>
##
##  <Description>
##  A finite group is <E>monomial</E> if every irreducible complex character is
##  induced from a linear character of a subgroup.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsMonomialGroup", IsGroup );
InstallTrueMethod( IsGroup, IsMonomialGroup );

InstallFactorMaintenance( IsMonomialGroup,
    IsGroup and IsMonomialGroup, IsObject, IsGroup );

InstallTrueMethod( IsMonomialGroup, IsSupersolvableGroup and IsFinite );


#############################################################################
##
#P  IsSolvableGroup( <G> )
##
##  <#GAPDoc Label="IsSolvableGroup">
##  <ManSection>
##  <Prop Name="IsSolvableGroup" Arg='G'/>
##
##  <Description>
##  A group is <E>solvable</E> if the derived series
##  (see&nbsp;<Ref Attr="DerivedSeriesOfGroup"/> for a definition)
##  reaches the trivial subgroup in a finite number of steps.
##  <P/>
##  For finite groups this is the same as being polycyclic
##  (see&nbsp;<Ref Prop="IsPolycyclicGroup"/>),
##  and each polycyclic group is solvable,
##  but there are infinite solvable groups that are not polycyclic.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsSolvableGroup", IsGroup );
InstallTrueMethod( IsGroup, IsSolvableGroup );

InstallSubsetMaintenance( IsSolvableGroup,
    IsGroup and IsSolvableGroup, IsGroup );

InstallFactorMaintenance( IsSolvableGroup,
    IsGroup and IsSolvableGroup, IsObject, IsGroup );

##  For finite groups, supersolvability implies monomiality, and this implies
##  solvability.
##  But monomiality is defined only for finite groups, for the general case
##  we need the direct implication from supersolvability to solvability.
InstallTrueMethod( IsSolvableGroup, IsMonomialGroup );
InstallTrueMethod( IsSolvableGroup, IsSupersolvableGroup );

# nontrivial solvable groups are not perfect
InstallTrueMethod( HasIsPerfectGroup, IsGroup and IsSolvableGroup and IsNonTrivial );

# nonabelian simple groups are not solvable
InstallTrueMethod( HasIsSolvableGroup, IsNonabelianSimpleGroup );


#############################################################################
##
#P  IsPolycyclicGroup( <G> )
##
##  <#GAPDoc Label="IsPolycyclicGroup">
##  <ManSection>
##  <Prop Name="IsPolycyclicGroup" Arg='G'/>
##
##  <Description>
##  A group is polycyclic if it has a subnormal series with cyclic factors.
##  For finite groups this is the same as if the group is solvable
##  (see&nbsp;<Ref Prop="IsSolvableGroup"/>).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsPolycyclicGroup", IsGroup );
InstallTrueMethod( IsGroup, IsPolycyclicGroup );
InstallTrueMethod( IsSolvableGroup, IsPolycyclicGroup );
InstallTrueMethod( IsPolycyclicGroup, IsSolvableGroup and IsFinite );
InstallTrueMethod( IsPolycyclicGroup,
                     IsNilpotentGroup and IsFinitelyGeneratedGroup );

#############################################################################
##
#A  AbelianInvariants( <G> )
##
##  <#GAPDoc Label="AbelianInvariants:grp">
##  <ManSection>
##  <Attr Name="AbelianInvariants" Arg='G'/>
##
##  <Description>
##  <Index Subkey="for groups" Key="AbelianInvariants">
##  <C>AbelianInvariants</C></Index>
##  returns the abelian invariants (also sometimes called primary
##  decomposition) of the commutator factor group of the
##  group <A>G</A>. These are given as a list of prime-powers or zeroes and
##  describe the structure of <M><A>G</A>/<A>G</A>'</M> as a direct product
##  of cyclic groups of prime power (or infinite) order.
##  <P/>
##  (See <Ref Attr="IndependentGeneratorsOfAbelianGroup"/> to obtain actual
##  generators).
##  <Example><![CDATA[
##  gap> g:=Group((1,2,3,4),(1,2),(5,6));;
##  gap> AbelianInvariants(g);
##  [ 2, 2 ]
##  gap> h:=FreeGroup(2);;h:=h/[h.1^3];;
##  gap> AbelianInvariants(h);
##  [ 0, 3 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "AbelianInvariants", IsGroup );

# minimal number of generators for abelianization. Used internally to check
# whether it is worth to attempt to reduce generator number
DeclareAttribute( "AbelianRank", IsGroup );

#############################################################################
##
#A  IsInfiniteAbelianizationGroup( <G> )
##
##  <#GAPDoc Label="IsInfiniteAbelianizationGroup:grp">
##  <ManSection>
##  <Prop Name="IsInfiniteAbelianizationGroup" Arg='G'/>
##
##  <Description>
##  <Index Subkey="for groups" Key="IsInfiniteAbelianizationGroup">
##  <C>IsInfiniteAbelianizationGroup</C></Index>
##  returns true if the commutator factor group <M><A>G</A>/<A>G</A>'</M> is
##  infinite. This might be done without computing the full structure of the
##  commutator factor group.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsInfiniteAbelianizationGroup", IsGroup );

# finite groups never have infinite abelianization
InstallTrueMethod( HasIsInfiniteAbelianizationGroup, IsGroup and IsFinite );

#InstallTrueMethod( IsInfiniteAbelianizationGroup, IsSolvableGroup and IsTorsionFree );


#############################################################################
##
#A  AsGroup( <D> )  . . . . . . . . . . . . . collection <D>, viewed as group
##
##  <#GAPDoc Label="AsGroup">
##  <ManSection>
##  <Attr Name="AsGroup" Arg='D'/>
##
##  <Description>
##  if the elements of the collection <A>D</A> form a group the command returns
##  this group, otherwise it returns <K>fail</K>.
##  <Example><![CDATA[
##  gap> AsGroup([(1,2)]);
##  fail
##  gap> AsGroup([(),(1,2)]);
##  Group([ (1,2) ])
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "AsGroup", IsCollection );


#############################################################################
##
#A  ChiefSeries( <G> )
##
##  <#GAPDoc Label="ChiefSeries">
##  <ManSection>
##  <Attr Name="ChiefSeries" Arg='G'/>
##
##  <Description>
##  is a series of normal subgroups of <A>G</A> which cannot be refined
##  further.
##  That is there is no normal subgroup <M>N</M> of <A>G</A> with
##  <M>U_i > N > U_{{i+1}}</M>.
##  This attribute returns <E>one</E> chief series (of potentially many
##  possibilities).
##  <Example><![CDATA[
##  gap> g:=Group((1,2,3,4),(1,2));;
##  gap> ChiefSeries(g);
##  [ Group([ (1,2,3,4), (1,2) ]),
##    Group([ (2,4,3), (1,4)(2,3), (1,3)(2,4) ]),
##    Group([ (1,4)(2,3), (1,3)(2,4) ]), Group(()) ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "ChiefSeries", IsGroup );


#############################################################################
##
#O  ChiefSeriesUnderAction( <H>, <G> )
##
##  <#GAPDoc Label="ChiefSeriesUnderAction">
##  <ManSection>
##  <Oper Name="ChiefSeriesUnderAction" Arg='H, G'/>
##
##  <Description>
##  returns a series of normal subgroups of <A>G</A> which are invariant under
##  <A>H</A> such that the series cannot be refined any further.
##  <A>G</A> must be a subgroup of <A>H</A>.
##  This attribute returns <E>one</E> such series (of potentially many
##  possibilities).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "ChiefSeriesUnderAction", [ IsGroup, IsGroup ] );


#############################################################################
##
#O  ChiefSeriesThrough( <G>, <l> )
##
##  <#GAPDoc Label="ChiefSeriesThrough">
##  <ManSection>
##  <Oper Name="ChiefSeriesThrough" Arg='G, l'/>
##
##  <Description>
##  is a chief series of the group <A>G</A> going through
##  the normal subgroups in the list <A>l</A>, which must be a list of normal
##  subgroups of <A>G</A> contained in each other, sorted by descending size.
##  This attribute returns <E>one</E>
##  chief series (of potentially many possibilities).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "ChiefSeriesThrough", [ IsGroup, IsList ] );

#############################################################################
##
#F  RefinedSubnormalSeries( <ser>, <n> )
##
##  <#GAPDoc Label="RefinedSubnormalSeries">
##  <ManSection>
##  <Oper Name="RefinedSubnormalSeries" Arg='ser,n'/>
##
##  <Description>
##  If <A>ser</A> is a subnormal series of a group <A>G</A>, and <A>n</A> is a
##  normal subgroup, this function returns the series obtained by refining with
##  <A>n</A>, that is closures and intersections are inserted at the appropriate
##  place.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "RefinedSubnormalSeries" );


#############################################################################
##
#A  CommutatorFactorGroup( <G> )
##
##  <#GAPDoc Label="CommutatorFactorGroup">
##  <ManSection>
##  <Attr Name="CommutatorFactorGroup" Arg='G'/>
##
##  <Description>
##  computes the commutator factor group <M><A>G</A>/<A>G</A>'</M> of the group <A>G</A>.
##  <Example><![CDATA[
##  gap> CommutatorFactorGroup(g);
##  Group([ f1 ])
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "CommutatorFactorGroup", IsGroup );


#############################################################################
##
#A  CompositionSeries( <G> )
#A  CompositionSeriesThrough( <G>, <normals> )
##
##  <#GAPDoc Label="CompositionSeries">
##  <ManSection>
##  <Attr Name="CompositionSeries" Arg='G'/>
##  <Oper Name="CompositionSeriesThrough" Arg='G, normals'/>
##
##  <Description>
##  A composition series is a subnormal series which cannot be refined.
##  This attribute returns <E>one</E> composition series (of potentially many
##  possibilities). The variant <Ref Oper="CompositionSeriesThrough"/> takes
##  as second argument a list <A>normals</A> of normal subgroups of the
##  group, and returns a composition series that incorporates these normal
##  subgroups.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "CompositionSeries", IsGroup );
DeclareOperation( "CompositionSeriesThrough", [IsGroup,IsList] );
#T and for module?


#############################################################################
##
#F  DisplayCompositionSeries( <G> )
##
##  <#GAPDoc Label="DisplayCompositionSeries">
##  <ManSection>
##  <Func Name="DisplayCompositionSeries" Arg='G'/>
##
##  <Description>
##  Displays a composition series of <A>G</A> in a nice way, identifying the
##  simple factors.
##  <Example><![CDATA[
##  gap> CompositionSeries(g);
##  [ Group([ (3,4), (2,4,3), (1,4)(2,3), (1,3)(2,4) ]),
##    Group([ (2,4,3), (1,4)(2,3), (1,3)(2,4) ]),
##    Group([ (1,4)(2,3), (1,3)(2,4) ]), Group([ (1,3)(2,4) ]), Group(())
##   ]
##  gap> DisplayCompositionSeries(Group((1,2,3,4,5,6,7),(1,2)));
##  G (2 gens, size 5040)
##   | C2
##  S (5 gens, size 2520)
##   | A7
##  1 (0 gens, size 1)
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "DisplayCompositionSeries" );


#############################################################################
##
#A  ConjugacyClasses( <G> )
##
##  <#GAPDoc Label="ConjugacyClasses:grp">
##  <ManSection>
##  <Attr Name="ConjugacyClasses" Arg='G' Label="attribute"/>
##
##  <Description>
##  returns the conjugacy classes of elements of <A>G</A> as a list of
##  class objects of <A>G</A>
##  (see&nbsp;<Ref Oper="ConjugacyClass"/> for details).
##  It is guaranteed that the class of the
##  identity is in the first position, the further arrangement depends on
##  the method chosen (and might be different for equal but not identical
##  groups).
##  <P/>
##  For very small groups (of size up to 500) the classes will be computed
##  by the conjugation action of <A>G</A> on itself
##  (see&nbsp;<Ref Func="ConjugacyClassesByOrbits"/>).
##  This can be deliberately switched off using the <Q><C>noaction</C></Q>
##  option shown below.
##  <P/>
##  For solvable groups, the default method to compute the classes is by
##  homomorphic lift
##  (see section&nbsp;<Ref Sect="Conjugacy Classes in Solvable Groups"/>).
##  <P/>
##  For other groups the method of <Cite Key="HulpkeClasses"/> is employed.
##  <P/>
##  <Ref Attr="ConjugacyClasses" Label="attribute"/> supports the following
##  options that can be used to modify this strategy:
##  <List>
##  <Mark><C>random</C></Mark>
##  <Item>
##    The classes are computed by random search.
##    See <Ref Func="ConjugacyClassesByRandomSearch"/> below.
##  </Item>
##  <Mark><C>action</C></Mark>
##  <Item>
##    The classes are computed by action of <A>G</A> on itself.
##    See <Ref Func="ConjugacyClassesByOrbits"/> below.
##  </Item>
##  <Mark><C>noaction</C></Mark>
##  <Item>
##    Even for small groups
##    <Ref Func="ConjugacyClassesByOrbits"/>
##    is not used as a default. This can be useful if the elements of the
##    group use a lot of memory.
##  </Item>
##  </List>
##  <Example><![CDATA[
##  gap> g:=SymmetricGroup(4);;
##  gap> cl:=ConjugacyClasses(g);
##  [ ()^G, (1,2)^G, (1,2)(3,4)^G, (1,2,3)^G, (1,2,3,4)^G ]
##  gap> Representative(cl[3]);Centralizer(cl[3]);
##  (1,2)(3,4)
##  Group([ (1,2), (1,3)(2,4), (3,4) ])
##  gap> Size(Centralizer(cl[5]));
##  4
##  gap> Size(cl[2]);
##  6
##  ]]></Example>
##  <P/>
##  In general, you will not need to have to influence the method, but simply
##  call <Ref Attr="ConjugacyClasses" Label="attribute"/>
##  &ndash;&GAP; will try to select a suitable method on its own.
##  The method specifications are provided here mainly for expert use.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "ConjugacyClasses", IsGroup );


#############################################################################
##
#A  ConjugacyClassesMaximalSubgroups( <G> )
##
##  <#GAPDoc Label="ConjugacyClassesMaximalSubgroups">
##  <ManSection>
##  <Attr Name="ConjugacyClassesMaximalSubgroups" Arg='G'/>
##
##  <Description>
##  returns the conjugacy classes of maximal subgroups of <A>G</A>.
##  Representatives of the classes can be computed directly by
##  <Ref Attr="MaximalSubgroupClassReps"/>.
##  <Example><![CDATA[
##  gap> ConjugacyClassesMaximalSubgroups(g);
##  [ Group( [ (2,4,3), (1,4)(2,3), (1,3)(2,4) ] )^G,
##    Group( [ (3,4), (1,3)(2,4) ] )^G, Group( [ (3,4), (2,4,3) ] )^G ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "ConjugacyClassesMaximalSubgroups", IsGroup );


#############################################################################
##
#A  MaximalSubgroups( <G> )
##
##  <#GAPDoc Label="MaximalSubgroups">
##  <ManSection>
##  <Attr Name="MaximalSubgroups" Arg='G'/>
##
##  <Description>
##  returns a list of all maximal subgroups of <A>G</A>. This may take up much
##  space, therefore the command should be avoided if possible. See
##  <Ref Attr="ConjugacyClassesMaximalSubgroups"/>.
##  <Example><![CDATA[
##  gap> MaximalSubgroups(Group((1,2,3),(1,2)));
##  [ Group([ (1,2,3) ]), Group([ (2,3) ]), Group([ (1,2) ]),
##    Group([ (1,3) ]) ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "MaximalSubgroups", IsGroup );


#############################################################################
##
#A  MaximalSubgroupClassReps( <G> )
##
##  <#GAPDoc Label="MaximalSubgroupClassReps">
##  <ManSection>
##  <Attr Name="MaximalSubgroupClassReps" Arg='G'/>
##
##  <Description>
##  returns a list of conjugacy representatives of the maximal subgroups
##  of <A>G</A>.
##  <Example><![CDATA[
##  gap> MaximalSubgroupClassReps(g);
##  [ Group([ (2,4,3), (1,4)(2,3), (1,3)(2,4) ]),
##    Group([ (3,4), (1,3)(2,4) ]), Group([ (3,4), (2,4,3) ]) ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("MaximalSubgroupClassReps",IsGroup);

# functions to calculate maximal subgroups (or fail if not possible)
DeclareOperation("CalcMaximalSubgroupClassReps",[IsGroup]);
DeclareGlobalFunction("TryMaximalSubgroupClassReps");
# utility attribute: Allow use with limiting options, so could hold `fail'.
DeclareAttribute("StoredPartialMaxSubs",IsGroup,"mutable");

# utility function in maximal subgroups code
DeclareGlobalFunction("DoMaxesTF");

# make this an operation to allow for overloading and TryNextMethod();
DeclareOperation("MaxesAlmostSimple",[IsGroup]);

#############################################################################
##
#F  MaximalPropertySubgroups( <G>, <prop> )
##
##  <#GAPDoc Label="MaximalPropertySubgroups">
##  <ManSection>
##  <Func Name="MaximalPropertySubgroups" Arg='G,prop'/>
##
##  <Description>
##  For a function <A>prop</A> that tests for a property that persists
##  under taking subgroups, this function returns conjugacy class
##  representatives of the subgroups of <A>G</A> that are maximal subject to
##  this property.
##  <Example><![CDATA[
##  gap> max:=MaximalPropertySubgroups(AlternatingGroup(8),IsNilpotent);;
##  gap> List(max,Size);
##  [ 64, 15, 12, 9, 7, 6 ]
##  gap> max:=MaximalSolvableSubgroups(AlternatingGroup(10));;
##  gap> List(max,Size);
##  [ 1152, 864, 648, 576, 400, 384, 320, 216, 126, 240, 168, 120 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("MaximalPropertySubgroups");
DeclareGlobalFunction("MaximalSolvableSubgroups");


