File: grp.gi

package info (click to toggle)
gap 4.15.1-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 110,212 kB
  • sloc: ansic: 97,261; xml: 48,343; cpp: 13,946; sh: 4,900; perl: 1,650; javascript: 255; makefile: 252; ruby: 9
file content (6274 lines) | stat: -rw-r--r-- 192,123 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
#############################################################################
##
##  This file is part of GAP, a system for computational discrete algebra.
##  This file's authors include Thomas Breuer, Frank Celler, Bettina Eick, Heiko Theißen.
##
##  Copyright of GAP belongs to its developers, whose names are too numerous
##  to list here. Please refer to the COPYRIGHT file for details.
##
##  SPDX-License-Identifier: GPL-2.0-or-later
##
##  This file contains generic methods for groups.
##


#############################################################################
##
#M  IsFinitelyGeneratedGroup( <G> ) . . test if a group is finitely generated
##
InstallImmediateMethod( IsFinitelyGeneratedGroup,
    IsGroup and HasGeneratorsOfGroup,
    function( G )
    if IsFinite( GeneratorsOfGroup( G ) ) then
      return true;
    fi;
    TryNextMethod();
    end );

#############################################################################
##
#M  IsCyclic( <G> ) . . . . . . . . . . . . . . . . test if a group is cyclic
##
#  This used to be an immediate method. It was replaced by an ordinary
#  method since the flag is typically set when creating the group.
InstallMethod( IsCyclic, true, [IsGroup and HasGeneratorsOfGroup], 0,
    function( G )
    if Length( GeneratorsOfGroup( G ) ) = 1 then
      return true;
    else
      TryNextMethod();
    fi;
    end );

InstallMethod( IsCyclic,
    "generic method for groups",
    [ IsGroup ],
    function ( G )
    local a;

    # if <G> has a generator list of length 1 then <G> is cyclic
    if HasGeneratorsOfGroup( G ) and Length( GeneratorsOfGroup(G) ) = 1 then
      a:=GeneratorsOfGroup(G)[1];
      if CanEasilyCompareElements(a) and not IsOne(a) then
        SetMinimalGeneratingSet(G,GeneratorsOfGroup(G));
      fi;
      return true;

    # if <G> is not commutative it is certainly not cyclic
    elif not IsCommutative( G )  then
        return false;

    # if <G> is finite, test if the <p>-th powers of the generators
    # generate a subgroup of index <p> for all prime divisors <p>
    elif IsFinite( G )  then
        return ForAll( PrimeDivisors( Size( G ) ),
                p -> Index( G, SubgroupNC( G,
                                 List( GeneratorsOfGroup( G ),g->g^p)) ) = p );

    # otherwise test if the abelian invariants are that of $Z$
    else
      return AbelianInvariants( G ) = [ 0 ];
    fi;
    end );

InstallMethod( Size,
    "for a cyclic group",
    [ IsGroup and IsCyclic and HasGeneratorsOfGroup and CanEasilyCompareElements ],
    {} -> -RankFilter(HasGeneratorsOfGroup),
function(G)
  local gens;
  if HasMinimalGeneratingSet(G) then
    gens:=MinimalGeneratingSet(G);
  else
    gens:=GeneratorsOfGroup(G);
  fi;
  if Length(gens) = 1 and gens[1] <> One(G) then
    SetMinimalGeneratingSet(G,gens);
    return Order(gens[1]);
  elif Length(gens) <= 1 then
    SetMinimalGeneratingSet(G,[]);
    return 1;
  fi;
  TryNextMethod();
end);

InstallMethod( MinimalGeneratingSet,"finite cyclic groups",true,
    [ IsGroup and IsCyclic and IsFinite ],
    {} -> RankFilter(IsFinite and IsPcGroup),
function ( G )
local g;
  if IsTrivial(G) then return []; fi;
  g:=Product(IndependentGeneratorsOfAbelianGroup(G),One(G));
  Assert( 1, Index(G,Subgroup(G,[g])) = 1 );
  return [g];
end);

#############################################################################
##
#M  MinimalGeneratingSet(<G>) . . . . . . . . . . . . . for groups
##
InstallMethod(MinimalGeneratingSet,"test solvable and 2-generator noncyclic",
  true, [IsGroup and IsFinite],0,
function(G)
  if not HasIsSolvableGroup(G) and IsSolvableGroup(G) and
     CanEasilyComputePcgs(G) then
    # discovered solvable -- redo
    return MinimalGeneratingSet(G);
  elif not IsSolvableGroup(G) then
    if IsGroup(G) and (not IsCyclic(G)) and HasGeneratorsOfGroup(G)
        and Length(GeneratorsOfGroup(G)) = 2 then
      return GeneratorsOfGroup(G);
    fi;
  fi;
  TryNextMethod();
end);

#############################################################################
##
#M  MinimalGeneratingSet(<G>)
##
InstallOtherMethod(MinimalGeneratingSet,"fallback method to inform user",true,
  [IsObject],0,
function(G)
  if IsGroup(G) and IsSolvableGroup(G) then
    TryNextMethod();
  else
    Error(
  "`MinimalGeneratingSet' currently assumes that the group is solvable, or\n",
  "already possesses a generating set of size 2.\n",
  "In general, try `SmallGeneratingSet' instead, which returns a generating\n",
  "set that is small but not of guaranteed smallest cardinality");
  fi;
end);