#############################################################################
##
#A  PerfectResiduum( <G> )
##
##  <#GAPDoc Label="PerfectResiduum">
##  <ManSection>
##  <Attr Name="PerfectResiduum" Arg='G'/>
##
##  <Description>
##  is the smallest normal subgroup of <A>G</A> that has a solvable factor group.
##  <Example><![CDATA[
##  gap> PerfectResiduum(SymmetricGroup(5));
##  Alt( [ 1 .. 5 ] )
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "PerfectResiduum", IsGroup );


#############################################################################
##
#A  RepresentativesPerfectSubgroups( <G> )
#A  RepresentativesSimpleSubgroups( <G> )
##
##  <#GAPDoc Label="RepresentativesPerfectSubgroups">
##  <ManSection>
##  <Attr Name="RepresentativesPerfectSubgroups" Arg='G'/>
##  <Attr Name="RepresentativesSimpleSubgroups" Arg='G'/>
##
##  <Description>
##  returns a list of conjugacy representatives of perfect (respectively
##  simple) subgroups of <A>G</A>.
##  This uses the library of perfect groups
##  (see <Ref Func="PerfectGroup" Label="for group order (and index)"/>),
##  thus it will issue an error if the library is insufficient to determine
##  all perfect subgroups.
##  <Example><![CDATA[
##  gap> m11:=TransitiveGroup(11,6);
##  M(11)
##  gap> r:=RepresentativesPerfectSubgroups(m11);;
##  gap> List(r,Size);
##  [ 60, 60, 360, 660, 7920, 1 ]
##  gap> List(r,StructureDescription);
##  [ "A5", "A5", "A6", "PSL(2,11)", "M11", "1" ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "RepresentativesPerfectSubgroups", IsGroup );
DeclareAttribute( "RepresentativesSimpleSubgroups", IsGroup );


#############################################################################
##
#A  ConjugacyClassesPerfectSubgroups( <G> )
##
##  <#GAPDoc Label="ConjugacyClassesPerfectSubgroups">
##  <ManSection>
##  <Attr Name="ConjugacyClassesPerfectSubgroups" Arg='G'/>
##
##  <Description>
##  returns a list of the conjugacy classes of perfect subgroups of <A>G</A>.
##  (see <Ref Attr="RepresentativesPerfectSubgroups"/>.)
##  <Example><![CDATA[
##  gap> r := ConjugacyClassesPerfectSubgroups(m11);;
##  gap> List(r, x -> StructureDescription(Representative(x)));
##  [ "A5", "A5", "A6", "PSL(2,11)", "M11", "1" ]
##  gap> SortedList( List(r,Size) );
##  [ 1, 1, 11, 12, 66, 132 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "ConjugacyClassesPerfectSubgroups", IsGroup );


#############################################################################
##
#A  ConjugacyClassesSubgroups( <G> )
##
##  <#GAPDoc Label="ConjugacyClassesSubgroups">
##  <ManSection>
##  <Attr Name="ConjugacyClassesSubgroups" Arg='G'/>
##
##  <Description>
##  This attribute returns a list of all conjugacy classes of subgroups of
##  the group <A>G</A>.
##  It also is applicable for lattices of subgroups (see&nbsp;<Ref Attr="LatticeSubgroups"/>).
##  The order in which the classes are listed depends on the method chosen by
##  &GAP;.
##  For each class of subgroups, a representative can be accessed using
##  <Ref Attr="Representative"/>.
##  <Example><![CDATA[
##  gap> ConjugacyClassesSubgroups(g);
##  [ Group( () )^G, Group( [ (1,3)(2,4) ] )^G, Group( [ (3,4) ] )^G,
##    Group( [ (2,4,3) ] )^G, Group( [ (1,4)(2,3), (1,3)(2,4) ] )^G,
##    Group( [ (3,4), (1,2)(3,4) ] )^G,
##    Group( [ (1,3,2,4), (1,2)(3,4) ] )^G, Group( [ (3,4), (2,4,3) ] )^G,
##    Group( [ (1,4)(2,3), (1,3)(2,4), (3,4) ] )^G,
##    Group( [ (1,4)(2,3), (1,3)(2,4), (2,4,3) ] )^G,
##    Group( [ (1,4)(2,3), (1,3)(2,4), (2,4,3), (3,4) ] )^G ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "ConjugacyClassesSubgroups", IsGroup );


#############################################################################
##
#A  LatticeSubgroups( <G> )
##
##  <#GAPDoc Label="LatticeSubgroups">
##  <ManSection>
##  <Attr Name="LatticeSubgroups" Arg='G'/>
##
##  <Description>
##  computes the lattice of subgroups of the group <A>G</A>.  This lattice has
##  the conjugacy classes of subgroups as attribute
##  <Ref Attr="ConjugacyClassesSubgroups"/> and
##  permits one to test maximality/minimality relations.
##  <Example><![CDATA[
##  gap> g:=SymmetricGroup(4);;
##  gap> l:=LatticeSubgroups(g);
##  <subgroup lattice of Sym( [ 1 .. 4 ] ), 11 classes, 30 subgroups>
##  gap> ConjugacyClassesSubgroups(l);
##  [ Group( () )^G, Group( [ (1,3)(2,4) ] )^G, Group( [ (3,4) ] )^G,
##    Group( [ (2,4,3) ] )^G, Group( [ (1,4)(2,3), (1,3)(2,4) ] )^G,
##    Group( [ (3,4), (1,2)(3,4) ] )^G,
##    Group( [ (1,3,2,4), (1,2)(3,4) ] )^G, Group( [ (3,4), (2,4,3) ] )^G,
##    Group( [ (1,4)(2,3), (1,3)(2,4), (3,4) ] )^G,
##    Group( [ (1,4)(2,3), (1,3)(2,4), (2,4,3) ] )^G,
##    Group( [ (1,4)(2,3), (1,3)(2,4), (2,4,3), (3,4) ] )^G ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "LatticeSubgroups", IsGroup );


#############################################################################
##
#A  DerivedLength( <G> )
##
##  <#GAPDoc Label="DerivedLength">
##  <ManSection>
##  <Attr Name="DerivedLength" Arg='G'/>
##
##  <Description>
##  The derived length of a group is the number of steps in the derived
##  series. (As there is always the group, it is the series length minus 1.)
##  <Example><![CDATA[
##  gap> List(DerivedSeriesOfGroup(g),Size);
##  [ 24, 12, 4, 1 ]
##  gap> DerivedLength(g);
##  3
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "DerivedLength", IsGroup );

#############################################################################
##
#A  HirschLength( <G> )
##
##  <ManSection>
##  <Attr Name="HirschLength" Arg='G'/>
##
##  <Description>
##  Suppose that <A>G</A> is polycyclic-by-finite; that is, there exists a
##  polycyclic normal subgroup N in <A>G</A> with [G : N] finite. Then the Hirsch
##  length of <A>G</A> is the number of infinite cyclic factors in a polycyclic
##  series of N. This is an invariant of <A>G</A>.
##  </Description>
##  </ManSection>
##
DeclareAttribute( "HirschLength", IsGroup );
InstallIsomorphismMaintenance( HirschLength, IsGroup, IsGroup );


#############################################################################
##
#A  DerivedSeriesOfGroup( <G> )
##
##  <#GAPDoc Label="DerivedSeriesOfGroup">
##  <ManSection>
##  <Attr Name="DerivedSeriesOfGroup" Arg='G'/>
##
##  <Description>
##  The derived series of a group is obtained by <M>U_{{i+1}} = U_i'</M>.
##  It stops if <M>U_i</M> is perfect.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "DerivedSeriesOfGroup", IsGroup );


#############################################################################
##
#A  DerivedSubgroup( <G> )
##
##  <#GAPDoc Label="DerivedSubgroup">
##  <ManSection>
##  <Attr Name="DerivedSubgroup" Arg='G'/>
##
##  <Description>
##  The derived subgroup <M><A>G</A>'</M> of <A>G</A> is the subgroup
##  generated by all commutators of pairs of elements of <A>G</A>.
##  It is normal in <A>G</A> and the factor group <M><A>G</A>/<A>G</A>'</M>
##  is the largest abelian factor group of <A>G</A>.
##  <Example><![CDATA[
##  gap> g:=Group((1,2,3,4),(1,2));;
##  gap> DerivedSubgroup(g) = Group([ (1,3,2), (2,4,3) ]);
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "DerivedSubgroup", IsGroup );


#############################################################################
##
#A  MaximalAbelianQuotient( <G> )  . . . . Max abelian quotient
##
##  <#GAPDoc Label="MaximalAbelianQuotient">
##  <ManSection>
##  <Attr Name="MaximalAbelianQuotient" Arg='G'/>
##
##  <Description>
##  returns an epimorphism from <A>G</A> onto the maximal abelian quotient of
##  <A>G</A>.
##  The kernel of this epimorphism is the derived subgroup of <A>G</A>,
##  see <Ref Attr="DerivedSubgroup"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "MaximalAbelianQuotient",IsGroup);


#############################################################################
##
#A  CommutatorLength( <G> )
##
##  <#GAPDoc Label="CommutatorLength">
##  <ManSection>
##  <Attr Name="CommutatorLength" Arg='G'/>
##
##  <Description>
##  returns the minimal number <M>n</M> such that each element
##  in the derived subgroup (see&nbsp;<Ref Attr="DerivedSubgroup"/>) of the
##  group <A>G</A> can be written as a product of (at most) <M>n</M>
##  commutators of elements in <A>G</A>.
##  <Example><![CDATA[
##  gap> CommutatorLength( g );
##  1
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "CommutatorLength", IsGroup );


#############################################################################
##
#A  DimensionsLoewyFactors( <G> )
##
##  <#GAPDoc Label="DimensionsLoewyFactors">
##  <ManSection>
##  <Attr Name="DimensionsLoewyFactors" Arg='G'/>
##
##  <Description>
##  This operation computes the dimensions of the factors of the Loewy
##  series of <A>G</A>.
##  (See <Cite Key="Hup82" Where="p. 157"/> for the slightly complicated
##  definition of the Loewy Series.)
##  <P/>
##  The dimensions are computed via the <Ref Attr="JenningsSeries"/> without computing
##  the Loewy series itself.
##  <Example><![CDATA[
##  gap> G:= SmallGroup( 3^6, 100 );
##  <pc group of size 729 with 6 generators>
##  gap> JenningsSeries( G );
##  [ <pc group of size 729 with 6 generators>, Group([ f3, f4, f5, f6 ]),
##    Group([ f4, f5, f6 ]), Group([ f5, f6 ]), Group([ f5, f6 ]),
##    Group([ f5, f6 ]), Group([ f6 ]), Group([ f6 ]), Group([ f6 ]),
##    Group([ <identity> of ... ]) ]
##  gap> DimensionsLoewyFactors(G);
##  [ 1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26,
##    27, 27, 27, 27, 27, 27, 27, 27, 27, 26, 25, 23, 22, 20, 19, 17, 16,
##    14, 13, 11, 10, 8, 7, 5, 4, 2, 1 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "DimensionsLoewyFactors", IsGroup );


#############################################################################
##
#A  ElementaryAbelianSeries( <G> )
#A  ElementaryAbelianSeriesLargeSteps( <G> )
#A  ElementaryAbelianSeries( [<G>,<NT1>,<NT2>,...] )
##
##  <#GAPDoc Label="ElementaryAbelianSeries">
##  <ManSection>
##  <Heading>ElementaryAbelianSeries</Heading>
##  <Attr Name="ElementaryAbelianSeries" Arg='G' Label="for a group"/>
##  <Attr Name="ElementaryAbelianSeriesLargeSteps" Arg='G'/>
##  <Attr Name="ElementaryAbelianSeries" Arg='list' Label="for a list"/>
##
##  <Description>
##  returns a series of normal subgroups of <M>G</M> such that all factors are
##  elementary abelian. If the group is not solvable (and thus no such series
##  exists) it returns <K>fail</K>.
##  <P/>
##  The variant <Ref Attr="ElementaryAbelianSeriesLargeSteps"/> tries to make
##  the steps in this series large (by eliminating intermediate subgroups if
##  possible) at a small additional cost.
##  <P/>
##  In the third variant, an elementary abelian series through the given
##  series of normal subgroups in the list <A>list</A> is constructed.
##  <Example><![CDATA[
##  gap> List(ElementaryAbelianSeries(g),Size);
##  [ 24, 12, 4, 1 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "ElementaryAbelianSeries", IsGroup );
DeclareAttribute( "ElementaryAbelianSeriesLargeSteps", IsGroup );


#############################################################################
##
#A  Exponent( <G> )
##
##  <#GAPDoc Label="Exponent">
##  <ManSection>
##  <Attr Name="Exponent" Arg='G'/>
##
##  <Description>
##  The exponent <M>e</M> of a group <A>G</A> is the lcm of the orders of its
##  elements, that is, <M>e</M> is the smallest integer such that
##  <M>g^e = 1</M> for all <M>g \in <A>G</A></M>.
##  <Example><![CDATA[
##  gap> Exponent(g);
##  12
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "Exponent", IsGroup );

InstallIsomorphismMaintenance( Exponent, IsGroup, IsGroup );


#############################################################################
##
#A  FittingSubgroup( <G> )
##
##  <#GAPDoc Label="FittingSubgroup">
##  <ManSection>
##  <Attr Name="FittingSubgroup" Arg='G'/>
##
##  <Description>
##  The Fitting subgroup of a group <A>G</A> is its largest nilpotent normal
##  subgroup.
##  <Example><![CDATA[
##  gap> FittingSubgroup(g);
##  Group([ (1,2)(3,4), (1,4)(2,3) ])
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "FittingSubgroup", IsGroup );


#############################################################################
##
#A  PrefrattiniSubgroup( <G> )
##
##  <#GAPDoc Label="PrefrattiniSubgroup">
##  <ManSection>
##  <Attr Name="PrefrattiniSubgroup" Arg='G'/>
##
##  <Description>
##  returns a Prefrattini subgroup of the finite solvable group <A>G</A>.
##  <P/>
##  A factor <M>M/N</M> of <A>G</A> is called a Frattini factor if
##  <M>M/N</M> is contained in the Frattini subgroup of <M><A>G</A>/N</M>.
##  A subgroup <M>P</M> is a Prefrattini subgroup of <A>G</A> if <M>P</M>
##  covers each Frattini chief factor of <A>G</A>, and if for each maximal
##  subgroup of <A>G</A> there exists a conjugate maximal subgroup, which
##  contains <M>P</M>.
##  In a finite solvable group <A>G</A> the Prefrattini subgroups
##  form a characteristic conjugacy class of subgroups and the intersection
##  of all these subgroups is the Frattini subgroup of <A>G</A>.
##  <Example><![CDATA[
##  gap> G := SmallGroup( 60, 7 );
##  <pc group of size 60 with 4 generators>
##  gap> P := PrefrattiniSubgroup(G);
##  Group([ f2 ])
##  gap> Size(P);
##  2
##  gap> IsNilpotent(P);
##  true
##  gap> Core(G,P);
##  Group([  ])
##  gap> FrattiniSubgroup(G);
##  Group([  ])
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "PrefrattiniSubgroup", IsGroup );


#############################################################################
##
#A  FrattiniSubgroup( <G> )
##
##  <#GAPDoc Label="FrattiniSubgroup">
##  <ManSection>
##  <Attr Name="FrattiniSubgroup" Arg='G'/>
##
##  <Description>
##  The Frattini subgroup of a group <A>G</A> is the intersection of all
##  maximal subgroups of <A>G</A>.
##  <Example><![CDATA[
##  gap> FrattiniSubgroup(g);
##  Group(())
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "FrattiniSubgroup", IsGroup );


#############################################################################
##
#A  InvariantForm( <D> )
##
##  <ManSection>
##  <Attr Name="InvariantForm" Arg='D'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareAttribute( "InvariantForm", IsGroup );


#############################################################################
##
#A  JenningsSeries( <G> )
##
##  <#GAPDoc Label="JenningsSeries">
##  <ManSection>
##  <Attr Name="JenningsSeries" Arg='G'/>
##
##  <Description>
##  For a <M>p</M>-group <A>G</A>, this function returns its Jennings series.
##  This series is defined by setting
##  <M>G_1 = <A>G</A></M> and for <M>i \geq 0</M>,
##  <M>G_{{i+1}} = [G_i,<A>G</A>] G_j^p</M>,
##  where <M>j</M> is the smallest integer <M>> i/p</M>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "JenningsSeries", IsGroup );


#############################################################################
##
#A  LowerCentralSeriesOfGroup( <G> )
##
##  <#GAPDoc Label="LowerCentralSeriesOfGroup">
##  <ManSection>
##  <Attr Name="LowerCentralSeriesOfGroup" Arg='G'/>
##
##  <Description>
##  The lower central series of a group <A>G</A> is defined as
##  <M>U_{{i+1}}:= [<A>G</A>, U_i]</M>.
##  It is a central series of normal subgroups.
##  The name derives from the fact that <M>U_i</M> is contained in the
##  <M>i</M>-th step subgroup of any central series.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "LowerCentralSeriesOfGroup", IsGroup );