InstallOtherMethod(MinimalGeneratingSet,"finite groups",true,
  [IsGroup and IsFinite],0,
function(g)
local r,i,j,u,f,q,n,lim,sel,nat,ok,mi;
  if not HasIsSolvableGroup(g) and IsSolvableGroup(g) and
     CanEasilyComputePcgs(g) then
    return MinimalGeneratingSet(g);
  fi;
  # start at rank 2/abelian rank
  n:=AbelianInvariants(g);
  if Length(n)>0 then
    r:=Maximum(List(Set(List(n,SmallestPrimeDivisor)),
      x->Number(n,y->y mod x=0)));
  else r:=0; fi;
  r:=Maximum(r,2);
  n:=false;
  repeat
    if Length(GeneratorsOfGroup(g))=r then
      return GeneratorsOfGroup(g);
    fi;
    for i in [1..10^r] do
      u:=SubgroupNC(g,List([1..r],x->Random(g)));
      if Size(u)=Size(g) then return GeneratorsOfGroup(u);fi; # found
    od;
    f:=FreeGroup(r);
    ok:=false;
    if not IsSolvableGroup(g) then
      if n=false then
        n:=ShallowCopy(NormalSubgroups(g));
        if IsPerfectGroup(g) then
          # all perfect groups of order <15360 *are* 2-generated
          lim:=15360;
        else
          # all groups of order <8 *are* 2-generated
          lim:=8;
        fi;
        n:=Filtered(n,x->IndexNC(g,x)>=lim and Size(x)>1);
        SortBy(n,x->-Size(x));
        mi:=MinimalInclusionsGroups(n);
      fi;
      i:=1;
      while i<=Length(n) do
        ok:=false;
        # is factor randomly r-generated?
        q:=2^r;
        while ok=false and q>0 do
          u:=n[i];
          for j in [1..r] do
            u:=ClosureGroup(u,Random(g));
          od;
          ok:=Size(u)=Size(g);
          q:=q-1;
        od;

        if not ok then
          # is factor a nonsplit extension with minimal normal -- if so rank
          # stays the same, no new test

          # minimal overnormals
          sel:=List(Filtered(mi,x->x[1]=i),x->x[2]);
          if Length(sel)>0 then
            nat:=NaturalHomomorphismByNormalSubgroupNC(g,n[i]);
            for j in sel do
              if not ok then
                # nonsplit extension (so pre-images will still generate)?
                ok:=0=Length(
                  ComplementClassesRepresentatives(Image(nat),Image(nat,n[j])));
              fi;
            od;
          fi;
        fi;

        if not ok then
          q:=GQuotients(f,g/n[i]:findall:=false);
          if Length(q)=0 then
            # fail in quotient
            i:=Length(n)+10;
            Info(InfoGroup,2,"Rank ",r," fails in quotient\n");
          fi;
        fi;

        i:=i+1;
      od;

    fi;
    if n=false or i<=Length(n)+1 then
      # still try group
      q:=GQuotients(f,g:findall:=false);
      if Length(q)>0 then return List(GeneratorsOfGroup(f),
        x->ImagesRepresentative(q[1],x)) ;fi; # found

    fi;
    r:=r+1;
  until false;
end);


#############################################################################
##
#M  IsElementaryAbelian(<G>)  . . . . . test if a group is elementary abelian
##
InstallMethod( IsElementaryAbelian,
    "generic method for groups",
    [ IsGroup ],
    function ( G )
    local   i,          # loop
            p;          # order of one generator of <G>

    # if <G> is not commutative it is certainly not elementary abelian
    if not IsCommutative( G )  then
        return false;

    # if <G> is trivial it is certainly elementary abelian
    elif IsTrivial( G )  then
        return true;

    # if <G> is infinite it is certainly not elementary abelian
    elif HasIsFinite( G ) and not IsFinite( G )  then
        return false;

    # otherwise compute the order of the first nontrivial generator
    else
        # p := Order( GeneratorsOfGroup( G )[1] );
        i:=1;
        repeat
            p:=Order(GeneratorsOfGroup(G)[i]);
            i:=i+1;
        until p>1; # will work, as G is not trivial

        # if the order is not a prime <G> is certainly not elementary abelian
        if not IsPrime( p )  then
            return false;

        # otherwise test that all other nontrivial generators have order <p>
        else
            return ForAll( GeneratorsOfGroup( G ), gen -> gen^p = One( G ) );
        fi;

    fi;
    end );


#############################################################################
##
#M  IsPGroup( <G> ) . . . . . . . . . . . . . . . . .  is a group a p-group ?
##

# The following helper function makes use of the fact that for any given prime
# p, any (possibly infinite) nilpotent group G is a p-group if and only if any
# generating set of G consists of p-elements (i.e. elements whose order is a
# power of p). For finite G this is well-known. The general case follows from
# e.g. 5.2.6 in "A Course in the Theory of Groups" by Derek J.S. Robinson,
# since it holds in the case were G is abelian, and since being a p-group is
# a property inherited by quotients and extensions.
BindGlobal( "IS_PGROUP_FOR_NILPOTENT",
    function( G )
    local p, gen, ord;

    p := fail;
    for gen in GeneratorsOfGroup( G ) do
      ord := Order( gen );
      if ord = infinity then
        return false;
      elif ord > 1 then
        if p = fail then
          p := SmallestRootInt( ord );
          if not IsPrimeInt( p ) then
            return false;
          fi;
        else
          if ord <> p^PValuation( ord, p ) then
            return false;
          fi;
        fi;
      fi;
    od;
    if p = fail then
      return true;
    fi;

    SetPrimePGroup( G, p );
    return true;
    end);

# The following helper function uses the well-known fact that a finite group
# is a p-group if and only if its order is a prime power.
BindGlobal( "IS_PGROUP_FROM_SIZE",
    function( G )
    local s, p;

    s:= Size( G );
    if s = 1 then
      return true;
    elif s = infinity then
      return fail; # cannot say anything about infinite groups
    fi;
    p := SmallestRootInt( s );
    if not IsPrimeInt( p ) then
      return false;
    fi;

    SetPrimePGroup( G, p );
    return true;
    end);

InstallMethod( IsPGroup,
    "generic method (check order of the group or of generators if nilpotent)",
    [ IsGroup ],
    function( G )

    # We inspect orders of group generators if the group order is not yet
    # known *and* the group knows to be nilpotent or is abelian;
    # thus an `IsAbelian' test may be forced (which can be done via comparing
    # products of generators) but *not* an `IsNilpotent' test.
    if HasSize( G ) and IsFinite( G ) then
      return IS_PGROUP_FROM_SIZE( G );
    elif ( HasIsNilpotentGroup( G ) and IsNilpotentGroup( G ) )
             or IsAbelian( G ) then
      return IS_PGROUP_FOR_NILPOTENT( G );
    elif IsFinite( G ) then
      return IS_PGROUP_FROM_SIZE( G );
    fi;
    TryNextMethod();
    end );

InstallMethod( IsPGroup,
    "for nilpotent groups",
    [ IsGroup and IsNilpotentGroup ],
    function( G )

    if HasSize( G ) and IsFinite( G ) then
      return IS_PGROUP_FROM_SIZE( G );
    else
      return IS_PGROUP_FOR_NILPOTENT( G );
    fi;
    end );


#############################################################################
##
#M  IsPowerfulPGroup( <G> ) . . . . . . . . . . is a group a powerful p-group ?
##
InstallMethod( IsPowerfulPGroup,
    "use characterisation of powerful p-groups based on rank ",
    [ IsGroup and HasRankPGroup and HasComputedOmegas ],
     function( G )
    local p;
    if (IsTrivial(G)) then
      return true;
    else
      p:=PrimePGroup(G);
      # We use the less known characterisation of powerful p groups
      # for p>3 by Jon Gonzalez-Sanchez, Amaia Zugadi-Reizabal
      # can be found in 'A characterization of powerful p-groups'
      if (p>3) then
        return RankPGroup(G)=Log(Order(Omega(G,p)),p);
      else
        TryNextMethod();
      fi;
    fi;
    end);


InstallMethod( IsPowerfulPGroup,
    "generic method checks inclusion of commutator subgroup in agemo subgroup",
    [ IsGroup ],
     function( G )
    local p;
    if IsPGroup( G ) = false then
      return false;
    elif IsTrivial(G) then
      return true;

    else

      p:=PrimePGroup(G);
      if p = 2 then
        return IsSubgroup(Agemo(G,2,2),DerivedSubgroup( G ));
      else
        return IsSubgroup(Agemo(G,p), DerivedSubgroup( G ));
      fi;
    fi;
    end);


#############################################################################
##
#M  IsRegularPGroup( <G> ) . . . . . . . . . . is a group a regular p-group ?
##
InstallMethod( IsRegularPGroup,
    [ IsGroup ],
function( G )
local p, hom, reps, as, a, b, ap, bp, ab, ap_bp, ab_p, g, h, H, N;

  if not IsPGroup(G) then
    return false;
  fi;

  p:=PrimePGroup(G);
  if p = 2 then
    # see [Hup67, Satz III.10.3 a)]
    return IsAbelian(G);
  elif p = 3 and DerivedLength(G) > 2 then
    # see [Hup67, Satz III.10.3 b)]
    return false;
  elif Size(G) <= p^p then
    # see [Hal34, Corollary 14.14], [Hall, p. 183], [Hup67, Satz III.10.2 b)]
    return true;
  elif NilpotencyClassOfGroup(G) < p then
    # see [Hal34, Corollary 14.13], [Hall, p. 183], [Hup67, Satz III.10.2 a)]
    return true;
  elif IsCyclic(DerivedSubgroup(G)) then
    # see [Hup67, Satz III.10.2 c)]
    return true;
  elif Exponent(G) = p then
    # see [Hup67, Satz III.10.2 d)]
    return true;
  elif p = 3 and RankPGroup(G) = 2 then
    # see [Hup67, Satz 10.3 b)]: at this point we know that the derived
    # subgroup is not cyclic, hence G is not regular
    return false;
  elif Size(G) < p^p * Size(Agemo(G,p)) then
    # see [Hal36, Theorem 2.3], [Hup67, Satz III.10.13]
    return true;
  elif Index(DerivedSubgroup(G), Agemo(DerivedSubgroup(G),p)) < p^(p-1) then
    # see [Hal36, Theorem 2.3], [Hup67, Satz III.10.13]
    return true;
  fi;

  # We now use Proposition 2 from A. Mann, "Regular p-groups. II", 1972, DOI
  # 10.1007/BF02764891, which states: If N is a central elementary abelian
  # subgroup of order p^2, such that G/M is regular for all M with 1<M<N, then
  # G is regular. The reverse implication also holds as all sections of a
  # regular p-group are again regular.
  #
  # Such a subgroup exists if and only if the center of G is not cyclic.
  #
  # As a heuristic, we only apply this criterion if the index of the center in
  # G is not too small, as otherwise a brute force search is faster.
  #
  # Note: the book Y. Berkovich, "Groups of Prime Power Order, Volume 1", 2008
  # states a stronger version of this as Corollary 7.7, where it is basically
  # claimed that it suffices to check just two subgroups M of N. This result
  # is attributed to the above paper by Mann, but I can't find it in there,
  # and it also simply is wrong: for example, the direct product of
  # SmallGroup(3^5,22) and SmallGroup(3^5,22) has a center of order p^2 = 9,
  # which contains four subgroups M of order p = 3. For two of those the
  # corresponding quotient G/M is regular, and for the other two it is not.
  H := Center(G);
  if not IsCyclic(H) and Index(G, H) > 250 then
    if Size(H) = p^2 then
      N := H;
    else
      N := Group(Filtered(Pcgs(H), g -> Order(g) = p){[1,2]});
    fi;
    Assert(0, Size(N) = p^2);
    Assert(0, IsElementaryAbelian(N));
    reps := MinimalNormalSubgroups(N);
    Info( InfoGroup, 2, "IsRegularPGroup: using Mann criterion, |G| = ", Size(G),
       ", |reps| = ", Length(reps));
    return ForAll(reps, M -> IsRegularPGroup(G/M));
  fi;

  # Fallback to actually check the defining criterion, i.e.:
  # for all a,b in G, we must have that a^p*b^p/(a*b)^p in (<a,b>')^p

  # It suffices to pick 'a' among conjugacy class representatives.
  # Moreover, if 'a' is central then the criterion automatically holds.
  # For z,z'\in Z(G), the criterion holds for (a,b) iff it holds for (az,bz').
  # We thus choose 'a' among lifts of conjugacy class representatives in G/Z(G).
  hom := NaturalHomomorphismByNormalSubgroup(G, Center(G));
  reps := ConjugacyClasses(Image(hom));
  reps := List(reps, Representative);
  reps := Filtered(reps, g -> not IsOne(g));
  reps := List(reps, g -> PreImagesRepresentative(hom, g));

  as := List(reps, a -> [a,a^p]);

  for b in Image(hom) do
    b := PreImagesRepresentative(hom, b);
    bp := b^p;
    for a in as do
      ap := a[2]; a := a[1];
      # if a and b commute the regularity condition automatically holds
      ab := a*b;
      if ab = b*a then continue; fi;