#############################################################################
##
#A  NilpotencyClassOfGroup( <G> )
##
##  <#GAPDoc Label="NilpotencyClassOfGroup">
##  <ManSection>
##  <Attr Name="NilpotencyClassOfGroup" Arg='G'/>
##
##  <Description>
##  The nilpotency class of a nilpotent group <A>G</A> is the number of steps in
##  the lower central series of <A>G</A> (see <Ref Attr="LowerCentralSeriesOfGroup"/>);
##  <P/>
##  If <A>G</A> is not nilpotent an error is issued.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "NilpotencyClassOfGroup", IsGroup );


#############################################################################
##
#A  MaximalNormalSubgroups( <G> )
##
##  <#GAPDoc Label="MaximalNormalSubgroups">
##  <ManSection>
##  <Attr Name="MaximalNormalSubgroups" Arg='G'/>
##
##  <Description>
##  is a list containing those proper normal subgroups of the group <A>G</A>
##  that are maximal among the proper normal subgroups. Gives error if
##  <A>G</A>/<A>G'</A> is infinite, yielding infinitely many maximal normal
##  subgroups.
##
##  Note, that the maximal normal subgroups of a group <A>G</A> can be
##  computed more efficiently if the character table of <A>G</A> is known or
##  if <A>G</A> is known to be abelian or solvable (even if infinite). So if
##  the character table is needed, anyhow, or <A>G</A> is suspected to be
##  abelian or solvable, then these should be computed before computing the
##  maximal normal subgroups.
##  <Example><![CDATA[
##  gap> g:=SymmetricGroup(4);; MaximalNormalSubgroups( g );
##  [ Alt( [ 1 .. 4 ] ) ]
##  gap> f := FreeGroup("x", "y");; x := f.1;; y := f.2;;
##  gap> List(MaximalNormalSubgroups(f/[x^2, y^2]), GeneratorsOfGroup);
##  [ [ x, y*x*y^-1 ], [ y, x*y*x^-1 ], [ y*x^-1 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "MaximalNormalSubgroups", IsGroup );


#############################################################################
##
#A  NormalMaximalSubgroups( <G> )
##
##  <ManSection>
##  <Attr Name="NormalMaximalSubgroups" Arg='G'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareAttribute( "NormalMaximalSubgroups", IsGroup );


#############################################################################
##
#A  MinimalNormalSubgroups( <G> )
##
##  <#GAPDoc Label="MinimalNormalSubgroups">
##  <ManSection>
##  <Attr Name="MinimalNormalSubgroups" Arg='G'/>
##
##  <Description>
##  is a list containing those nontrivial normal subgroups of the group <A>G</A>
##  that are minimal among the nontrivial normal subgroups.
##  <Example><![CDATA[
##  gap> g:=SymmetricGroup(4);; MinimalNormalSubgroups( g );
##  [ Group([ (1,4)(2,3), (1,3)(2,4) ]) ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "MinimalNormalSubgroups", IsGroup );


#############################################################################
##
#A  NormalSubgroups( <G> )
##
##  <#GAPDoc Label="NormalSubgroups">
##  <ManSection>
##  <Attr Name="NormalSubgroups" Arg='G'/>
##
##  <Description>
##  returns a list of all normal subgroups of <A>G</A>.
##  <Example><![CDATA[
##  gap> g:=SymmetricGroup(4);;
##  gap> List( NormalSubgroups(g), StructureDescription );
##  [ "S4", "A4", "C2 x C2", "1" ]
##  gap> g:=AbelianGroup([2,2]);; NormalSubgroups(g);
##  [ <pc group of size 4 with 2 generators>, Group([ f2 ]),
##    Group([ f1*f2 ]), Group([ f1 ]), Group([  ]) ]
##  ]]></Example>
##  <P/>
##  The algorithm for the computation of normal subgroups is described in
##  <Cite Key="Hulpke98"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "NormalSubgroups", IsGroup );

#############################################################################
##
#A  CharacteristicSubgroups( <G> )
##
##  <#GAPDoc Label="CharacteristicSubgroups">
##  <ManSection>
##  <Attr Name="CharacteristicSubgroups" Arg='G'/>
##
##  <Description>
##  returns a list of all characteristic subgroups of <A>G</A>, that is
##  subgroups that are invariant under all automorphisms.
##  <Example><![CDATA[
##  gap> g:=SymmetricGroup(4);;
##  gap> List( CharacteristicSubgroups(g), StructureDescription );
##  [ "S4", "A4", "C2 x C2", "1" ]
##  gap> g:=AbelianGroup([2,2]);; CharacteristicSubgroups(g);
##  [ <pc group of size 4 with 2 generators>, Group([  ]) ]
##  ]]></Example>
##  <P/>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "CharacteristicSubgroups", IsGroup );


#############################################################################
##
#F  NormalSubgroupsAbove( <G>, <N>, <avoid> )
##
##  <ManSection>
##  <Func Name="NormalSubgroupsAbove" Arg='G, N, avoid'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("NormalSubgroupsAbove");


############################################################################
##
#A  NrConjugacyClasses( <G> )
##
##  <#GAPDoc Label="NrConjugacyClasses">
##  <ManSection>
##  <Attr Name="NrConjugacyClasses" Arg='G'/>
##
##  <Description>
##  returns the number of conjugacy classes of <A>G</A>.
##  <Example><![CDATA[
##  gap> g:=Group((1,2,3,4),(1,2));;
##  gap> NrConjugacyClasses(g);
##  5
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "NrConjugacyClasses", IsGroup );


#############################################################################
##
#O  Omega( <G>, <p>[, <n>] )
##
##  <#GAPDoc Label="Omega">
##  <ManSection>
##  <Oper Name="Omega" Arg='G, p[, n]'/>
##
##  <Description>
##  For a <A>p</A>-group <A>G</A>, one defines
##  <M>\Omega_{<A>n</A>}(<A>G</A>) =
##  \langle g \in <A>G</A> \mid g^{{<A>p</A>^{<A>n</A>}}} = 1 \rangle</M>.
##  The default value for <A>n</A> is <C>1</C>.
##  <P/>
##  <Example><![CDATA[
##  gap> h:=SmallGroup(16,10);
##  <pc group of size 16 with 4 generators>
##  gap> Omega(h,2);
##  Group([ f2, f3, f4 ])
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "Omega", [ IsGroup, IsPosInt ] );
DeclareOperation( "Omega", [ IsGroup, IsPosInt, IsPosInt ] );

DeclareOperation( "OmegaOp", [ IsGroup, IsPosInt, IsPosInt ] );
DeclareAttribute( "ComputedOmegas", IsGroup, "mutable" );


#############################################################################
##
#F  Agemo( <G>, <p>[, <n>] )
##
##  <#GAPDoc Label="Agemo">
##  <ManSection>
##  <Func Name="Agemo" Arg='G, p[, n]'/>
##
##  <Description>
##  For a <A>p</A>-group <A>G</A>, one defines
##  <M>\mho_{<A>n</A>}(G) =
##  \langle g^{{<A>p</A>^{<A>n</A>}}} \mid g \in <A>G</A> \rangle</M>.
##  The default value for <A>n</A> is <C>1</C>.
##  <Example><![CDATA[
##  gap> Agemo(h,2);Agemo(h,2,2);
##  Group([ f4 ])
##  Group([  ])
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "Agemo" );
DeclareOperation( "AgemoOp", [ IsGroup, IsPosInt, IsPosInt ] );
DeclareAttribute( "ComputedAgemos", IsGroup, "mutable" );


#############################################################################
##
#A  SolvableRadical( <G> )
##
##  <#GAPDoc Label="SolvableRadical">
##  <ManSection>
##  <Attr Name="SolvableRadical" Arg='G'/>
##
##  <Description>
##  is the solvable radical of the group <A>G</A>,
##  i.e., the largest solvable normal subgroup of <A>G</A>.
##  <Example><![CDATA[
##  gap> rad:= SolvableRadical( SL(2,5) );
##  <group of 2x2 matrices of size 2 over GF(5)>
##  gap> Size( rad );
##  2
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "SolvableRadical", IsGroup );


#############################################################################
##
#A  RationalClasses( <G> )
##
##  <#GAPDoc Label="RationalClasses">
##  <ManSection>
##  <Attr Name="RationalClasses" Arg='G'/>
##
##  <Description>
##  returns a list of the rational classes of the group <A>G</A>. (See
##  <Ref Oper="RationalClass"/>.)
##  <Example><![CDATA[
##  gap> RationalClasses(DerivedSubgroup(g));
##  [ RationalClass( AlternatingGroup( [ 1 .. 4 ] ), () ),
##    RationalClass( AlternatingGroup( [ 1 .. 4 ] ), (1,2)(3,4) ),
##    RationalClass( AlternatingGroup( [ 1 .. 4 ] ), (1,2,3) ) ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "RationalClasses", IsGroup );


#############################################################################
##
#A  GeneratorsSmallest( <G> )
##
##  <#GAPDoc Label="GeneratorsSmallest">
##  <ManSection>
##  <Attr Name="GeneratorsSmallest" Arg='G'/>
##
##  <Description>
##  returns a <Q>smallest</Q> generating set for the group <A>G</A>.
##  This is the lexicographically (using &GAP;s order of group elements)
##  smallest list <M>l</M> of elements of <A>G</A> such that
##  <M>G = \langle l \rangle</M> and
##  <M>l_i \not \in \langle l_1, \ldots, l_{{i-1}} \rangle</M>
##  (in particular <M>l_1</M> is not the identity element of the group).
##  The comparison of two groups via
##  lexicographic comparison of their sorted element lists yields the same
##  relation as lexicographic comparison of their smallest generating sets.
##  <Example><![CDATA[
##  gap> g:=SymmetricGroup(4);;
##  gap> GeneratorsSmallest(g);
##  [ (3,4), (2,3), (1,2) ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "GeneratorsSmallest", IsMagma );


#############################################################################
##
#A  LargestElementGroup( <G> )
##
##  <#GAPDoc Label="LargestElementGroup">
##  <ManSection>
##  <Attr Name="LargestElementGroup" Arg='G'/>
##
##  <Description>
##  returns the largest element of <A>G</A> with respect to the ordering <C>&lt;</C> of
##  the elements family.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "LargestElementGroup", IsGroup );


#############################################################################
##
#A  MinimalGeneratingSet( <G> )
##
##  <#GAPDoc Label="MinimalGeneratingSet">
##  <ManSection>
##  <Attr Name="MinimalGeneratingSet" Arg='G'/>
##
##  <Description>
##  returns a generating set of <A>G</A> of minimal possible length.
##  <P/>
##  Note that only methods for finite groups, solvable groups, or finitely
##  generated nilpotent groups are available (the latter through the
##  <Package>Polycyclic</Package> package) and that
##  calculations for nonsolvable finite groups of higher rank can be expensive.
##  <P/>
##  If you do not really need a minimal generating set, but are satisfied
##  with getting a reasonably small set of generators, you better use
##  <Ref Attr="SmallGeneratingSet"/>.
##  <P/>
##  Information about the minimal generating sets of the finite simple
##  groups of order less than <M>10^6</M> can be found in <Cite Key="MY79"/>.
##  See also the package <Package>AtlasRep</Package>.
##  <Example><![CDATA[
##  gap> MinimalGeneratingSet(g);
##  [ (2,4,3), (1,4,2,3) ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "MinimalGeneratingSet", IsSemigroup );


#############################################################################
##
#A  SmallGeneratingSet(<G>) small generating set (hopefully even irredundant)
##
##  <#GAPDoc Label="SmallGeneratingSet">
##  <ManSection>
##  <Attr Name="SmallGeneratingSet" Arg='G'/>
##
##  <Description>
##  returns a generating set of <A>G</A> which has few elements. As neither
##  irredundancy, nor minimal length is proven it runs much faster than
##  <Ref Attr="MinimalGeneratingSet"/>.
##  It can be used whenever a short generating set is desired which not
##  necessarily needs to be optimal.
##  <Example><![CDATA[
##  gap> SmallGeneratingSet(g);
##  [ (1,2,3,4), (1,2) ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "SmallGeneratingSet", IsSemigroup );


#############################################################################
##
#A  SupersolvableResiduum( <G> )
##
##  <#GAPDoc Label="SupersolvableResiduum">
##  <ManSection>
##  <Attr Name="SupersolvableResiduum" Arg='G'/>
##
##  <Description>
##  is the supersolvable residuum of the group <A>G</A>, that is,
##  its smallest normal subgroup <M>N</M> such that the factor group
##  <M><A>G</A> / N</M> is supersolvable.
##  <Example><![CDATA[
##  gap> SupersolvableResiduum(g) = Group([ (1,3)(2,4), (1,4)(2,3) ]);
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "SupersolvableResiduum", IsGroup );


#############################################################################
##
#F  SupersolvableResiduumDefault( <G> ) . . . . supersolvable residuum of <G>
##
##  <ManSection>
##  <Func Name="SupersolvableResiduumDefault" Arg='G'/>
##
##  <Description>
##  For a group <A>G</A>, <C>SupersolvableResiduumDefault</C> returns a record with the
##  following components.
##  <List>
##  <Mark><C>ssr</C>: </Mark>
##  <Item>
##      the supersolvable residuum of <A>G</A>, that is,
##      the largest normal subgroup <M>N</M> of <A>G</A> such that the factor group
##      <M><A>G</A> / N</M> is supersolvable,
##  </Item>
##  <Mark><C>ds</C>: </Mark>
##  <Item>
##      a chain of normal subgroups of <A>G</A>,
##      descending from <A>G</A> to the supersolvable residuum,
##      such that any refinement of this chain is a normal series.
##  </Item>
##  </List>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "SupersolvableResiduumDefault" );


#############################################################################
##
#A  ComplementSystem( <G> )
##
##  <#GAPDoc Label="ComplementSystem">
##  <ManSection>
##  <Attr Name="ComplementSystem" Arg='G'/>
##
##  <Description>
##  A complement system of a group <A>G</A> is a set of Hall
##  <M>p'</M>-subgroups of <A>G</A>,
##  where <M>p'</M> runs through the subsets of prime factors of
##  <M>|<A>G</A>|</M> that omit exactly one prime.
##  Every pair of subgroups from this set commutes as subgroups.
##  Complement systems exist only for solvable groups, therefore
##  <Ref Attr="ComplementSystem"/> returns <K>fail</K> if the group <A>G</A>
##  is not solvable.
##  <Example><![CDATA[
##  gap> ComplementSystem(h);
##  [ Group([ f3, f4 ]), Group([ f1, f2, f4 ]), Group([ f1, f2, f3 ]) ]
##  gap> List(last,Size);
##  [ 15, 20, 12 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "ComplementSystem", IsGroup );


#############################################################################
##
#A  SylowSystem( <G> )
##
##  <#GAPDoc Label="SylowSystem">
##  <ManSection>
##  <Attr Name="SylowSystem" Arg='G'/>
##
##  <Description>
##  A Sylow system of a group <A>G</A> is a set of Sylow subgroups of
##  <A>G</A> such that every pair of subgroups from this set commutes as
##  subgroups.
##  Sylow systems exist only for solvable groups. The operation returns
##  <K>fail</K> if the group <A>G</A> is not solvable.
##  <Example><![CDATA[
##  gap> h:=SmallGroup(60,10);;
##  gap> SylowSystem(h);
##  [ Group([ f1, f2 ]), Group([ f3 ]), Group([ f4 ]) ]
##  gap> List(last,Size);
##  [ 4, 3, 5 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "SylowSystem", IsGroup );


#############################################################################
##
#A  HallSystem( <G> )
##
##  <#GAPDoc Label="HallSystem">
##  <ManSection>
##  <Attr Name="HallSystem" Arg='G'/>
##
##  <Description>
##  returns a list containing one Hall <M>P</M>-subgroup for each set
##  <M>P</M> of prime divisors of the order of <A>G</A>.
##  Hall systems exist only for solvable groups. The operation returns
##  <K>fail</K> if the group <A>G</A> is not solvable.
##  <Example><![CDATA[
##  gap> HallSystem(h);
##  [ Group([  ]), Group([ f1, f2 ]), Group([ f1, f2, f3 ]),
##    Group([ f1, f2, f3, f4 ]), Group([ f1, f2, f4 ]), Group([ f3 ]),
##    Group([ f3, f4 ]), Group([ f4 ]) ]
##  gap> List(last,Size);
##  [ 1, 4, 12, 60, 20, 3, 15, 5 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "HallSystem", IsGroup );


#############################################################################
##
#A  TrivialSubgroup( <G> ) . . . . . . . . . .  trivial subgroup of group <G>
##
##  <#GAPDoc Label="TrivialSubgroup">
##  <ManSection>
##  <Attr Name="TrivialSubgroup" Arg='G'/>
##
##  <Description>
##  <Example><![CDATA[
##  gap> TrivialSubgroup(g);
##  Group(())
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareSynonymAttr( "TrivialSubgroup", TrivialSubmagmaWithOne );


#############################################################################
##
#A  Socle( <G> ) . . . . . . . . . . . . . . . . . . . . . . . . socle of <G>
##
##  <#GAPDoc Label="Socle">
##  <ManSection>
##  <Attr Name="Socle" Arg='G'/>
##
##  <Description>
##  The socle of the group <A>G</A> is the subgroup generated by
##  all minimal normal subgroups.
##  <Example><![CDATA[
##  gap> Socle(g);
##  Group([ (1,4)(2,3), (1,2)(3,4) ])
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "Socle", IsGroup );