      # regularity is also automatic if a^p * b^p = (a*b)^p
      ap_bp := ap * bp;
      ab_p := ab^p;
      if ap_bp = ab_p then continue; fi;

      # if the subgroup generated H by a and b is itself regular, we are also
      # done. However we don't use recursion here, as it is too expensive.
      # we just check the direct definition, with a twist to avoid Agemo
      g := ap_bp / ab_p;
      h := Comm(a,b)^p;
      # clearly h is in Agemo(DerivedSubgroup(Group([a,b])), p), so if g=h or
      # g=h^-1 then the regularity condition is satisfied
      if g = h or IsOne(g*h) then continue; fi;
      H := Subgroup(G, [a,b]);
      N := NormalClosure(H, [h]);
      # To follow the definition of regular precisely we should now check if g
      # is in A:=Agemo(DerivedSubgroup(H), p). Clearly h=[a,b]^p and all its
      # conjugates are contained in A, and so N is a subgroup of A. But it
      # could be a *proper* subgroup. Alas, if G is regular, then also H is
      # regular, and from [Hup67, Hauptsatz III.10.5.b)] we conclude A = N and
      # the test g in N will succeed. If on the other hand G is not regular,
      # then H may also be not regular, and then N might be too small. But
      # that is fine (and even beneficial), because that just means we might
      # reach the 'return false' faster.
      if not g in N then
        return false;
      fi;
    od;
  od;
  return true;

end);


#############################################################################
##
#M  PrimePGroup . . . . . . . . . . . . . . . . . . . . .  prime of a p-group
##
InstallMethod( PrimePGroup,
    "generic method, check the order of a nontrivial generator",
    [ IsPGroup and HasGeneratorsOfGroup ],
function( G )
local gen, s;
  if IsTrivial( G ) then
    return fail;
  fi;
  for gen in GeneratorsOfGroup( G ) do
    s := Order( gen );
    if s <> 1 then
      break;
    fi;
  od;
  return SmallestRootInt( s );
end );

InstallMethod( PrimePGroup,
    "generic method, check the group order",
    [ IsPGroup ],
function( G )
local s;
  # alas, the size method might try to be really clever and ask for the size
  # again...
  if IsTrivial(G) then
    return fail;
  fi;
  s:= Size( G );
  if s = 1 then
    return fail;
  fi;
  return SmallestRootInt( s );
end );

RedispatchOnCondition (PrimePGroup, true,
    [IsGroup],
    [IsPGroup], 0);


#############################################################################
##
#M  IsNilpotentGroup( <G> ) . . . . . . . . . .  test if a group is nilpotent
##
#T InstallImmediateMethod( IsNilpotentGroup, IsGroup and HasSize, 10,
#T     function( G )
#T     G:= Size( G );
#T     if IsInt( G ) and IsPrimePowerInt( G ) then
#T       return true;
#T     fi;
#T     TryNextMethod();
#T     end );
#T This method does *not* fulfill the condition to be immediate,
#T factoring an integer may be expensive.
#T (Can we install a more restrictive method that *is* immediate,
#T for example one that checks only small integers?)

InstallMethod( IsNilpotentGroup,
    "if group size can be computed and is a prime power",
    [ IsGroup and CanComputeSize ], 25,
    function ( G )
    local s;

    s := Size ( G );
    if IsInt( s ) and IsPrimePowerInt( s ) then
        SetIsPGroup( G, true );
        SetPrimePGroup( G, SmallestRootInt( s ) );
        return true;
    elif s = 1 then
        SetIsPGroup( G, true );
        return true;
    elif s <> infinity then
        SetIsPGroup( G, false );
    fi;
    TryNextMethod();
    end );


InstallMethod( IsNilpotentGroup,
    "generic method for groups",
    [ IsGroup ],
    function ( G )
    local   S;          # lower central series of <G>

    # compute the lower central series
    S := LowerCentralSeriesOfGroup( G );

    # <G> is nilpotent if the lower central series reaches the trivial group
    return IsTrivial( Last(S) );
    end );


#############################################################################
##
#M  IsPerfectGroup( <G> ) . . . . . . . . . . . .  test if a group is perfect
##
InstallImmediateMethod( IsPerfectGroup,
    IsGroup and HasIsAbelian and IsSimpleGroup,
    0,
    grp -> not IsAbelian( grp ) );

InstallMethod( IsPerfectGroup, "for groups having abelian invariants",
    [ IsGroup and HasAbelianInvariants ],
    grp -> Length( AbelianInvariants( grp ) ) = 0 );

InstallMethod( IsPerfectGroup,
    "method for finite groups",
    [ IsGroup and IsFinite ],
function(G)
  if not CanComputeIndex(G,DerivedSubgroup(G)) then
    TryNextMethod();
  fi;
  return Index( G, DerivedSubgroup( G ) ) = 1;
end);


InstallMethod( IsPerfectGroup, "generic method for groups",
    [ IsGroup ],
    G-> IsSubset(DerivedSubgroup(G),G));


#############################################################################
##
#M  IsSporadicSimpleGroup( <G> )
##
InstallMethod( IsSporadicSimpleGroup,
    "for a group",
    [ IsGroup ],
    G ->     IsFinite( G )
         and IsSimpleGroup( G )
         and IsomorphismTypeInfoFiniteSimpleGroup( G ).series = "Spor" );


#############################################################################
##
#M  IsSimpleGroup( <G> )  . . . . . . . . . . . . . test if a group is simple
##
InstallMethod( IsSimpleGroup,
    "generic method for groups",
    [ IsGroup ],
    function ( G )
    local   C,          # one conjugacy class of <G>
            g;          # representative of <C>

    if IsTrivial( G ) then
      return false;
    fi;

    # loop over the conjugacy classes
    for C  in ConjugacyClasses( G )  do
        g := Representative( C );
        if g <> One( G )
            and NormalClosure( G, SubgroupNC( G, [ g ] ) ) <> G
        then
            return false;
        fi;
    od;

    # all classes generate the full group
    return true;
    end );


#############################################################################
##
#P  IsAlmostSimpleGroup( <G> )
##
##  Since the outer automorphism groups of finite simple groups are solvable,
##  a finite group <A>G</A> is almost simple if and only if the last member
##  in the derived series of <A>G</A> is a simple group <M>S</M> (which is
##  then necessarily nonabelian) such that the centralizer of <M>S</M> in
##  <A>G</A> is trivial.
##
##  (We could detect whether the given group is an extension of a group of
##  prime order by some automorphisms, as follows.
##  If the derived series ends with the trivial group then take the previous
##  member of the series, and check whether it has prime order and is
##  self-centralizing.)
##
InstallMethod( IsAlmostSimpleGroup,
    "for a group",
    [ IsGroup ],
    function( G )
    local der;

    if IsAbelian( G ) then
      # Exclude simple groups of prime order.
      return false;
    elif IsSimpleGroup( G ) then
      # Nonabelian simple groups are almost simple.
      return true;
    elif not IsFinite( G ) then
      TryNextMethod();
    fi;

    der:= DerivedSeriesOfGroup( G );
    der:= Last(der);
    if IsTrivial( der ) then
      return false;
    fi;
    return IsSimpleGroup( der ) and IsTrivial( Centralizer( G, der ) );
    end );


#############################################################################
##
#P  IsQuasisimpleGroup( <G> )
##
InstallMethod( IsQuasisimpleGroup,
    "for a group",
    [ IsGroup ],
    G -> IsPerfectGroup( G ) and IsSimpleGroup( G / Centre( G ) ) );


#############################################################################
##
#M  IsSolvableGroup( <G> )  . . . . . . . . . . . test if a group is solvable
##
##  By the Feit–Thompson odd order theorem, every group of odd order is
##  solvable.
##
##  Now suppose G is a group of order 2m, with m odd. Let G act on itself from
##  the right, yielding a monomorphism \phi:G \to Sym(G). G contains an
##  involution h; then \phi(h) decomposes into a product of m disjoint
##  transpositions, hence sign(\phi(h)) = -1. Hence the kernel N of the
##  composition x \mapsto sign(\phi(x)) is a normal subgroup of G of index 2,
##  hence |N| = m.
##
##  By the odd order theorem, N is solvable, and so is G. Thus the order of
##  any non-solvable finite group is a multiple of 4.
##
##  By Burnside's theorem, every group of order p^a q^b is solvable. If a
##  group of such order is not already caught by the reasoning above, then
##  it must have order 2^a q^b with a>1.
##
InstallImmediateMethod( IsSolvableGroup, IsGroup and HasSize, 10,
    function( G )
    local size;
    size := Size( G );
    if IsInt( size ) and size mod 4 <> 0 then
      return true;
    fi;
    TryNextMethod();
    end );

InstallMethod( IsSolvableGroup,
    "if group size is known and is not divisible by 4 or p^a q^b",
    [ IsGroup and HasSize ], 25,
    function( G )
    local size;
    size := Size( G );
    if IsInt( size ) then
      if size mod 4 <> 0 then
        return true;
      else
        size := size/4;
        while size mod 2 = 0 do
          size := size/2;
        od;
        if size = 1 then
          SetIsPGroup( G, true );
          SetPrimePGroup( G, 2 );
          return true;
        elif IsPrimePowerInt( size ) then
          return true;
        fi;
      fi;
    fi;
    TryNextMethod();
    end );

InstallMethod( IsSolvableGroup,
    "generic method for groups",
    [ IsGroup ],
    function ( G )
    local   S,          # derived series of <G>
            isAbelian,  # true if <G> is abelian
            isSolvable; # true if <G> is solvable

    # compute the derived series of <G>
    S := DerivedSeriesOfGroup( G );

    # the group is solvable if the derived series reaches the trivial group
    isSolvable := IsTrivial( Last(S) );

    # set IsAbelian filter
    isAbelian := isSolvable and Length( S ) <= 2;
    Assert(3, IsAbelian(G) = isAbelian);
    SetIsAbelian(G, isAbelian);

    return isSolvable;
    end );


#############################################################################
##
#M  IsSupersolvableGroup( <G> ) . . . . . .  test if a group is supersolvable
##
##  Note that this method automatically sets `SupersolvableResiduum'.
##  Analogously, methods for `SupersolvableResiduum' should set
##  `IsSupersolvableGroup'.
##
InstallMethod( IsSupersolvableGroup,
    "generic method for groups",
    [ IsGroup ],
    function( G )
    if IsNilpotentGroup( G ) then
#T currently the nilpotency test is much cheaper than the test below,
#T so we force it!
      return true;
    fi;
    return IsTrivial( SupersolvableResiduum( G ) );
    end );


#############################################################################
##
#M  IsPolycyclicGroup( <G> )  . . . . . . . . . test if a group is polycyclic
##
InstallMethod( IsPolycyclicGroup,
               "generic method for groups", true, [ IsGroup ], 0,

  function ( G )

    local  d;

    if IsFinite(G) then return IsSolvableGroup(G); fi;
    if not IsSolvableGroup(G) then return false; fi;
    d := DerivedSeriesOfGroup(G);
    return ForAll([1..Length(d)-1],i->Index(d[i],d[i+1]) < infinity
                                   or IsFinitelyGeneratedGroup(d[i]/d[i+1]));
  end );


#############################################################################
##
#M  IsTrivial( <G> )  . . . . . . . . . . . . . .  test if a group is trivial
##
InstallMethod( IsTrivial,
    [ IsGroup ],
    G -> ForAll( GeneratorsOfGroup( G ), gen -> gen = One( G ) ) );


#############################################################################
##
#M  AbelianInvariants( <G> )  . . . . . . . . . abelian invariants of a group
##
InstallMethod( AbelianInvariants,
    "generic method for groups",
    [ IsGroup ],
    function ( G )
    local   H,  p,  l,  r,  i,  j,  gns,  inv,  ranks, g,  cmm;

    if not IsFinite(G)  then
        if HasIsCyclic(G) and IsCyclic(G) then
          return [ 0 ];
        fi;
        TryNextMethod();
    elif IsTrivial( G )  then
        return [];
    fi;

    gns := GeneratorsOfGroup( G );
    inv := [];
    # the parent of this will be G
    cmm := DerivedSubgroup(G);
    for p  in PrimeDivisors( Size( G ) )  do
        ranks := [];
        repeat
            H := cmm;
            for g  in gns  do
                #NC is safe
                H := ClosureSubgroupNC( H, g ^ p );
            od;
            r := Size(G) / Size(H);
            Info( InfoGroup, 2,
                  "AbelianInvariants: |<G>| = ", Size( G ),
                  ", |<H>| = ", Size( H ) );
            G   := H;
            gns := GeneratorsOfGroup( G );
            if r <> 1  then
                Add( ranks, Length(Factors(Integers,r)) );
            fi;
        until r = 1;
        Info( InfoGroup, 2,
              "AbelianInvariants: <ranks> = ", ranks );
        if 0 < Length(ranks)  then
            l := List( [ 1 .. ranks[1] ], x -> 1 );
            for i  in ranks  do
                for j  in [ 1 .. i ]  do
                    l[j] := l[j] * p;
                od;
            od;
            Append( inv, l );
        fi;
    od;