#############################################################################
##
#A  UpperCentralSeriesOfGroup( <G> )
##
##  <#GAPDoc Label="UpperCentralSeriesOfGroup">
##  <ManSection>
##  <Attr Name="UpperCentralSeriesOfGroup" Arg='G'/>
##
##  <Description>
##  The upper central series of a group <A>G</A> is defined as an ending
##  series <M>U_i / U_{{i+1}}:= Z(<A>G</A>/U_{{i+1}})</M>.
##  It is a central series of normal subgroups.
##  The name derives from the fact that <M>U_i</M> contains every <M>i</M>-th
##  step subgroup of a central series.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "UpperCentralSeriesOfGroup", IsGroup );


#############################################################################
##
#O  EulerianFunction( <G>, <n> )
##
##  <#GAPDoc Label="EulerianFunction">
##  <ManSection>
##  <Oper Name="EulerianFunction" Arg='G, n'/>
##
##  <Description>
##  returns the number of <A>n</A>-tuples <M>(g_1, g_2, \ldots, g_n)</M>
##  of elements of the group <A>G</A> that generate the whole group <A>G</A>.
##  The elements of such an <A>n</A>-tuple need not be different.
##  <P/>
##  In <Cite Key="Hal36"/>, the notation <M>\phi_{<A>n</A>}(<A>G</A>)</M>
##  is used for the value returned by <Ref Oper="EulerianFunction"/>,
##  and the quotient of <M>\phi_{<A>n</A>}(<A>G</A>)</M> by the order of the
##  automorphism group of <A>G</A> is called <M>d_{<A>n</A>}(<A>G</A>)</M>.
##  If <A>G</A> is a nonabelian simple group then
##  <M>d_{<A>n</A>}(<A>G</A>)</M> is the greatest number <M>d</M> for which
##  the direct product of <M>d</M> groups isomorphic with <A>G</A>
##  can be generated by <A>n</A> elements.
##  <P/>
##  If the Library of Tables of Marks
##  (see Chapter <Ref Chap="Tables of Marks"/>) covers the group <A>G</A>,
##  you may also use <Ref Oper="EulerianFunctionByTom"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> EulerianFunction( g, 2 );
##  432
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "EulerianFunction", [ IsGroup, IsPosInt ] );


#############################################################################
##
#O  AsSubgroup( <G>, <U> )
##
##  <#GAPDoc Label="AsSubgroup">
##  <ManSection>
##  <Oper Name="AsSubgroup" Arg='G, U'/>
##
##  <Description>
##  creates a subgroup of <A>G</A> which contains the same elements as <A>U</A>
##  <Example><![CDATA[
##  gap> v:=AsSubgroup(g,Group((1,2,3),(1,4)));
##  Group([ (1,2,3), (1,4) ])
##  gap> Parent(v);
##  Group([ (1,2,3,4), (1,2) ])
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "AsSubgroup", [ IsGroup, IsGroup ] );


#############################################################################
##
#O  ClassMultiplicationCoefficient( <G>, <i>, <j>, <k> )
#O  ClassMultiplicationCoefficient( <G>, <Ci>, <Cj>, <Ck> )
##
##  <ManSection>
##  <Oper Name="ClassMultiplicationCoefficient" Arg='G, i, j, k'/>
##  <Oper Name="ClassMultiplicationCoefficient" Arg='G, Ci, Cj, Ck'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareOperation( "ClassMultiplicationCoefficient",
    [ IsGroup, IsPosInt, IsPosInt, IsPosInt ] );
DeclareOperation( "ClassMultiplicationCoefficient",
    [ IsGroup, IsCollection, IsCollection, IsCollection ] );


#############################################################################
##
#F  ClosureGroupDefault( <G>, <elm> ) . . . . . closure of group with element
##
##  <#GAPDoc Label="ClosureGroupDefault">
##  <ManSection>
##  <Func Name="ClosureGroupDefault" Arg='G, elm'/>
##
##  <Description>
##  This functions returns the closure of the group <A>G</A> with the element
##  <A>elm</A>.
##  If <A>G</A> has the attribute <Ref Attr="AsSSortedList"/> then also the
##  result has this attribute.
##  This is used to implement the default method for
##  <Ref Attr="Enumerator"/> and <Ref Attr="EnumeratorSorted"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "ClosureGroupDefault" );


#############################################################################
##
#O  ClosureGroup( <G>, <obj> )  . . .  closure of group with element or group
##
##  <#GAPDoc Label="ClosureGroup">
##  <ManSection>
##  <Oper Name="ClosureGroup" Arg='G, obj'/>
##
##  <Description>
##  creates the group generated by the elements of <A>G</A> and <A>obj</A>.
##  <A>obj</A> can be either an element or a collection of elements,
##  in particular another group.
##  <Example><![CDATA[
##  gap> g:=SmallGroup(24,12);;u:=Subgroup(g,[g.3,g.4]);
##  Group([ f3, f4 ])
##  gap> ClosureGroup(u,g.2);
##  Group([ f2, f3, f4 ])
##  gap> ClosureGroup(u,[g.1,g.2]);
##  Group([ f1, f2, f3, f4 ])
##  gap> ClosureGroup(u,Group(g.2*g.1));
##  Group([ f1*f2^2, f3, f4 ])
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "ClosureGroup", [ IsGroup, IsObject ] );


#############################################################################
##
#F  ClosureGroupAddElm( <G>, <elm> )
#F  ClosureGroupCompare( <G>, <elm> )
#F  ClosureGroupIntest( <G>, <elm> )
##
##  <#GAPDoc Label="ClosureGroupAddElm">
##  <ManSection>
##  <Func Name="ClosureGroupAddElm" Arg='G, elm'/>
##  <Func Name="ClosureGroupCompare" Arg='G, elm'/>
##  <Func Name="ClosureGroupIntest" Arg='G, elm'/>
##
##  <Description>
##  These three functions together with <Ref Func="ClosureGroupDefault"/>
##  implement the main methods for <Ref Oper="ClosureGroup"/>.
##  In the ordering given, they just add <A>elm</A> to the generators, remove
##  duplicates and identity elements, and test whether <A>elm</A> is already
##  contained in <A>G</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "ClosureGroupAddElm" );
DeclareGlobalFunction( "ClosureGroupCompare" );
DeclareGlobalFunction( "ClosureGroupIntest" );


#############################################################################
##
#F  ClosureSubgroup( <G>, <obj> )
#F  ClosureSubgroupNC( <G>, <obj> )
##
##  <#GAPDoc Label="ClosureSubgroup">
##  <ManSection>
##  <Func Name="ClosureSubgroup" Arg='G, obj'/>
##  <Func Name="ClosureSubgroupNC" Arg='G, obj'/>
##
##  <Description>
##  For a group <A>G</A> that stores a parent group (see&nbsp;<Ref Sect="Parents"/>),
##  <Ref Func="ClosureSubgroup"/> calls <Ref Oper="ClosureGroup"/> with the same
##  arguments;
##  if the result is a subgroup of the parent of <A>G</A> then the parent of <A>G</A>
##  is set as parent of the result, otherwise an error is raised.
##  The check whether the result is contained in the parent of <A>G</A> is omitted
##  by the <C>NC</C> version. As a wrong parent might imply wrong properties this
##  version should be used with care.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "ClosureSubgroup" );
DeclareGlobalFunction( "ClosureSubgroupNC" );


#############################################################################
##
#O  CommutatorSubgroup( <G>, <H> )
##
##  <#GAPDoc Label="CommutatorSubgroup">
##  <ManSection>
##  <Oper Name="CommutatorSubgroup" Arg='G, H'/>
##
##  <Description>
##  If <A>G</A> and <A>H</A> are two groups of elements in the same family,
##  this operation returns the group generated by all commutators
##  <M>[ g, h ] = g^{{-1}} h^{{-1}} g h</M> (see&nbsp;<Ref Oper="Comm"/>)
##  of elements <M>g \in <A>G</A></M> and
##  <M>h \in <A>H</A></M>, that is the group
##  <M>\left \langle [ g, h ] \mid g \in <A>G</A>, h \in <A>H</A> \right \rangle</M>.
##  <Example><![CDATA[
##  gap> CommutatorSubgroup(Group((1,2,3),(1,2)),Group((2,3,4),(3,4)));
##  Group([ (1,4)(2,3), (1,3,4) ])
##  gap> Size(last);
##  12
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "CommutatorSubgroup", [ IsGroup, IsGroup ] );


#############################################################################
##
#O  ConjugateGroup( <G>, <obj> )  . . . . . . conjugate of group <G> by <obj>
##
##  <#GAPDoc Label="ConjugateGroup">
##  <ManSection>
##  <Oper Name="ConjugateGroup" Arg='G, obj'/>
##
##  <Description>
##  returns the conjugate group of <A>G</A>, obtained by applying the
##  conjugating element <A>obj</A>.
##  <P/>
##  To form a conjugate (group) by any object acting via <C>^</C>,
##  one can also use the infix operator <C>^</C>.
##  <Example><![CDATA[
##  gap> ConjugateGroup(g,(1,5));
##  Group([ (2,3,4,5), (2,5) ])
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "ConjugateGroup", [ IsGroup, IsObject ] );


#############################################################################
##
#O  ConjugateSubgroup( <G>, <g> )
##
##  <#GAPDoc Label="ConjugateSubgroup">
##  <ManSection>
##  <Oper Name="ConjugateSubgroup" Arg='G, g'/>
##
##  <Description>
##  For a group <A>G</A> which has a parent group <C>P</C>
##  (see <Ref Func="Parent"/>), returns the subgroup of <C>P</C>,
##  obtained by conjugating <A>G</A> using the conjugating
##  element <A>g</A>.
##  <P/>
##  If <A>G</A> has no parent group, it just delegates to the
##  call to <Ref Oper="ConjugateGroup"/> with the same arguments.
##  <P/>
##  To form a conjugate (subgroup) by any object acting via <C>^</C>,
##  one can also use the infix operator <C>^</C>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "ConjugateSubgroup",
    [ IsGroup and HasParent, IsMultiplicativeElementWithInverse ] );


#############################################################################
##
#O  ConjugateSubgroups( <G>, <U> )
##
##  <#GAPDoc Label="ConjugateSubgroups">
##  <ManSection>
##  <Oper Name="ConjugateSubgroups" Arg='G, U'/>
##
##  <Description>
##  returns a list of all images of the group <A>U</A> under conjugation action
##  by <A>G</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "ConjugateSubgroups", [ IsGroup, IsGroup ] );


#############################################################################
##
#O  Core( <S>, <U> )
##
##  <#GAPDoc Label="Core">
##  <ManSection>
##  <Oper Name="Core" Arg='S, U'/>
##
##  <Description>
##  If <A>S</A> and <A>U</A> are groups of elements in the same family, this
##  operation
##  returns the core of <A>U</A> in <A>S</A>, that is the intersection of all
##  <A>S</A>-conjugates of <A>U</A>.
##  <Example><![CDATA[
##  gap> g:=Group((1,2,3,4),(1,2));;
##  gap> Core(g,Subgroup(g,[(1,2,3,4)]));
##  Group(())
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
InParentFOA( "Core", IsGroup, IsGroup, DeclareAttribute );


#############################################################################
##
#O  CosetTable( <G>, <H> )
##
##  <#GAPDoc Label="CosetTable">
##  <ManSection>
##  <Oper Name="CosetTable" Arg='G, H'/>
##
##  <Description>
##  returns the coset table of the finitely presented group <A>G</A>
##  on the cosets of the subgroup <A>H</A>.
##  <P/>
##  Basically a coset table is the permutation representation of the finitely
##  presented group on the cosets of a subgroup  (which need  not be faithful
##  if the subgroup has a nontrivial  core).  Most  of  the set theoretic and
##  group functions use the regular representation of <A>G</A>,
##  i.e., the coset table of <A>G</A> over the trivial subgroup.
##  <P/>
##  The coset table is returned as a list of lists. For each generator of
##  <A>G</A> and its inverse the table contains a generator list. A generator
##  list is simply a list of integers.
##  If <M>l</M> is the generator list for the generator <M>g</M> and if
##  <M>l[i] = j</M> then generator <M>g</M> takes the coset
##  <M>i</M> to the coset <M>j</M> by multiplication from the right.
##  Thus the permutation representation of <A>G</A> on the cosets of <A>H</A>
##  is obtained by applying <Ref Func="PermList"/> to each generator list.
##  <P/>
##  The coset table is standard (see below).
##  <P/>
##  For finitely presented groups, a coset table is computed by a
##  Todd-Coxeter coset enumeration.
##  Note that you may influence the performance of that enumeration by
##  changing the values of the global variables
##  <Ref Var="CosetTableDefaultLimit"/> and
##  <Ref Var="CosetTableDefaultMaxLimit"/> described below and that the
##  options described under <Ref Func="CosetTableFromGensAndRels"/> are
##  recognized.
##  <P/>
##  <Example><![CDATA[
##  gap> tab := CosetTable(g, Subgroup(g, [ g.1, g.2*g.1*g.2*g.1*g.2^-1 ]));
##  [ [ 1, 4, 5, 2, 3 ], [ 1, 4, 5, 2, 3 ], [ 2, 3, 1, 4, 5 ],
##    [ 3, 1, 2, 4, 5 ] ]
##  gap> List( last, PermList );
##  [ (2,4)(3,5), (2,4)(3,5), (1,2,3), (1,3,2) ]
##  gap> PrintArray( TransposedMat( tab ) );
##  [ [  1,  1,  2,  3 ],
##    [  4,  4,  3,  1 ],
##    [  5,  5,  1,  2 ],
##    [  2,  2,  4,  4 ],
##    [  3,  3,  5,  5 ] ]
##  ]]></Example>
##  <P/>
##  The last printout in the preceding example provides the coset table in
##  the form in which it is usually used in hand calculations:
##  The rows correspond to the cosets, the columns correspond to the
##  generators and their inverses in the ordering
##  <M>g_1, g_1^{{-1}}, g_2, g_2^{{-1}}</M>.
##  (See section&nbsp;<Ref Sect="Standardization of coset tables"/>
##  for a description on the way the numbers are assigned.)
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "CosetTable", [ IsGroup, IsGroup ] );


#############################################################################
##
#O  CosetTableNormalClosure( <G>, <H> )
##
##  <ManSection>
##  <Oper Name="CosetTableNormalClosure" Arg='G, H'/>
##
##  <Description>
##  returns the coset table of the finitely presented group <A>G</A> on the cosets
##  of the normal closure of the subgroup <A>H</A>.
##  </Description>
##  </ManSection>
##
DeclareOperation( "CosetTableNormalClosure", [ IsGroup, IsGroup ] );


#############################################################################
##
#F  FactorGroup( <G>, <N> )
#O  FactorGroupNC( <G>, <N> )
##
##  <#GAPDoc Label="FactorGroup">
##  <ManSection>
##  <Func Name="FactorGroup" Arg='G, N'/>
##  <Oper Name="FactorGroupNC" Arg='G, N'/>
##
##  <Description>
##  returns the image of the <C>NaturalHomomorphismByNormalSubgroup(<A>G</A>,<A>N</A>)</C>.
##  This function is provided for compatibility with older code, but if a
##  connection between group and factor is desired, users need to start by
##  obtaining the <C>NaturalHomomorphismByNormalSubgroup</C> in the first
##   place.
##  The <C>NC</C> version does not test whether <A>N</A> is normal in <A>G</A>.
##  <Example><![CDATA[
##  gap> g:=Group((1,2,3,4),(1,2));;n:=Subgroup(g,[(1,2)(3,4),(1,3)(2,4)]);;
##  gap> hom:=NaturalHomomorphismByNormalSubgroup(g,n);
##  [ (1,2,3,4), (1,2) ] -> [ f1*f2, f1 ]
##  gap> Size(ImagesSource(hom));
##  6
##  gap> StructureDescription(Image(hom,g));
##  "S3"
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "FactorGroup" );
DeclareOperation( "FactorGroupNC", [ IsGroup, IsGroup ] );

#############################################################################
##
#A  NaturalHomomorphism(<F>)
##
##  <#GAPDoc Label="NaturalHomomorphism">
##  <ManSection>
##  <Oper Name="NaturalHomomorphism" Arg='F'/>
##
##  <Description>
##  This function is obsolete now and will give an error message. Users
##  should use <C>NaturalHomomorphismByNormalSubgroup</C> in the first place to
##  get the homomorphism and then get the factor group as the image.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "NaturalHomomorphism", [ IsGroup ] );



#############################################################################
##
#O  Index( <G>, <U> )
#O  IndexNC( <G>, <U> )
##
##  <#GAPDoc Label="Index">
##  <ManSection>
##  <Heading>Index (&GAP; operation)</Heading>
##  <Oper Name="Index" Arg='G, U' Label="for a group and its subgroup"/>
##  <Oper Name="IndexNC" Arg='G, U' Label="for a group and its subgroup"/>
##
##  <Description>
##  For a subgroup <A>U</A> of the group <A>G</A>,
##  <Ref Oper="Index" Label="for a group and its subgroup"/> returns the index
##  <M>[<A>G</A>:<A>U</A>] = |<A>G</A>| / |<A>U</A>|</M>
##  of <A>U</A> in <A>G</A>.
##  The <C>NC</C> version does not test whether <A>U</A> is contained in
##  <A>G</A>.
##  <Example><![CDATA[
##  gap> Index(g,u);
##  4
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
InParentFOA( "Index", IsGroup, IsGroup, DeclareAttribute );