    Sort( inv );
    return inv;
    end );

InstallMethod( AbelianRank ,"generic method for groups", [ IsGroup ],0,
function(G)
local a,r;
  a:=AbelianInvariants(G);
  r:=Number(a,IsZero);
  a:=Filtered(a,x->not IsZero(x));
  if Length(a)=0 then return r; fi;
  a:=List(Set(a,SmallestRootInt),p->Number(a,x->x mod p=0));
  return r+Maximum(a);
end);


#############################################################################
##
#M  IsInfiniteAbelianizationGroup( <G> )
##
InstallMethod( IsInfiniteAbelianizationGroup,"generic method for groups",
[ IsGroup ], G->0 in AbelianInvariants(G));


#############################################################################
##
#M  AsGroup( <D> ) . . . . . . . . . . . . . . .  domain <D>, viewed as group
##
InstallMethod( AsGroup, [ IsGroup ], 100, IdFunc );

InstallMethod( AsGroup,
    "generic method for collections",
    [ IsCollection ],
    function( D )
    local M, gens, m, minv, G, L;

    if IsGroup( D ) then
      return D;
    fi;

    # Check that the elements in the collection form a nonempty semigroup.
    M:= AsMagma( D );
    if M = fail or not IsAssociative( M ) then
      return fail;
    fi;
    gens:= GeneratorsOfMagma( M );
    if IsEmpty( gens ) or not IsGeneratorsOfMagmaWithInverses( gens ) then
      return fail;
    fi;

    # Check that this semigroup contains the inverses of its generators.
    for m in gens do
      minv:= Inverse( m );
      if minv = fail or not minv in M then
        return fail;
      fi;
    od;

    D:= AsSSortedList( D );
    G:= TrivialSubgroup( GroupByGenerators( gens ) );
    L:= ShallowCopy( D );
    SubtractSet( L, AsSSortedList( G ) );
    while not IsEmpty(L)  do
        G := ClosureGroupDefault( G, L[1] );
        SubtractSet( L, AsSSortedList( G ) );
    od;
    if Length( AsList( G ) ) <> Length( D )  then
        return fail;
    fi;
    G := GroupByGenerators( GeneratorsOfGroup( G ), One( D[1] ) );
    SetAsSSortedList( G, D );
    SetIsFinite( G, true );
    SetSize( G, Length( D ) );

    # return the group
    return G;
    end );


#############################################################################
##
#M  ChiefSeries( <G> )  . . . . . . . .  delegate to `ChiefSeriesUnderAction'
##
InstallMethod( ChiefSeries,
    "method for a group (delegate to `ChiefSeriesUnderAction')",
    [ IsGroup ],
    G -> ChiefSeriesUnderAction( G, G ) );


#############################################################################
##
#M  RefinedSubnormalSeries( <ser>,<n> )
##
InstallGlobalFunction("RefinedSubnormalSeries",function(ser,sub)
local new,i,c;
  new:=[];
  i:=1;
  if not IsSubset(ser[1],sub) then
    sub:=Intersection(ser[1],sub);
  fi;
  while i<=Length(ser) and IsSubset(ser[i],sub) do
    Add(new,ser[i]);
    i:=i+1;
  od;
  while i<=Length(ser) and not IsSubset(sub,ser[i]) do
    c:=ClosureGroup(sub,ser[i]);
    if Size(Last(new))>Size(c) then
      Add(new,c);
    fi;
    if Size(Last(new))>Size(ser[i]) then
      Add(new,ser[i]);
    fi;
    sub:=Intersection(sub,ser[i]);
    i:=i+1;
  od;
  if Size(sub)<Size(Last(new)) and i<=Length(ser) and Size(sub)>Size(ser[i]) then
    Add(new,sub);
  fi;
  while i<=Length(ser) do
    Add(new,ser[i]);
    i:=i+1;
  od;
  Assert(1,ForAll([1..Length(new)-1],x->Size(new[x])<>Size(new[x+1])));
  return new;
end);



#############################################################################
##
#M  CommutatorFactorGroup( <G> )  . . . .  commutator factor group of a group
##
InstallMethod( CommutatorFactorGroup,
    "generic method for groups",
    [ IsGroup ],
    function( G )
    G:= FactorGroupNC( G, DerivedSubgroup( G ) );
    SetIsAbelian( G, true );
    return G;
    end );


############################################################################
##
#M MaximalAbelianQuotient(<group>)
##
InstallMethod(MaximalAbelianQuotient,
    "not fp group",
    [ IsGroup ],
    function( G )
    if IsSubgroupFpGroup( G ) then
      TryNextMethod();
    fi;
    return NaturalHomomorphismByNormalSubgroupNC(G,DerivedSubgroup(G));
#T Here we know that the image is abelian, and this information may be
#T useful later on.
#T However, the image group of the homomorphism may be not stored yet,
#T so we do not attempt to set the `IsAbelian' flag for it.
end );

#############################################################################
##
#M  CompositionSeries( <G> )  . . . . . . . . . . . composition series of <G>
##
InstallMethod( CompositionSeries,
    "using DerivedSubgroup",
    [ IsGroup and IsFinite ],
function( grp )
    local   der,  series,  i,  comp,  low,  elm,  pelm,  o,  p,  x,
            j,  qelm;

    # this only works for solvable groups
    if HasIsSolvableGroup(grp) and not IsSolvableGroup(grp)  then
        TryNextMethod();
    fi;
    der := DerivedSeriesOfGroup(grp);
    if not IsTrivial(Last(der))  then
        TryNextMethod();
    fi;

    # build up a series
    series := [ grp ];
    for i  in [ 1 .. Length(der)-1 ]  do
        comp := [];
        low  := der[i+1];
        while low <> der[i]  do
            repeat
                elm := Random(der[i]);
            until not elm in low;
            for pelm  in PrimePowerComponents(elm)  do
                o := Order(pelm);
                p := Factors(o)[1];
                x := LogInt(o,p);
                for j  in [ x-1, x-2 .. 0 ]  do
                    qelm := pelm ^ ( p^j );
                    if not qelm in low  then
                        Add( comp, low );
                        low:= ClosureGroup( low, qelm );
                    fi;
                od;
            od;
        od;
        Append( series, Reversed(comp) );
    od;

    return series;

end );

InstallMethod( CompositionSeries,
    "for simple group", true, [IsGroup and IsSimpleGroup], 100,
    S->[S,TrivialSubgroup(S)]);

InstallMethod(CompositionSeriesThrough,"intersection/union",IsElmsColls,
  [IsGroup and IsFinite,IsList],0,
function(G,normals)
local cs,i,j,pre,post,c,new,rev;
  cs:=CompositionSeries(G);
  # find normal subgroups not yet in
  normals:=Filtered(normals,x->not x in cs);
  # do we satisfy by sheer dumb luck?
  if Length(normals)=0 then return cs;fi;

  SortBy(normals,x->-Size(x));
  # check that this is a valid series
  Assert(0,ForAll([2..Length(normals)],i->IsSubset(normals[i-1],normals[i])));

  # Now move series through normals by closure/intersection
  for j in normals do
    # first in cs that does not contain j
    pre:=PositionProperty(cs,x->not IsSubset(x,j));
    # first contained in j.
    post:=PositionProperty(cs,x->Size(j)>=Size(x) and IsSubset(j,x));

    # if j is in the series, then pre>post. pre=post impossible
    if pre<post then
      # so from pre to post-1 needs to be changed
      new:=cs{[1..pre-1]};

      rev:=[j];
      i:=post-1;
      repeat
        if not IsSubset(Last(rev),cs[i]) then
          c:=ClosureGroup(cs[i],j);
          if Size(c)>Size(Last(rev)) then
            # proper down step
            Add(rev,c);
          fi;
        fi;
        i:=i-1;
        # at some point this must reach j, then no further step needed
      until Size(c)=Size(cs[pre-1]) or i<pre;
      Append(new,Filtered(Reversed(rev),x->Size(x)<Size(cs[pre-1])));

      i:=pre;
      repeat
        if not IsSubset(cs[i],Last(new)) then
          c:=Intersection(cs[i],j);
          if Size(c)<Size(Last(new)) then
            # proper down step
            Add(new,c);
          fi;
        fi;
        i:=i+1;
      until Size(c)=Size(cs[post]);
    fi;
    cs:=Concatenation(new,cs{[post+1..Length(cs)]});
  od;
  return cs;
end);


#############################################################################
##
#M  ConjugacyClasses( <G> )
##

#############################################################################
##
#M  ConjugacyClassesMaximalSubgroups( <G> )
##


##############################################################################
##
#M  DerivedLength( <G> ) . . . . . . . . . . . . . . derived length of a group
##
InstallMethod( DerivedLength,
    "generic method for groups",
    [ IsGroup ],
    G -> Length( DerivedSeriesOfGroup( G ) ) - 1 );


##############################################################################
##
#M  HirschLength( <G> ) . . . . .hirsch length of a polycyclic-by-finite group
##
InstallMethod( HirschLength,
    "generic method for finite groups",
    [ IsGroup and IsFinite ],
    G -> 0 );


#############################################################################
##
#M  DerivedSeriesOfGroup( <G> ) . . . . . . . . . . derived series of a group
##
InstallMethod( DerivedSeriesOfGroup,
    "generic method for groups",
    [ IsGroup ],
    function ( G )
    local   S,          # derived series of <G>, result
            lastS,      # last element of S
            D;          # derived subgroups

    # print out a warning for infinite groups
    if (HasIsFinite(G) and not IsFinite( G ))
      and not (HasIsPolycyclicGroup(G) and IsPolycyclicGroup( G )) then
      Info( InfoWarning, 1,
            "DerivedSeriesOfGroup: may not stop for infinite group <G>" );
    fi;

    # compute the series by repeated calling of `DerivedSubgroup'
    S := [ G ];
    lastS := G;
    Info( InfoGroup, 2, "DerivedSeriesOfGroup: step ", Length(S) );
    D := DerivedSubgroup( G );

    while
      (not HasIsTrivial(lastS) or
            not IsTrivial(lastS)) and
      (
        (not HasIsPerfectGroup(lastS) and
         not HasAbelianInvariants(lastS) and D <> lastS) or
        (HasIsPerfectGroup(lastS) and not IsPerfectGroup(lastS))
        or (HasAbelianInvariants(lastS)
                            and Length(AbelianInvariants(lastS)) > 0)
      ) do
        Add( S, D );
        lastS := D;
        Info( InfoGroup, 2, "DerivedSeriesOfGroup: step ", Length(S) );
        D := DerivedSubgroup( D );
    od;

    # set filters if the last term is known to be trivial
    if HasIsTrivial(lastS) and IsTrivial(lastS) then
      SetIsSolvableGroup(G, true);
      if Length(S) <=2 then
        Assert(3, IsAbelian(G));
        SetIsAbelian(G, true);
      fi;
    fi;

    # set IsAbelian filter if length of derived series is more than 2
    if Length(S) > 2 then
      Assert(3, not IsAbelian(G));
      SetIsAbelian(G, false);
    fi;

    # return the series when it becomes stable
    return S;
    end );

#############################################################################
##
#M  DerivedSubgroup( <G> )  . . . . . . . . . . . derived subgroup of a group
##
InstallMethod( DerivedSubgroup,
    "generic method for groups",
    [ IsGroup ],
    function ( G )
    local   D,          # derived subgroup of <G>, result
            gens,       # group generators of <G>
            i,  j,      # loops
            comm;       # commutator of two generators of <G>

    # find the subgroup generated by the commutators of the generators
    D := TrivialSubgroup( G );
    gens:= GeneratorsOfGroup( G );
    for i  in [ 2 .. Length( gens ) ]  do
        for j  in [ 1 .. i - 1 ]  do
            comm := Comm( gens[i], gens[j] );
            #NC is safe (init with Triv)
            D := ClosureSubgroupNC( D, comm );
        od;
    od;