DeclareOperation( "IndexNC", [ IsGroup, IsGroup ] );


#############################################################################
##
#A  IndexInWholeGroup( <G> )
##
##  <#GAPDoc Label="IndexInWholeGroup">
##  <ManSection>
##  <Attr Name="IndexInWholeGroup" Arg='G'/>
##
##  <Description>
##  If the family of elements of <A>G</A> itself forms a group <A>P</A>, this
##  attribute returns the index of <A>G</A> in <A>P</A>. It is used
##  primarily for free groups or finitely presented groups.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "IndexInWholeGroup", IsGroup );


#############################################################################
##
#A  IndependentGeneratorsOfAbelianGroup( <A> )
##
##  <#GAPDoc Label="IndependentGeneratorsOfAbelianGroup">
##  <ManSection>
##  <Attr Name="IndependentGeneratorsOfAbelianGroup" Arg='A'/>
##
##  <Description>
##  returns a list of generators <M>a_1, a_2, \ldots</M> of prime power order
##  or infinite order of the abelian group <A>A</A> such that <A>A</A> is the
##  direct product of the cyclic groups generated by the <M>a_i</M>.
##  The list of orders of the returned generators must match the result of
##  <Ref Attr="AbelianInvariants"/> (taking into account that zero
##  and <Ref Var="infinity"/> are identified).
##  <Example><![CDATA[
##  gap> g:=AbelianGroup(IsPermGroup,[15,14,22,78]);;
##  gap> List(IndependentGeneratorsOfAbelianGroup(g),Order);
##  [ 2, 2, 2, 3, 3, 5, 7, 11, 13 ]
##  gap> AbelianInvariants(g);
##  [ 2, 2, 2, 3, 3, 5, 7, 11, 13 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "IndependentGeneratorsOfAbelianGroup",
  IsGroup and IsAbelian );

#############################################################################
##
#O  IndependentGeneratorExponents( <G>, <g> )
##
##  <#GAPDoc Label="IndependentGeneratorExponents">
##  <ManSection>
##  <Oper Name="IndependentGeneratorExponents" Arg='G, g'/>
##
##  <Description>
##  For an abelian group <A>G</A>,
##  with <Ref Attr="IndependentGeneratorsOfAbelianGroup"/> value the
##  list <M>[ a_1, \ldots, a_n ]</M>,
##  this operation returns the exponent vector
##  <M>[ e_1, \ldots, e_n ]</M> to represent
##  <M><A>g</A> = \prod_i a_i^{{e_i}}</M>.
##  <Example><![CDATA[
##  gap> g := AbelianGroup([16,9,625]);;
##  gap> gens := IndependentGeneratorsOfAbelianGroup(g);;
##  gap> List(gens, Order);
##  [ 9, 16, 625 ]
##  gap> AbelianInvariants(g);
##  [ 9, 16, 625 ]
##  gap> r:=gens[1]^4*gens[2]^12*gens[3]^128;;
##  gap> IndependentGeneratorExponents(g,r);
##  [ 4, 12, 128 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "IndependentGeneratorExponents",
  [IsGroup and IsAbelian,IsMultiplicativeElementWithInverse] );

#############################################################################
##
#O  IsConjugate( <G>, <x>, <y> )
#O  IsConjugate( <G>, <U>, <V> )
##
##  <#GAPDoc Label="IsConjugate">
##  <ManSection>
##  <Heading>IsConjugate</Heading>
##  <Oper Name="IsConjugate" Arg='G, x, y'
##   Label="for a group and two elements"/>
##  <Oper Name="IsConjugate" Arg='G, U, V'
##   Label="for a group and two groups"/>
##
##  <Description>
##  tests whether the elements <A>x</A> and <A>y</A>
##  or the subgroups <A>U</A> and <A>V</A> are
##  conjugate under the action of <A>G</A>.
##  (They do not need to be <E>contained in</E> <A>G</A>.)
##  This command is only a shortcut to <Ref Func="RepresentativeAction"/>.
##  <Example><![CDATA[
##  gap> IsConjugate(g,Group((1,2,3,4),(1,3)),Group((1,3,2,4),(1,2)));
##  true
##  ]]></Example>
##  <P/>
##  <Ref Func="RepresentativeAction"/> can be used to
##  obtain conjugating elements.
##  <Example><![CDATA[
##  gap> RepresentativeAction(g,(1,2),(3,4));
##  (1,3)(2,4)
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "IsConjugate", [ IsGroup, IsObject, IsObject ] );


#############################################################################
##
#O  IsNormal( <G>, <U> )
##
##  <#GAPDoc Label="IsNormal">
##  <ManSection>
##  <Oper Name="IsNormal" Arg='G, U'/>
##
##  <Description>
##  returns <K>true</K> if the group <A>G</A> normalizes the group <A>U</A>
##  and <K>false</K> otherwise.
##  <P/>
##  A group <A>G</A> <E>normalizes</E> a group <A>U</A> if and only if for every <M>g \in <A>G</A></M>
##  and <M>u \in <A>U</A></M> the element <M>u^g</M> is a member of <A>U</A>.
##  Note that <A>U</A> need not be a subgroup of <A>G</A>.
##  <Example><![CDATA[
##  gap> IsNormal(g,u);
##  false
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
InParentFOA( "IsNormal", IsGroup, IsGroup, DeclareProperty );


#############################################################################
##
#O  IsCharacteristicSubgroup(<G>,<N>)
##
##  <#GAPDoc Label="IsCharacteristicSubgroup">
##  <ManSection>
##  <Oper Name="IsCharacteristicSubgroup" Arg='G,N'/>
##
##  <Description>
##  tests whether <A>N</A> is invariant under all automorphisms of <A>G</A>.
##  <Example><![CDATA[
##  gap> IsCharacteristicSubgroup(g,u);
##  false
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "IsCharacteristicSubgroup", [IsGroup,IsGroup] );


#############################################################################
##
#F  IsPNilpotent( <G>, <p> )
##
##  <#GAPDoc Label="IsPNilpotent">
##  <ManSection>
##  <Oper Name="IsPNilpotent" Arg='G, p'/>
##
##  <Description>
##  A group is <M>p</M>-nilpotent if it possesses a normal <M>p</M>-complement.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
KeyDependentOperation( "IsPNilpotent", IsGroup, IsPosInt, "prime" );


#############################################################################
##
#F  IsPSolvable( <G>, <p> )
##
##  <#GAPDoc Label="IsPSolvable">
##  <ManSection>
##  <Oper Name="IsPSolvable" Arg='G, p'/>
##
##  <Description>
##  A finite group is <M>p</M>-solvable if every chief factor either has
##  order not divisible by <M>p</M>, or is solvable.
##  <P/>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
KeyDependentOperation( "IsPSolvable", IsGroup, IsPosInt, "prime" );


#############################################################################
##
#F  IsSubgroup( <G>, <U> )
##
##  <#GAPDoc Label="IsSubgroup">
##  <ManSection>
##  <Func Name="IsSubgroup" Arg='G, U'/>
##
##  <Description>
##  <C>IsSubgroup</C> returns <K>true</K> if <A>U</A> is a group that is a subset of the
##  domain <A>G</A>.
##  This is actually checked by calling <C>IsGroup( <A>U</A> )</C> and
##  <C>IsSubset( <A>G</A>, <A>U</A> )</C>;
##  note that special methods for <Ref Oper="IsSubset"/> are available
##  that test only generators of <A>U</A> if <A>G</A> is closed under the group
##  operations.
##  So in most cases,
##  for example whenever one knows already that <A>U</A> is a group,
##  it is better to call only <Ref Oper="IsSubset"/>.
##  <Example><![CDATA[
##  gap> IsSubgroup(g,u);
##  true
##  gap> v:=Group((1,2,3),(1,2));
##  Group([ (1,2,3), (1,2) ])
##  gap> u=v;
##  true
##  gap> IsSubgroup(g,v);
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "IsSubgroup" );


#############################################################################
##
#O  IsSubnormal( <G>, <U> )
##
##  <#GAPDoc Label="IsSubnormal">
##  <ManSection>
##  <Oper Name="IsSubnormal" Arg='G, U'/>
##
##  <Description>
##  A subgroup <A>U</A> of the group <A>G</A> is subnormal if it is contained in a
##  subnormal series of <A>G</A>.
##  <Example><![CDATA[
##  gap> IsSubnormal(g,Group((1,2,3)));
##  false
##  gap> IsSubnormal(g,Group((1,2)(3,4)));
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "IsSubnormal", [ IsGroup, IsGroup ] );


#############################################################################
##
#O  NormalClosure( <G>, <U> )
##
##  <#GAPDoc Label="NormalClosure">
##  <ManSection>
##  <Oper Name="NormalClosure" Arg='G, U'/>
##  <Oper Name="NormalClosure" Arg='G, list' Label="for group and a list"/>
##
##  <Description>
##  The normal closure of <A>U</A> in <A>G</A> is the smallest normal subgroup
##  of the closure of <A>G</A> and <A>U</A> which contains <A>U</A>.
##  <P/>
##  The second argument may also be a list of group elements, in which
##  case the normal closure of the group generated by these elements is
##  computed.
##  <Example><![CDATA[
##  gap> NormalClosure(g,Subgroup(g,[(1,2,3)])) = Group([ (1,2,3), (2,3,4) ]);
##  true
##  gap> NormalClosure(g,[(1,2,3)]) = Group([ (1,2,3), (2,3,4) ]);
##  true
##  gap> NormalClosure(g,Group((3,4,5))) = Group([ (3,4,5), (1,5,4), (1,2,5) ]);
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
InParentFOA( "NormalClosure", IsGroup, IsGroup, DeclareAttribute );


#############################################################################
##
#O  NormalIntersection( <G>, <U> )
##
##  <#GAPDoc Label="NormalIntersection">
##  <ManSection>
##  <Oper Name="NormalIntersection" Arg='G, U'/>
##
##  <Description>
##  computes the intersection of <A>G</A> and <A>U</A>, assuming that <A>G</A> is normalized
##  by <A>U</A>. This works faster than <C>Intersection</C>, but will not produce the
##  intersection if <A>G</A> is not normalized by <A>U</A>.
##  <Example><![CDATA[
##  gap> NormalIntersection(Group((1,2)(3,4),(1,3)(2,4)),Group((1,2,3,4)));
##  Group([ (1,3)(2,4) ])
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "NormalIntersection", [ IsGroup, IsGroup ] );


#############################################################################
##
#O  Normalizer( <G>, <U> )
#O  Normalizer( <G>, <g> )
##
##  <#GAPDoc Label="Normalizer">
##  <ManSection>
##  <Heading>Normalizer</Heading>
##  <Oper Name="Normalizer" Arg='G, U' Label="for two groups"/>
##  <Oper Name="Normalizer" Arg='G, g'
##   Label="for a group and a group element"/>
##
##  <Description>
##  For two groups <A>G</A>, <A>U</A>,
##  <Ref Oper="Normalizer" Label="for two groups"/> computes the
##  normalizer <M>N_{<A>G</A>}(<A>U</A>)</M>,
##  that is, the stabilizer of <A>U</A>
##  under the conjugation action of <A>G</A>.
##  <P/>
##  For a group <A>G</A> and a group element <A>g</A>,
##  <Ref Oper="Normalizer" Label="for a group and a group element"/>
##  computes <M>N_{<A>G</A>}(\langle <A>g</A> \rangle)</M>.
##  <P/>
##  <Example><![CDATA[
##  gap> Normalizer(g,Subgroup(g,[(1,2,3)]));
##  Group([ (1,2,3), (2,3) ])
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
InParentFOA( "Normalizer", IsGroup, IsObject, DeclareAttribute );


#############################################################################
##
#O  CentralizerModulo(<G>,<N>,<elm>)   full preimage of C_(G/N)(elm.N)
##
##  <#GAPDoc Label="CentralizerModulo">
##  <ManSection>
##  <Oper Name="CentralizerModulo" Arg='G, N, elm'/>
##
##  <Description>
##  Computes the full preimage of the centralizer
##  <M>C_{{<A>G</A>/<A>N</A>}}(<A>elm</A> \cdot <A>N</A>)</M> in <A>G</A>
##  (without necessarily constructing the factor group).
##  <Example><![CDATA[
##  gap> CentralizerModulo(g,n,(1,2));
##  Group([ (3,4), (1,3)(2,4), (1,4)(2,3) ])
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation("CentralizerModulo", [IsGroup,IsGroup,IsObject]);


#############################################################################
##
#F  PCentralSeries( <G>, <p> )
##
##  <#GAPDoc Label="PCentralSeries">
##  <ManSection>
##  <Oper Name="PCentralSeries" Arg='G, p'/>
##
##  <Description>
##  The <A>p</A>-central series of <A>G</A> is defined by
##  <M>U_1:= <A>G</A></M>,
##  <M>U_i:= [<A>G</A>, U_{{i-1}}] U_{{i-1}}^{<A>p</A>}</M>.
##  <Example><![CDATA[
##  gap> g:=DicyclicGroup(12);;
##  gap> PCentralSeries(g,2);
##  [ <pc group of size 12 with 3 generators>, Group([ y3, y*y3 ]), Group([ y*y3 ]) ]
##  gap> g:=SymmetricGroup(4);;
##  gap> List(PCentralSeries(g,2), StructureDescription);
##  [ "S4", "A4" ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
KeyDependentOperation( "PCentralSeries", IsGroup, IsPosInt, "prime" );


#############################################################################
##
#F  PRump( <G>, <p> )
##
##  <#GAPDoc Label="PRump">
##  <ManSection>
##  <Oper Name="PRump" Arg='G, p'/>
##
##  <Description>
##  For a prime <M>p</M>, the <E><A>p</A>-rump</E> of a group <A>G</A> is the
##  subgroup <M><A>G</A>' <A>G</A>^{<A>p</A>}</M>. Unless it equals <A>G</A>
##  itself (which is the e.g. the case if <A>G</A> is perfect), it is equal
##  to the second term of the <A>p</A>-central series of <A>G</A>, see
##  <Ref Oper="PCentralSeries"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> g:=DicyclicGroup(12);;
##  gap> PRump(g,2) = PCentralSeries(g,2)[2];
##  true
##  gap> g:=SymmetricGroup(4);;
##  gap> PRump(g,2) = AlternatingGroup(4);
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
KeyDependentOperation( "PRump", IsGroup, IsPosInt, "prime" );


#############################################################################
##
#F  PCore( <G>, <p> )
##
##  <#GAPDoc Label="PCore">
##  <ManSection>
##  <Oper Name="PCore" Arg='G, p'/>
##
##  <Description>
##  <Index Key="Op(G)" Subkey="see PCore"><M>O_p(G)</M></Index>
##  The <E><A>p</A>-core</E> of <A>G</A> is the largest normal
##  <A>p</A>-subgroup of <A>G</A>.
##  It is the core of a Sylow <A>p</A>-subgroup of <A>G</A>,
##  see <Ref Oper="Core"/>.
##  <Example><![CDATA[
##  gap> g:=DicyclicGroup(12);;
##  gap> PCore(g,2);
##  Group([ y3 ])
##  gap> PCore(g,2) = Core(g,SylowSubgroup(g,2));
##  true
##  gap> PCore(g,3);
##  Group([ y*y3 ])
##  gap> PCore(g,5);
##  Group([  ])
##  gap> g:=SymmetricGroup(4);;
##  gap> PCore(g,2);
##  Group([ (1,4)(2,3), (1,2)(3,4) ])
##  gap> PCore(g,2) = Core(g,SylowSubgroup(g,2));
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
KeyDependentOperation( "PCore", IsGroup, IsPosInt, "prime" );

#############################################################################
##
#A  StructuralSeriesOfGroup( <G> )
##
##  <#GAPDoc Label="StructuralSeriesOfGroup">
##  <ManSection>
##  <Attr Name="StructuralSeriesOfGroup" Arg='G'/>
##
##  <Description>
##  The structural series of a finite group <A>G</A> is a descending series
##  of characteristic subgroups which goes through the derived series of
##  the solvable radical of $G$, refined into elementary abelian factors, as
##  well as the socle and the <A>Pker</A> (kernel of the action on socle
##  components) of the radical factor
##  <Example><![CDATA[
##  gap> gp:=WreathProduct(SymmetricGroup(5),SymmetricGroup(3));;
##  gap> gp:=WreathProduct(Group((1,2,3,4,5,6)),gp);;
##  gap> List(StructuralSeriesOfGroup(gp),Size);
##  [ 4874877920083968000, 812479653347328000, 101559956668416000, 470184984576, 32768, 1 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "StructuralSeriesOfGroup", IsGroup );


#############################################################################
##
#O  SubnormalSeries( <G>, <U> )
##
##  <#GAPDoc Label="SubnormalSeries">
##  <ManSection>
##  <Oper Name="SubnormalSeries" Arg='G, U'/>
##
##  <Description>
##  If <A>U</A> is a subgroup of <A>G</A> this operation returns a subnormal
##  series that descends from <A>G</A> to a subnormal subgroup
##  <M>V \geq </M><A>U</A>. If <A>U</A> is subnormal, <M>V =</M> <A>U</A>.
##  <Example><![CDATA[
##  gap> s:=SubnormalSeries(g,Group((1,2)(3,4))) =
##  > [ Group([ (1,2,3,4), (1,2) ]),
##  >   Group([ (1,2)(3,4), (1,3)(2,4) ]),
##  >   Group([ (1,2)(3,4) ]) ];
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
InParentFOA( "SubnormalSeries", IsGroup, IsGroup, DeclareAttribute );


#############################################################################
##
#F  SylowSubgroup( <G>, <p> )
##
##  <#GAPDoc Label="SylowSubgroup">
##  <ManSection>
##  <Oper Name="SylowSubgroup" Arg='G, p'/>
##
##  <Description>
##  returns a Sylow <A>p</A>-subgroup of the finite group <A>G</A>.
##  This is a <A>p</A>-subgroup of <A>G</A> whose index in <A>G</A> is
##  coprime to <A>p</A>.
##  <Ref Oper="SylowSubgroup"/> computes Sylow subgroups via the operation
##  <C>SylowSubgroupOp</C>.
##  <Example><![CDATA[
##  gap> g:=SymmetricGroup(4);;
##  gap> SylowSubgroup(g,2);
##  Group([ (1,2), (3,4), (1,3)(2,4) ])
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
KeyDependentOperation( "SylowSubgroup", IsGroup, IsPosInt, "prime" );


#############################################################################
##
#F  SylowComplement( <G>, <p> )
##
##  <#GAPDoc Label="SylowComplement">
##  <ManSection>
##  <Oper Name="SylowComplement" Arg='G, p'/>
##
##  <Description>
##  returns a Sylow <A>p</A>-complement of the finite group <A>G</A>.
##  This is a subgroup <M>U</M> of order coprime to <A>p</A> such that the
##  index <M>[<A>G</A>:U]</M> is a <A>p</A>-power.
##  <P/>
##  At the moment methods exist only if <A>G</A> is solvable and &GAP; will
##  issue an error if <A>G</A> is not solvable.
##  <P/>
##  <Example><![CDATA[
##  gap> SylowComplement(g,3);
##  Group([ (1,2), (3,4), (1,3)(2,4) ])
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
KeyDependentOperation( "SylowComplement", IsGroup, IsPosInt, "prime" );


#############################################################################
##
#F  HallSubgroup( <G>, <P> )
##
##  <#GAPDoc Label="HallSubgroup">
##  <ManSection>
##  <Oper Name="HallSubgroup" Arg='G, P'/>
##
##  <Description>
##  computes a <A>P</A>-Hall subgroup for a set <A>P</A> of primes.
##  This is a subgroup the order of which is only divisible by primes in
##  <A>P</A> and whose index is coprime to all primes in <A>P</A>. Such a
##  subgroup is unique up to conjugacy if <A>G</A> is solvable.
##  The function computes Hall subgroups via the operation
##  <C>HallSubgroupOp</C>.
##  <P/>
##  If <A>G</A> is solvable this function always returns a subgroup. If
##  <A>G</A> is not solvable this function might return a subgroup (if it is
##  unique up to conjugacy), a list of subgroups (which are representatives of
##  the conjugacy classes in case there are several such classes) or <K>fail</K>
##  if no such subgroup exists.
##  <Example><![CDATA[
##  gap> h:=SmallGroup(60,10);;
##  gap> u:=HallSubgroup(h,[2,3]);
##  Group([ f1, f2, f3 ])
##  gap> Size(u);
##  12
##  gap> h:=PSL(3,5);;
##  gap> HallSubgroup(h,[2,3]);
##  [ <permutation group of size 96 with 6 generators>,
##    <permutation group of size 96 with 6 generators> ]
##  gap> u := HallSubgroup(h,[3,31]);;
##  gap> Size(u); StructureDescription(u);
##  93
##  "C31 : C3"
##  gap> HallSubgroup(h,[5,31]);
##  fail
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
KeyDependentOperation( "HallSubgroup", IsGroup, IsList, ReturnTrue );


#############################################################################
##
#F  NormalHallSubgroupsFromSylows( <G>[, <method>] )
##
##  <ManSection>
##  <Func Name="NormalHallSubgroupsFromSylows" Arg="G[, method]"/>
##
##  <Description>
##    Computes all normal Hall subgroups, that is all normal subgroups
##    <A>N</A> for which the size of <A>N</A> is relatively prime to the
##    index of <A>N</A> in <A>G</A>.
##
##    Sometimes it is not desirable to compute all normal Hall subgroups. The
##    user can express such a wish by using the <A>method</A> <Q>"any"</Q>.
##    Then NormalHallSubgroupsFromSylows returns a nontrivial normal Hall
##    subgroup, if there is one, and returns fail, otherwise.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "NormalHallSubgroupsFromSylows" );


#############################################################################
##
#A  NormalHallSubgroups( <G> )
##
##  <ManSection>
##  <Attr Name="NormalHallSubgroups" Arg="G"/>
##
##  <Description>
##    Returns a list of all normal Hall subgroups, that is of all normal
##    subgroups <A>N</A> for which the size of <A>N</A> is relatively prime
##    to the index of <A>N</A> in <A>G</A>.
##  </Description>
##  </ManSection>
##
DeclareAttribute( "NormalHallSubgroups", IsGroup );


#############################################################################
##
#O  NrConjugacyClassesInSupergroup( <U>, <G> )
##
##  <ManSection>
##  <Oper Name="NrConjugacyClassesInSupergroup" Arg='U, G'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareOperation( "NrConjugacyClassesInSupergroup", [ IsGroup, IsGroup ] );


#############################################################################
##
#O  Factorization( <G>, <elm> )
##
##  <#GAPDoc Label="Factorization">
##  <ManSection>
##  <Oper Name="Factorization" Arg='G, elm'/>
##
##  <Description>
##  returns a factorization of <A>elm</A> as word in the generators of the
##  group <A>G</A> given in the attribute <Ref Attr="GeneratorsOfGroup"/>.
##  The attribute <Ref Attr="EpimorphismFromFreeGroup"/> of <A>G</A>
##  will contain a map from the free group in which the word is expressed
##  to the group <A>G</A>.
##  The attribute <Ref Attr="MappingGeneratorsImages"/> of this map gives a
##  list of generators and corresponding letters.
##  <P/>
##  The algorithm used forms all elements of the group to ensure a short
##  word is found. Therefore this function should <E>not</E> be used when the
##  group <A>G</A> has more than a few million elements.
##  Because of this, one should not call this function within algorithms,
##  but use homomorphisms instead.
##  <Example><![CDATA[
##  gap> G:=SymmetricGroup( 6 );;
##  gap> r:=(3,4);; s:=(1,2,3,4,5,6);;
##  gap> # create subgroup to force the system to use the generators r and s:
##  gap> H:= Subgroup(G, [ r, s ] );
##  Group([ (3,4), (1,2,3,4,5,6) ])
##  gap> Factorization( H, (1,2,3) );
##  (x2*x1)^2*x2^-2
##  gap> s*r*s*r*s^-2;
##  (1,2,3)
##  gap> MappingGeneratorsImages(EpimorphismFromFreeGroup(H));
##  [ [ x1, x2 ], [ (3,4), (1,2,3,4,5,6) ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "Factorization",
                  [ IsGroup, IsMultiplicativeElementWithInverse ] );

#############################################################################
##
#O  GrowthFunctionOfGroup( <G> )
#O  GrowthFunctionOfGroup( <G>, <r> )
##
##  <#GAPDoc Label="GrowthFunctionOfGroup">
##  <ManSection>
##  <Attr Name="GrowthFunctionOfGroup" Arg='G'/>
##  <Oper Name="GrowthFunctionOfGroup" Arg='G, radius' Label="with word length limit"/>
##
##  <Description>
##  For a group <A>G</A> with a generating set given in
##  <Ref Attr="GeneratorsOfGroup"/>,
##  this function calculates the number of elements whose shortest expression as
##  words in the generating set is of a particular length. It returns a list
##  <A>L</A>, whose <M>i+1</M> entry counts the number of elements whose
##  shortest word expression has length <M>i</M>.
##  If a maximal length <A>radius</A> is given, only words up to length
##  <A>radius</A> are counted. Otherwise the group must be finite and all
##  elements are enumerated.
##  <Example><![CDATA[
##  gap> GrowthFunctionOfGroup(MathieuGroup(12));
##  [ 1, 5, 19, 70, 255, 903, 3134, 9870, 25511, 38532, 16358, 382 ]
##  gap> GrowthFunctionOfGroup(MathieuGroup(12),2);
##  [ 1, 5, 19 ]
##  gap> GrowthFunctionOfGroup(MathieuGroup(12),99);
##  [ 1, 5, 19, 70, 255, 903, 3134, 9870, 25511, 38532, 16358, 382 ]
##  gap> free:=FreeGroup("a","b");
##  <free group on the generators [ a, b ]>
##  gap> product:=free/ParseRelators(free,"a2,b3");
##  <fp group on the generators [ a, b ]>
##  gap> SetIsFinite(product,false);
##  gap> GrowthFunctionOfGroup(product,10);
##  [ 1, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "GrowthFunctionOfGroup",IsGroup and HasGeneratorsOfGroup);
DeclareOperation( "GrowthFunctionOfGroup",
                  [ IsGroup and HasGeneratorsOfGroup,IsPosInt]);

#############################################################################
##
#O  GroupByGenerators( <gens> ) . . . . . . . . . . . . . group by generators
#O  GroupByGenerators( <gens>, <id> ) . . . . . . . . . . group by generators
##
##  <#GAPDoc Label="GroupByGenerators">
##  <ManSection>
##  <Oper Name="GroupByGenerators" Arg='gens'/>
##  <Oper Name="GroupByGenerators" Arg='gens, id'
##   Label="with explicitly specified identity element"/>
##
##  <Description>
##  <Ref Oper="GroupByGenerators"/> returns the group <M>G</M> generated by the list <A>gens</A>.
##  If a second argument <A>id</A> is present then this is stored as the identity
##  element of the group.
##  <P/>
##  The value of the attribute <Ref Attr="GeneratorsOfGroup"/> of <M>G</M> need not be equal
##  to <A>gens</A>.
##  <Ref Oper="GroupByGenerators"/> is the underlying operation called by <Ref Func="Group" Label="for several generators"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "GroupByGenerators", [ IsCollection ] );
DeclareOperation( "GroupByGenerators",
    [ IsListOrCollection, IsMultiplicativeElementWithInverse ] );


#############################################################################
##
#O  GroupWithGenerators( <gens>[, <id>] ) . . . . group with given generators
##
##  <#GAPDoc Label="GroupWithGenerators">
##  <ManSection>
##  <Oper Name="GroupWithGenerators" Arg='gens[, id]'/>
##
##  <Description>
##  <Ref Oper="GroupWithGenerators"/> returns the group <M>G</M> generated by
##  the list <A>gens</A>.
##  If a second argument <A>id</A> is present then this is stored as the
##  identity element of the group.
##  The value of the attribute <Ref Attr="GeneratorsOfGroup"/> of <M>G</M>
##  is equal to <A>gens</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "GroupWithGenerators", [ IsCollection ] );
DeclareOperation( "GroupWithGenerators",
    [ IsListOrCollection, IsMultiplicativeElementWithInverse ] );


#F  MakeGroupyType( <fam>, <filt>, <gens>, <isgroup> )
# type creator function to incorporate basic deductions so immediate methods
# are not needed
DeclareGlobalFunction("MakeGroupyType");

DeclareGlobalFunction("MakeGroupyObj");


#############################################################################
##
#F  Group( <gen>, ... )
#F  Group( <gens>[, <id>] )
##
##  <#GAPDoc Label="Group">
##  <ManSection>
##  <Heading>Group</Heading>
##  <Func Name="Group" Arg='gen, ...' Label="for several generators"/>
##  <Func Name="Group" Arg='gens[, id]'
##   Label="for a list of generators (and an identity element)"/>
##
##  <Description>
##  <C>Group( <A>gen</A>, ... )</C> is the group generated by the arguments
##  <A>gen</A>, ...
##  <P/>
##  If the only argument <A>gens</A> is a list that is not a matrix then
##  <C>Group( <A>gens</A> )</C> is the group generated by the elements of
##  that list.
##  <P/>
##  If there are two arguments, a list <A>gens</A> and an element <A>id</A>,
##  then <C>Group( <A>gens</A>, <A>id</A> )</C> is the group generated by the
##  elements of <A>gens</A>, with identity <A>id</A>.
##  <P/>
##  Note that the value of the attribute <Ref Attr="GeneratorsOfGroup"/>
##  need not be equal to the list <A>gens</A> of generators entered as
##  argument.
##  Use <Ref Oper="GroupWithGenerators"/> if you want to be
##  sure that the argument <A>gens</A> is stored as value of
##  <Ref Attr="GeneratorsOfGroup"/>.
##  <Example><![CDATA[
##  gap> g:=Group((1,2,3,4),(1,2));
##  Group([ (1,2,3,4), (1,2) ])
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "Group" );


#############################################################################
##
#F  Subgroup( <G>, <gens> ) . . . . . . . subgroup of <G> generated by <gens>
#F  SubgroupNC( <G>, <gens> )
#F  Subgroup( <G> )
##
##  <#GAPDoc Label="Subgroup">
##  <ManSection>
##  <Func Name="Subgroup" Arg='G, gens'/>
##  <Func Name="SubgroupNC" Arg='G, gens'/>
##  <Func Name="Subgroup" Arg='G' Label="for a group"/>
##
##  <Description>
##  creates the subgroup <A>U</A> of <A>G</A> generated by <A>gens</A>.
##  The <Ref Func="Parent"/> value of <A>U</A> will be <A>G</A>.
##  The <C>NC</C> version does not check, whether the elements in <A>gens</A>
##  actually lie in <A>G</A>.
##  <P/>
##  The unary version of <Ref Func="Subgroup" Label="for a group"/>
##  creates a (shell) subgroup that does not even
##  know generators but can be used to collect information about a
##  particular subgroup over time.
##  <Example><![CDATA[
##  gap> u:=Subgroup(g,[(1,2,3),(1,2)]);
##  Group([ (1,2,3), (1,2) ])
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareSynonym( "Subgroup", SubmagmaWithInverses );

DeclareSynonym( "SubgroupNC", SubmagmaWithInversesNC );

#############################################################################
##
#F  SubgroupByProperty( <G>, <prop> )
##
##  <#GAPDoc Label="SubgroupByProperty">
##  <ManSection>
##  <Func Name="SubgroupByProperty" Arg='G, prop'/>
##
##  <Description>
##  creates a subgroup of <A>G</A> consisting of those elements fulfilling
##  <A>prop</A> (which is a tester function).
##  No test is done whether the property actually defines a subgroup.
##  <P/>
##  Note that currently very little functionality beyond an element test
##  exists for groups created this way.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "SubgroupByProperty" );

#############################################################################
##
#A  ElementTestFunction( <G> )
##
##  <ManSection>
##  <Attr Name="ElementTestFunction" Arg='G'/>
##
##  <Description>
##  This attribute contains a function that provides an element test for the
##  group <A>G</A>.
##  </Description>
##  </ManSection>
##
DeclareAttribute( "ElementTestFunction", IsGroup );

#############################################################################
##
#F  SubgroupShell( <G> )
##
##  <#GAPDoc Label="SubgroupShell">
##  <ManSection>
##  <Func Name="SubgroupShell" Arg='G'/>
##
##  <Description>
##  creates a subgroup of <A>G</A> which at this point is not yet specified
##  further (but will be later, for example by assigning a generating set).
##  <Example><![CDATA[
##  gap> u:=SubgroupByProperty(g,i->3^i=3);
##  <subgrp of Group([ (1,2,3,4), (1,2) ]) by property>
##  gap> (1,3) in u; (1,4) in u; (1,5) in u;
##  false
##  true
##  false
##  gap> GeneratorsOfGroup(u);
##  [ (1,2), (1,4,2) ]
##  gap> u:=SubgroupShell(g);
##  <group>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "SubgroupShell" );


#############################################################################
##
#C  IsRightTransversal( <obj> )
##
##  <ManSection>
##  <Filt Name="IsRightTransversal" Arg='obj' Type='Category'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareCategory("IsRightTransversal",IsCollection);
DeclareCategoryCollections("IsRightTransversal");

#############################################################################
##
#O  RightTransversal( <G>, <U> )
##
##  <#GAPDoc Label="RightTransversal">
##  <ManSection>
##  <Oper Name="RightTransversal" Arg='G, U'/>
##
##  <Description>
##  A right transversal <M>t</M> is a list of representatives for the set
##  <M><A>U</A> \setminus <A>G</A></M> of right
##  cosets (consisting of cosets <M>Ug</M>) of <M>U</M> in <M>G</M>.
##  <P/>
##  The object returned by <Ref Oper="RightTransversal"/> is not a
##  plain list, but an object that behaves like an immutable list of length
##  <M>[<A>G</A>:<A>U</A>]</M>,
##  except if <A>U</A> is the trivial subgroup of <A>G</A>
##  in which case <Ref Oper="RightTransversal"/> may return the
##  sorted plain list of coset representatives.
##  <P/>
##  The operation <Ref Oper="PositionCanonical"/>,
##  called for a transversal <M>t</M>
##  and an element <M>g</M> of <A>G</A>, will return the position of the
##  representative in <M>t</M> that lies in the same coset of <A>U</A> as the
##  element <M>g</M> does.
##  (In comparison, <Ref Oper="Position"/> will return <K>fail</K> if the
##  element is not equal to the representative.)
##  Functions that implement group actions such as
##  <Ref Func="Action" Label="for a group, an action domain, etc."/> or
##  <Ref Func="Permutation" Label="for a group, an action domain, etc."/>
##  (see Chapter&nbsp;<Ref Chap="Group Actions"/>)
##  use <Ref Oper="PositionCanonical"/>, therefore it is possible to
##  <Q>act</Q> on a right transversal to implement the action on the cosets.
##  This is often much more efficient than acting on cosets.
##  <Example><![CDATA[
##  gap> g:=Group((1,2,3,4),(1,2));;
##  gap> u:=Subgroup(g,[(1,2,3),(1,2)]);;
##  gap> rt:=RightTransversal(g,u);
##  RightTransversal(Group([ (1,2,3,4), (1,2) ]),Group([ (1,2,3), (1,2) ]))
##  gap> Length(rt);
##  4
##  gap> Position(rt,(1,2,3));
##  fail
##  ]]></Example>
##  <P/>
##  Note that the elements of a right transversal are not necessarily
##  <Q>canonical</Q> in the sense of
##  <Ref Oper="CanonicalRightCosetElement"/>, but we may compute a list of
##  canonical coset representatives by calling that function.
##  (See also <Ref Oper="PositionCanonical"/>.)
##  <P/>
##  <Example><![CDATA[
##  gap> List(RightTransversal(g,u),i->CanonicalRightCosetElement(u,i));
##  [ (), (2,3,4), (1,2,3,4), (3,4) ]
##  gap> PositionCanonical(rt,(1,2,3));
##  1
##  gap> rt[1];
##  ()
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
InParentFOA( "RightTransversal", IsGroup, IsGroup, DeclareAttribute );


#############################################################################
##
#O  IntermediateSubgroups( <G>, <U> )
##
##  <#GAPDoc Label="IntermediateSubgroups">
##  <ManSection>
##  <Oper Name="IntermediateSubgroups" Arg='G, U'/>
##
##  <Description>
##  returns a list of all subgroups of <A>G</A> that properly contain
##  <A>U</A>; that is all subgroups between <A>G</A> and <A>U</A>.
##  It returns a record with a component <C>subgroups</C>, which is a list of
##  these subgroups, as well as a component <C>inclusions</C>,
##  which lists all maximality inclusions among these subgroups.
##  A maximality inclusion is given as a list <M>[i, j]</M> indicating that
##  the subgroup number <M>i</M> is a maximal subgroup of the subgroup number
##  <M>j</M>,
##  the numbers <M>0</M> and <M>1 +</M> <C>Length(subgroups)</C> are used to
##  denote <A>U</A> and <A>G</A>, respectively.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "IntermediateSubgroups", [IsGroup, IsGroup] );


#############################################################################
##
#A  IsomorphismTypeInfoFiniteSimpleGroup( <G> )
##
##  <#GAPDoc Label="IsomorphismTypeInfoFiniteSimpleGroup">
##  <ManSection>
##  <Heading>IsomorphismTypeInfoFiniteSimpleGroup</Heading>
##  <Attr Name="IsomorphismTypeInfoFiniteSimpleGroup" Arg='G'
##   Label="for a group"/>
##  <Attr Name="IsomorphismTypeInfoFiniteSimpleGroup" Arg='n'
##   Label="for a group order"/>
##
##  <Description>
##  For a finite simple group <A>G</A>,
##  <Ref Attr="IsomorphismTypeInfoFiniteSimpleGroup" Label="for a group"/>
##  returns a record with the components <C>name</C>, <C>shortname</C>,
##  <C>series</C>, and possibly <C>parameter</C>,
##  describing the isomorphism type of <A>G</A>.
##  <P/>
##  The values of the components <C>name</C>, <C>shortname</C>,
##  and <C>series</C> are strings,
##  <C>name</C> gives name(s) for <A>G</A>,
##  <C>shortname</C> gives one name for <A>G</A> that is compatible with the
##  naming scheme used in the &GAP; packages <Package>CTblLib</Package> and
##  <Package>AtlasRep</Package>
##  (and in the &ATLAS; of Finite Groups&nbsp;<Cite Key="CCN85"/>),
##  and <C>series</C> describes the following series.
##  <P/>
##  (If different characterizations of <A>G</A> are possible
##  only one is given by <C>series</C> and <C>parameter</C>,
##  while <C>name</C> may give several names.)
##  <List>
##  <Mark><C>"A"</C></Mark>
##  <Item>
##   Alternating groups, <C>parameter</C> gives the natural degree.
##  </Item>
##  <Mark><C>"L"</C></Mark>
##  <Item>
##   Linear groups (Chevalley type <M>A</M>),
##   <C>parameter</C> is a list <M>[ n, q ]</M> that indicates
##   <M>L(n,q)</M>.
##  </Item>
##  <Mark><C>"2A"</C></Mark>
##  <Item>
##   Twisted Chevalley type <M>{}^2A</M>,
##   <C>parameter</C> is a list <M>[ n, q ]</M> that indicates
##   <M>{}^2A(n,q)</M>.
##  </Item>
##  <Mark><C>"B"</C></Mark>
##  <Item>
##   Chevalley type <M>B</M>,
##   <C>parameter</C> is a list <M>[n, q ]</M> that indicates
##   <M>B(n,q)</M>.
##  </Item>
##  <Mark><C>"2B"</C></Mark>
##  <Item>
##   Twisted Chevalley type <M>{}^2B</M>,
##   <C>parameter</C> is a value <M>q</M> that indicates <M>{}^2B(2,q)</M>.
##  </Item>
##  <Mark><C>"C"</C></Mark>
##  <Item>
##   Chevalley type <M>C</M>,
##   <C>parameter</C> is a list <M>[ n, q ]</M> that indicates
##   <M>C(n,q)</M>.
##  </Item>
##  <Mark><C>"D"</C></Mark>
##  <Item>
##   Chevalley type <M>D</M>,
##   <C>parameter</C> is a list <M>[ n, q ]</M> that indicates
##   <M>D(n,q)</M>.
##  </Item>
##  <Mark><C>"2D"</C></Mark>
##  <Item>
##   Twisted Chevalley type <M>{}^2D</M>,
##   <C>parameter</C> is a list <M>[ n, q ]</M> that indicates
##   <M>{}^2D(n,q)</M>.
##  </Item>
##  <Mark><C>"3D"</C></Mark>
##  <Item>
##   Twisted Chevalley type <M>{}^3D</M>,
##   <C>parameter</C> is a value <M>q</M> that indicates <M>{}^3D(4,q)</M>.
##  </Item>
##  <Mark><C>"E"</C></Mark>
##  <Item>
##   Exceptional Chevalley type <M>E</M>,
##   <C>parameter</C> is a list <M>[ n, q ]</M> that indicates
##   <M>E_n(q)</M>.
##   The value of <A>n</A> is 6, 7, or 8.
##  </Item>
##  <Mark><C>"2E"</C></Mark>
##  <Item>
##   Twisted exceptional Chevalley type <M>E_6</M>,
##   <C>parameter</C> is a value <M>q</M> that indicates <M>{}^2E_6(q)</M>.
##  </Item>
##  <Mark><C>"F"</C></Mark>
##  <Item>
##   Exceptional Chevalley type <M>F</M>,
##   <C>parameter</C> is a value <M>q</M> that indicates <M>F(4,q)</M>.
##  </Item>
##  <Mark><C>"2F"</C></Mark>
##  <Item>
##   Twisted exceptional Chevalley type <M>{}^2F</M> (Ree groups),
##   <C>parameter</C> is a value <M>q</M> that indicates <M>{}^2F(4,q)</M>.
##  </Item>
##  <Mark><C>"G"</C></Mark>
##  <Item>
##   Exceptional Chevalley type <M>G</M>,
##   <C>parameter</C> is a value <M>q</M> that indicates <M>G(2,q)</M>.
##  </Item>
##  <Mark><C>"2G"</C></Mark>
##  <Item>
##   Twisted exceptional Chevalley type <M>{}^2G</M> (Ree groups),
##   <C>parameter</C> is a value <M>q</M> that indicates <M>{}^2G(2,q)</M>.
##  </Item>
##  <Mark><C>"Spor"</C></Mark>
##  <Item>
##   Sporadic simple groups, <C>name</C> gives the name.
##  </Item>
##  <Mark><C>"Z"</C></Mark>
##  <Item>
##   Cyclic groups of prime size, <C>parameter</C> gives the size.
##  </Item>
##  </List>
##  <P/>
##  An equal sign in the name denotes different naming schemes for the same
##  group, a tilde sign abstract isomorphisms between groups constructed
##  in a different way.
##  <P/>
##  <Example><![CDATA[
##  gap> IsomorphismTypeInfoFiniteSimpleGroup(
##  >                             Group((4,5)(6,7),(1,2,4)(3,5,6)));
##  rec(
##    name := "A(1,7) = L(2,7) ~ B(1,7) = O(3,7) ~ C(1,7) = S(2,7) ~ 2A(1,\
##  7) = U(2,7) ~ A(2,2) = L(3,2)", parameter := [ 2, 7 ], series := "L",
##    shortname := "L3(2)" )
##  ]]></Example>
##  <P/>
##  For a positive integer <A>n</A>,
##  <Ref Attr="IsomorphismTypeInfoFiniteSimpleGroup" Label="for a group order"/>
##  returns <K>fail</K> if <A>n</A> is not the order of a finite simple
##  group, and a record as described for the case of a group <A>G</A>
##  otherwise.
##  If more than one simple group of order <A>n</A> exists then the result
##  record contains only the <C>name</C> component, a string that lists the
##  two possible isomorphism types of simple groups of this order.
##  <P/>
##  <Example><![CDATA[
##  gap> IsomorphismTypeInfoFiniteSimpleGroup( 5 );
##  rec( name := "Z(5)", parameter := 5, series := "Z", shortname := "C5"
##   )
##  gap> IsomorphismTypeInfoFiniteSimpleGroup( 6 );
##  fail
##  gap> IsomorphismTypeInfoFiniteSimpleGroup(Size(SymplecticGroup(6,3))/2);
##  rec(
##    name := "cannot decide from size alone between B(3,3) = O(7,3) and C\
##  (3,3) = S(6,3)", parameter := [ 3, 3 ] )
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "IsomorphismTypeInfoFiniteSimpleGroup", IsGroup );
DeclareAttribute( "IsomorphismTypeInfoFiniteSimpleGroup", IsPosInt );


#############################################################################
##
#F  SmallSimpleGroup( <order>[, <i>] )
##
##  <#GAPDoc Label="SmallSimpleGroup">
##  <ManSection>
##  <Func Name="SmallSimpleGroup" Arg='order[, i]'/>
##  <Returns>
##    The <A>i</A>th simple group of order <A>order</A> in the stored list,
##    given in a small-degree permutation representation, or <Ref Var="fail"/>
##    if no such simple group exists.
##  </Returns>
##  <Description>
##    If <A>i</A> is not given, it defaults to&nbsp;1.
##    Currently, all simple groups of order less than <M>10^6</M> are
##    available via this function.
##  <Example>
##  gap> SmallSimpleGroup(60);
##  A5
##  gap> SmallSimpleGroup(20160,1);
##  A8
##  gap> SmallSimpleGroup(20160,2);
##  PSL(3,4)
##  </Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "SmallSimpleGroup" );


#############################################################################
##
#F  AllSmallNonabelianSimpleGroups( <orders> )
##
##  <#GAPDoc Label="AllSmallNonabelianSimpleGroups">
##  <ManSection>
##  <Func Name="AllSmallNonabelianSimpleGroups" Arg='orders'/>
##  <Returns>
##    A list of all nonabelian simple groups whose order lies in the range
##    <A>orders</A>.
##  </Returns>
##  <Description>
##    The groups are given in small-degree permutation representations.
##    The returned list is sorted by ascending group order.
##    Currently, all simple groups of order less than <M>10^6</M> are
##    available via this function.
##  <Example>
##  gap> List(AllSmallNonabelianSimpleGroups([1..1000000]),
##  >         StructureDescription);
##  [ "A5", "PSL(3,2)", "A6", "PSL(2,8)", "PSL(2,11)", "PSL(2,13)",
##    "PSL(2,17)", "A7", "PSL(2,19)", "PSL(2,16)", "PSL(3,3)",
##    "PSU(3,3)", "PSL(2,23)", "PSL(2,25)", "M11", "PSL(2,27)",
##    "PSL(2,29)", "PSL(2,31)", "A8", "PSL(3,4)", "PSL(2,37)", "O(5,3)",
##    "Sz(8)", "PSL(2,32)", "PSL(2,41)", "PSL(2,43)", "PSL(2,47)",
##    "PSL(2,49)", "PSU(3,4)", "PSL(2,53)", "M12", "PSL(2,59)",
##    "PSL(2,61)", "PSU(3,5)", "PSL(2,67)", "J1", "PSL(2,71)", "A9",
##    "PSL(2,73)", "PSL(2,79)", "PSL(2,64)", "PSL(2,81)", "PSL(2,83)",
##    "PSL(2,89)", "PSL(3,5)", "M22", "PSL(2,97)", "PSL(2,101)",
##    "PSL(2,103)", "HJ", "PSL(2,107)", "PSL(2,109)", "PSL(2,113)",
##    "PSL(2,121)", "PSL(2,125)", "O(5,4)" ]
##  </Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "AllSmallNonabelianSimpleGroups" );


#############################################################################
##
#A  IsomorphismPcGroup( <G> )
##
##  <#GAPDoc Label="IsomorphismPcGroup">
##  <ManSection>
##  <Attr Name="IsomorphismPcGroup" Arg='G'/>
##
##  <Description>
##  <Index Subkey="pc group">isomorphic</Index>
##  returns an isomorphism from <A>G</A> onto an isomorphic pc group.
##  The series chosen for this pc representation depends on
##  the method chosen.
##  <A>G</A> must be a polycyclic group of any kind, for example a solvable
##  permutation group.
##  <Example><![CDATA[
##  gap> G := Group( (1,2,3), (3,4,1) );;
##  gap> iso := IsomorphismPcGroup( G );
##  Pcgs([ (2,4,3), (1,2)(3,4), (1,3)(2,4) ]) -> [ f1, f2, f3 ]
##  gap> H := Image( iso );
##  Group([ f1, f2, f3 ])
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "IsomorphismPcGroup", IsGroup );


#############################################################################
##
#A  IsomorphismSpecialPcGroup( <G> )
##
##  <#GAPDoc Label="IsomorphismSpecialPcGroup">
##  <ManSection>
##  <Attr Name="IsomorphismSpecialPcGroup" Arg='G'/>
##
##  <Description>
##  returns an isomorphism from <A>G</A> onto an isomorphic pc group
##  whose family pcgs is a special pcgs.
##  (This can be beneficial to the runtime of calculations.)
##  <A>G</A> may be a polycyclic group of any kind, for example a solvable
##  permutation group.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "IsomorphismSpecialPcGroup", IsGroup );


#############################################################################
##
#A  IsomorphismPermGroup( <G> )
##
##  <#GAPDoc Label="IsomorphismPermGroup">
##  <ManSection>
##  <Attr Name="IsomorphismPermGroup" Arg='G'/>
##
##  <Description>
##  returns an isomorphism from the group <A>G</A> onto a permutation group
##  which is isomorphic to <A>G</A>.
##  The method will select a suitable permutation representation.
##  <Example><![CDATA[
##  gap> g:=SmallGroup(24,12);
##  <pc group of size 24 with 4 generators>
##  gap> iso:=IsomorphismPermGroup(g);
##  [ f1, f2, f3, f4 ] -> [ (2,3), (2,3,4), (1,2)(3,4), (1,3)(2,4) ]
##  gap> Image(iso,g.3*g.4);
##  (1,4)(2,3)
##  ]]></Example>
##  <P/>
##  In many cases the permutation representation constructed by
##  <Ref Attr="IsomorphismPermGroup"/> is regular.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("IsomorphismPermGroup",IsSemigroup);


#############################################################################
##
#A  IsomorphismFpGroup( <G> )
##
##  <#GAPDoc Label="IsomorphismFpGroup">
##  <ManSection>
##  <Attr Name="IsomorphismFpGroup" Arg='G'/>
##
##  <Description>
##  returns an isomorphism from the given finite group <A>G</A> to a finitely
##  presented group isomorphic to <A>G</A>.
##  The function first <E>chooses a set of generators of <A>G</A></E>
##  and then computes a presentation in terms of these generators.
##  <Example><![CDATA[
##  gap> g := Group( (2,3,4,5), (1,2,5) );;
##  gap> iso := IsomorphismFpGroup( g );
##  [ (1,2), (2,3), (3,4), (4,5) ] -> [ F1, F2, F3, F4 ]
##  gap> fp := Image( iso );
##  <fp group of size 120 on the generators [ F1, F2, F3, F4 ]>
##  gap> RelatorsOfFpGroup( fp );
##  [ F1^2, F2^2, F3^2, F4^2, (F1*F2)^3, (F1*F3)^2, (F1*F4)^2, (F2*F3)^3,
##    (F2*F4)^2, (F3*F4)^3 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "IsomorphismFpGroup", IsGroup );


#############################################################################
##
#A  IsomorphismFpGroupByGenerators( <G>,<gens>[,<string>] )
#A  IsomorphismFpGroupByGeneratorsNC( <G>,<gens>,<string> )
##
##  <#GAPDoc Label="IsomorphismFpGroupByGenerators">
##  <ManSection>
##  <Func Name="IsomorphismFpGroupByGenerators" Arg='G,gens[,string]'/>
##  <Oper Name="IsomorphismFpGroupByGeneratorsNC" Arg='G,gens,string'/>
##
##  <Description>
##  returns an isomorphism from a finite group <A>G</A>
##  to a finitely presented group <A>F</A> isomorphic to <A>G</A>.
##  The generators of <A>F</A> correspond to the
##  <E>generators of <A>G</A> given in the list <A>gens</A></E>.
#   If <A>string</A> is given it is used to name the generators of the
##  finitely presented group.
##  <P/>
##  The <C>NC</C> version will avoid testing whether the elements in
##  <A>gens</A> generate <A>G</A>.
##  <Example><![CDATA[
##  gap> SetInfoLevel( InfoFpGroup, 1 );
##  gap> iso := IsomorphismFpGroupByGenerators( g, [ (1,2), (1,2,3,4,5) ] );
##  #I  the image group has 2 gens and 5 rels of total length 39
##  [ (1,2), (1,2,3,4,5) ] -> [ F1, F2 ]
##  gap> fp := Image( iso );
##  <fp group of size 120 on the generators [ F1, F2 ]>
##  ]]></Example>
##  <P/>
##  The main task of the function
##  <Ref Func="IsomorphismFpGroupByGenerators"/> is to find a presentation of
##  <A>G</A> in the provided generators <A>gens</A>.
##  In the case of a permutation group <A>G</A> it does this by first
##  constructing a stabilizer chain of <A>G</A> and then it works through
##  that chain from the bottom to the top, recursively computing a
##  presentation for each of the involved stabilizers.
##  The method used is essentially an implementation of John Cannon's
##  multi-stage relations-finding algorithm as described in
##  <Cite Key="Neu82"/> (see also <Cite Key="Can73"/> for a more graph
##  theoretical description).
##  Moreover, it makes heavy use of Tietze transformations in each stage to
##  avoid an explosion of the total length of the relators.
##  <P/>
##  Note that because of the random methods involved in the construction of
##  the stabilizer chain the resulting presentations of <A>G</A> will in
##  general be different for repeated calls with the same arguments.
##  <P/>
##  <Example><![CDATA[
##  gap> M12 := MathieuGroup( 12 );
##  Group([ (1,2,3,4,5,6,7,8,9,10,11), (3,7,11,8)(4,10,5,6),
##    (1,12)(2,11)(3,6)(4,8)(5,9)(7,10) ])
##  gap> gens := GeneratorsOfGroup( M12 );;
##  gap> iso := IsomorphismFpGroupByGenerators( M12, gens );;
##  #I  the image group has 3 gens and 24 rels of total length 669
##  gap> iso := IsomorphismFpGroupByGenerators( M12, gens );;
##  #I  the image group has 3 gens and 20 rels of total length 414
##  ]]></Example>
##  <P/>
##  Also in the case of a permutation group <A>G</A>, the function
##  <Ref Func="IsomorphismFpGroupByGenerators"/> supports the option
##  <C>method</C> that can be used to modify the strategy.
##  The option <C>method</C> may take the following values.
##  <P/>
##  <List>
##  <Mark><C>method := "regular"</C></Mark>
##  <Item>
##    This may be specified for groups of small size, up to <M>10^5</M> say.
##    It implies that the function first constructs a regular representation
##    <A>R</A> of <A>G</A> and then a presentation of <A>R</A>.
##    In general, this presentation will be much more concise than the
##    default one, but the price is the time needed for the construction of
##    <A>R</A>.
##  </Item>
##  <Mark><C>method := [ "regular", bound ]</C></Mark>
##  <Item>
##    This is a refinement of the previous possibility.
##    In this case, <C>bound</C> should be an integer, and if so the method
##    <C>"regular"</C> as described above is applied to the largest
##    stabilizer in the stabilizer chain of <A>G</A> whose size does not
##    exceed the given bound and then the multi-stage algorithm is used to
##    work through the chain from that subgroup to the top.
##  </Item>
##  <Mark><C>method := "fast"</C></Mark>
##  <Item>
##    This chooses an alternative method which essentially is a kind of
##    multi-stage algorithm for a stabilizer chain of <A>G</A> but does not
##    make any attempt do reduce the number of relators as it is done in
##    Cannon's algorithm or to reduce their total length.
##    Hence it is often much faster than the default method, but the total
##    length of the resulting presentation may be huge.
##  </Item>
##  <Mark><C>method := "default"</C></Mark>
##  <Item>
##    This simply means that the default method shall be used, which is the
##    case if the option <C>method</C> is not given a value.
##  </Item>
##  </List>
##  <P/>
##  <Example><![CDATA[
##  gap> iso := IsomorphismFpGroupByGenerators( M12, gens :
##  >                                           method := "regular" );;
##  #I  the image group has 3 gens and 11 rels of total length 92
##  gap> iso := IsomorphismFpGroupByGenerators( M12, gens :
##  >                                           method := "fast" );;
##  #I  the image group has 3 gens and 136 rels of total length 3170
##  ]]></Example>
##  <P/>
##  Though the option <C>method := "regular"</C> is only checked in the case
##  of a permutation group it also affects the performance and the results of
##  the function <Ref Func="IsomorphismFpGroupByGenerators"/> for other
##  groups, e. g. for matrix groups.
##  This happens because, for these groups, the function first calls the
##  function <Ref Attr="NiceMonomorphism"/> to get a bijective action
##  homomorphism from <A>G</A> to a suitable permutation group,
##  <M>P</M> say, and then, recursively, calls itself for the group <M>P</M>
##  so that now the option becomes relevant.
##  <P/>
##  <Example><![CDATA[
##  gap> G := ImfMatrixGroup( 5, 1, 3 );
##  ImfMatrixGroup(5,1,3)
##  gap> gens := GeneratorsOfGroup( G );
##  [ [ [ -1, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 0 ], [ 0, 0, 0, 1, 0 ],
##        [ -1, -1, -1, -1, 2 ], [ -1, 0, 0, 0, 1 ] ],
##    [ [ 0, 1, 0, 0, 0 ], [ 0, 0, 1, 0, 0 ], [ 0, 0, 0, 1, 0 ],
##        [ 1, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 1 ] ] ]
##  gap> iso := IsomorphismFpGroupByGenerators( G, gens );;
##  #I  the image group has 2 gens and 11 rels of total length 120
##  gap> iso := IsomorphismFpGroupByGenerators( G, gens :
##  >                                           method := "regular");;
##  #I  the image group has 2 gens and 6 rels of total length 56
##  gap> SetInfoLevel( InfoFpGroup, 0 );
##  gap> iso;
##  <composed isomorphism:[ [ [ -1, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 0 ], [ 0, \
##  0, 0, 1, 0 ], [ -1, -1, -1, -1, 2 ], [ -1, 0, 0, 0, 1 ] ], [ [ 0, 1, 0\
##  , 0, 0 ], [ 0, 0, 1, 0, 0 ], [ 0, 0, 0, 1, 0 ], [ 1, 0, 0, 0, 0 ], [ 0\
##  , 0, 0, 0, 1 ] ] ]->[ F1, F2 ]>
##  gap> ConstituentsCompositionMapping(iso);
##  [ <action isomorphism>,
##    [ (2,3,4)(5,6)(8,9,10), (1,2,3,5)(6,7,8,9) ] -> [ F1, F2 ] ]
##  ]]></Example>
##  <P/>
##  Since &GAP; cannot decompose elements of a matrix group into generators,
##  the resulting isomorphism is stored as a composition of a (faithful)
##  permutation action on vectors and a homomorphism from the permutation image
##  to the finitely presented group. In such a situation the constituent
##  mappings can be obtained via <Ref Func="ConstituentsCompositionMapping"/>
##  as separate &GAP; objects.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("IsomorphismFpGroupByGenerators");
DeclareOperation( "IsomorphismFpGroupByGeneratorsNC",
    [ IsGroup, IsList, IsString ] );

DeclareOperation(
    "IsomorphismFpGroupBySubnormalSeries", [IsGroup, IsList, IsString] );

DeclareOperation(
    "IsomorphismFpGroupByCompositionSeries", [IsGroup, IsString] );

DeclareOperation(
    "IsomorphismFpGroupByChiefSeries", [IsGroup, IsString] );

DeclareGlobalFunction( "IsomorphismFpGroupByPcgs" );

#############################################################################
##
#A  IsomorphismFpGroupForRewriting( <G> )
##
##  <#GAPDoc Label="IsomorphismFpGroupForRewriting">
##  <ManSection>
##  <Attr Name="IsomorphismFpGroupForRewriting" Arg='G'/>
##
##  <Description>
##  returns an isomorphism from the given finite group <A>G</A> to a finitely
##  presented group isomorphic to <A>G</A>. If possible, generators are
##  chosen to lead to a monoid presentation that leads to a short
##  set of confluent rewriting rules.
##  <Example><![CDATA[
##  gap> g := AlternatingGroup(5);;
##  gap> iso := IsomorphismFpGroupForRewriting( g );
##  [ (1,2,3), (1,2)(3,4), (1,2)(4,5) ] -> [ A_5.1, A_5.2, A_5.3 ]
##  gap> fp := Image( iso );;
##  gap> RelatorsOfFpGroup( fp );
##  [ A_5.1^3, A_5.2^2, A_5.3^2, (A_5.1*A_5.2)^3, (A_5.1*A_5.3)^2,
##    (A_5.2*A_5.3)^3 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "IsomorphismFpGroupForRewriting", IsGroup );


#############################################################################
##
#A  ConfluentMonoidPresentationForGroup( <G> )
##
##  <#GAPDoc Label="ConfluentMonoidPresentationForGroup">
##  <ManSection>
##  <Attr Name="ConfluentMonoidPresentationForGroup" Arg='G'/>
##
##  <Description>
##  This attribute holds, for a (finite) group <A>G</A>, a record that holds
##  information about a confluent monoid presentation, namely a homomorphism
##  from <A>G</A> to a finitely presented group, a homomorphism from this
##  finitely presented group to a finitely presented monoid, whose presentation
##  is a confluent rewriting system, and an ordering wrt. which this system is
##  confluent.  It is made an attribute
##  to ensure that iterated cohomology computations use the same presentation.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "ConfluentMonoidPresentationForGroup", IsGroup );


#############################################################################
##
#A  PrimePowerComponents( <g> )
##
##  <ManSection>
##  <Attr Name="PrimePowerComponents" Arg='g'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareAttribute( "PrimePowerComponents", IsMultiplicativeElement );


#############################################################################
##
#O  PrimePowerComponent( <g>, <p> )
##
##  <ManSection>
##  <Oper Name="PrimePowerComponent" Arg='g, p'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareOperation( "PrimePowerComponent",
    [ IsMultiplicativeElement, IsPosInt ] );


#############################################################################
##
#O  PowerMapOfGroup( <G>, <n>, <ccl> )
##
##  <ManSection>
##  <Oper Name="PowerMapOfGroup" Arg='G, n, ccl'/>
##
##  <Description>
##  is a list of positions,
##  at position <M>i</M> the position of the conjugacy class containing
##  the <A>n</A>-th powers of the elements in the <M>i</M>-th class
##  of the list <A>ccl</A> of conjugacy classes.
##  </Description>
##  </ManSection>
##
DeclareOperation( "PowerMapOfGroup", [ IsGroup, IsInt, IsHomogeneousList ] );


#############################################################################
##
#F  PowerMapOfGroupWithInvariants( <n>, <ccl>, <invariants> )
##
##  <ManSection>
##  <Func Name="PowerMapOfGroupWithInvariants" Arg='n, ccl, invariants'/>
##
##  <Description>
##  is a list of integers, at position <M>i</M> the position of the conjugacy
##  class containing the <A>n</A>-th powers of elements in class <M>i</M>
##  of <A>ccl</A>.
##  The list <A>invariants</A> contains all invariants besides element order
##  that shall be used before membership tests.
##  <P/>
##  Element orders are tested first in any case since they may allow a
##  decision without forming the <A>n</A>-th powers of elements.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "PowerMapOfGroupWithInvariants" );


#############################################################################
##
#O  HasAbelianFactorGroup( <G>, <N> )
##
##  <#GAPDoc Label="HasAbelianFactorGroup">
##  <ManSection>
##  <Func Name="HasAbelianFactorGroup" Arg='G, N'/>
##
##  <Description>
##  tests whether <A>G</A> <M>/</M> <A>N</A> is abelian
##  (without explicitly constructing the factor group and without testing
##  whether <A>N</A> is in fact a normal subgroup).
##  <Example><![CDATA[
##  gap> HasAbelianFactorGroup(g,n);
##  false
##  gap> HasAbelianFactorGroup(DerivedSubgroup(g),n);
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("HasAbelianFactorGroup");

#############################################################################
##
#O  HasSolvableFactorGroup( <G>, <N> )
##
##  <#GAPDoc Label="HasSolvableFactorGroup">
##  <ManSection>
##  <Oper Name="HasSolvableFactorGroup" Arg='G, N'/>
##
##  <Description>
##  tests whether <A>G</A> <M>/</M> <A>N</A> is solvable
##  (without explicitly constructing the factor group and without testing
##  whether <A>N</A> is in fact a normal subgroup).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("HasSolvableFactorGroup");


#############################################################################
##
#O  HasElementaryAbelianFactorGroup( <G>, <N> )
##
##  <#GAPDoc Label="HasElementaryAbelianFactorGroup">
##  <ManSection>
##  <Func Name="HasElementaryAbelianFactorGroup" Arg='G, N'/>
##
##  <Description>
##  tests whether <A>G</A> <M>/</M> <A>N</A> is elementary abelian
##  (without explicitly constructing the factor group and without testing
##  whether <A>N</A> is in fact a normal subgroup).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("HasElementaryAbelianFactorGroup");


#############################################################################
##
#F  IsGroupOfFamily(<G>)
##
##  <ManSection>
##  <Func Name="IsGroupOfFamily" Arg='G'/>
##
##  <Description>
##  This filter indicates that the group <A>G</A> is the group
##  which is stored in the family <A>fam</A> of its elements
##  as <C><A>fam</A>!.wholeGroup</C>.
##  </Description>
##  </ManSection>
##
DeclareFilter("IsGroupOfFamily");


#############################################################################
##
#F  Group_PseudoRandom(<G>)
##
##  <ManSection>
##  <Func Name="Group_PseudoRandom" Arg='G'/>
##
##  <Description>
##  Computes a pseudo-random element of <A>G</A> by product replacement.
##  (This is installed as a method for <C>PseudoRandom</C>
##  under the condition that generators are known.)
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("Group_PseudoRandom");

DeclareGlobalFunction("GroupEnumeratorByClosure");

############################################################################
##
#O  LowIndexSubgroups( <G>, <index> )
##
##  <#GAPDoc Label="LowIndexSubgroups">
##  <ManSection>
##  <Oper Name="LowIndexSubgroups" Arg='G, index'/>
##
##  <Description>
##  The operation <Ref Oper="LowIndexSubgroups"/> computes representatives of
##  the conjugacy classes of subgroups of the group <A>G</A> that have index
##  less than or equal to <A>index</A>.
##  <P/>
##  For finitely presented groups this operation simply defaults to
##  <Ref Oper="LowIndexSubgroupsFpGroup"/>. In other cases, it uses repeated
##  calculation of maximal subgroups.
##  <P/>
##  The function <Ref Func="LowLayerSubgroups"/> works similar but does not
##  bound the index, but instead considers up to <A>layer</A>-th maximal
##  subgroups.
##  <Example><![CDATA[
##  gap> g:=TransitiveGroup(18,950);;
##  gap> l:=LowIndexSubgroups(g,20);;Collected(List(l,x->Index(g,x)));
##  [ [ 1, 1 ], [ 2, 1 ], [ 5, 1 ], [ 6, 1 ], [ 10, 2 ], [ 12, 3 ], [ 15, 1 ],
##    [ 16, 2 ], [ 18, 1 ], [ 20, 9 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "LowIndexSubgroups",
    [ IsGroup, IsPosInt ] );

#############################################################################
##
#F  NormalizerViaRadical(<G>,<S>)
##
##  <#GAPDoc Label="NormalizerViaRadical">
##  <ManSection>
##  <Func Name="NormalizerViaRadical" Arg='G,S'/>
##
##  <Description>
##  This function implements a particular approach, following the
##  SolvableRadical paradigm, for calculating the
##  normalizer of a subgroup <A>S</A> in <A>G</A>. It is at the moment
##  provided only as a separate function, and not as method for the operation
##  <C>Normalizer</C>, as it can often be slower than other built-in routines.
##  In certain hard cases (non-solvable groups with nontrivial radical), however
##  its performance is substantially superior.
##  The function thus is provided as a
##  non-automated tool for advanced users.
##  <Example><![CDATA[
##  gap> g:=TransitiveGroup(30,2030);;
##  gap> s:=SylowSubgroup(g,5);;
##  gap> Size(NormalizerViaRadical(g,s));
##  28800
##  ]]></Example>
##  Note that this example only demonstrates usage, but that in this case
##  in fact the ordinary <C>Normalizer</C> routine performs faster.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("NormalizerViaRadical");