    # return the normal closure of <D> in <G>
    D := NormalClosure( G, D );
    if D = G  then D := G;  fi;
    return D;
    end );

InstallMethod( DerivedSubgroup,
    "for a group that knows it is perfect",
    [ IsGroup and IsPerfectGroup ],
    SUM_FLAGS, # this is better than everything else
    IdFunc );

InstallMethod( DerivedSubgroup,
    "for a group that knows it is abelian",
    [ IsGroup and IsAbelian ],
    SUM_FLAGS, # this is better than everything else
    TrivialSubgroup );


##########################################################################
##
#M  DimensionsLoewyFactors( <G> )  . . . . . . dimension of the Loewy factors
##
InstallMethod( DimensionsLoewyFactors,
    "for a group (that must be a finite p-group)",
    [ IsGroup ],
    function( G )

    local   p,  J,  x,  P,  i,  s,  j;

    # <G> must be a p-group
    if not IsPGroup( G )  then
      Error( "<G> must be a p-group" );
    fi;

    # get the prime and the Jennings series
    p := PrimePGroup( G );
    J := JenningsSeries( G );

    # construct the Jennings polynomial over the rationals
    x := Indeterminate( Rationals );
    P := One( x );
    for i  in [ 1 .. Length(J)-1 ]  do
        s := Zero( x );
        for j  in [ 0 .. p-1 ]  do
            s := s + x^(j*i);
        od;
        P := P * s^LogInt( Index( J[i], J[i+1] ), p );
    od;

    # the coefficients are the dimension of the Loewy series
    return CoefficientsOfUnivariatePolynomial( P );
    end );


#############################################################################
##
#M  ElementaryAbelianSeries( <G> )  . .  elementary abelian series of a group
##
InstallOtherMethod( ElementaryAbelianSeries,
    "method for lists",
    [ IsList and IsFinite],
    function( G )

    local i, A, f;

    # if <G> is a list compute an elementary series through a given normal one
    if not IsSolvableGroup( G[1] )  then
      return fail;
    fi;
    for i  in [ 1 .. Length(G)-1 ]  do
      if not IsNormal(G[1],G[i+1]) or not IsSubgroup(G[i],G[i+1])  then
        Error( "<G> must be normal series" );
      fi;
    od;

    # convert all groups in that list
    f := IsomorphismPcGroup( G[ 1 ] );
    A := ElementaryAbelianSeries(List(G,x->Image(f,x)));

    # convert back into <G>
    return List( A, x -> PreImage( f, x ) );
    end );

InstallMethod( ElementaryAbelianSeries,
    "generic method for finite groups",
    [ IsGroup and IsFinite],
    function( G )
    local f;

    # compute an elementary series if it is not known
    if not IsSolvableGroup( G )  then
      return fail;
    fi;

    # there is a method for pcgs computable groups we should use if
    # applicable, in this case redo
    if CanEasilyComputePcgs(G) then
      return ElementaryAbelianSeries(G);
    fi;

    f := IsomorphismPcGroup( G );

    # convert back into <G>
    return List( ElementaryAbelianSeries( Image( f )), x -> PreImage( f, x ) );
    end );

#############################################################################
##
#M  ElementaryAbelianSeries( <G> )  . .  elementary abelian series of a group
##
BindGlobal( "DoEASLS", function( S )
local   N,I,i,L;

  N:=ElementaryAbelianSeries(S);
  # remove spurious factors
  L:=[N[1]];
  I:=N[1];
  i:=2;
  repeat
    while i<Length(N) and HasElementaryAbelianFactorGroup(I,N[i+1])
      and (IsIdenticalObj(I,N[i]) or not N[i] in S) do
      i:=i+1;
    od;
    I:=N[i];
    Add(L,I);
  until Size(I)=1;

  # return it.
  return L;
end );

InstallMethod( ElementaryAbelianSeriesLargeSteps,
    "remove spurious factors", [ IsGroup ],
  DoEASLS);

InstallOtherMethod( ElementaryAbelianSeriesLargeSteps,
  "remove spurious factors", [IsList],
  DoEASLS);

#############################################################################
##
#M  Exponent( <G> ) . . . . . . . . . . . . . . . . . . . . . exponent of <G>
##
InstallMethod( Exponent,
    "generic method for finite groups",
    [ IsGroup and IsFinite ],
function(G)
  local exp, primes, p;
  exp := 1;
  primes := PrimeDivisors(Size(G));
  for p in primes do
    exp := exp * Exponent(SylowSubgroup(G, p));
  od;
  return exp;
end);

# ranked below the method for abelian groups
InstallMethod( Exponent,
    [ "IsGroup and IsFinite and HasConjugacyClasses" ],
    G-> Lcm(List(ConjugacyClasses(G), c-> Order(Representative(c)))) );

InstallMethod( Exponent,
    "method for finite abelian groups with generators",
    [ IsGroup and IsAbelian and HasGeneratorsOfGroup and IsFinite ],
    function( G )
    G:= GeneratorsOfGroup( G );
    if IsEmpty( G ) then
      return 1;
    fi;
    return Lcm( List( G, Order ) );
    end );

RedispatchOnCondition( Exponent, true, [IsGroup], [IsFinite], 0);

#############################################################################
##
#M  FittingSubgroup( <G> )  . . . . . . . . . . . Fitting subgroup of a group
##
InstallMethod( FittingSubgroup, "for nilpotent group",
    [ IsGroup and IsNilpotentGroup ], SUM_FLAGS, IdFunc );

InstallMethod( FittingSubgroup,
    "generic method for finite groups",
    [ IsGroup and IsFinite ],
    function (G)
        if not IsTrivial( G ) then
            G := SubgroupNC( G, Filtered(Union( List( PrimeDivisors( Size( G ) ),
                         p -> GeneratorsOfGroup( PCore( G, p ) ) ) ),
                         p->p<>One(G)));
            Assert( 2, IsNilpotentGroup( G ) );
            SetIsNilpotentGroup( G, true );
        fi;
        return G;
    end);

RedispatchOnCondition( FittingSubgroup, true, [IsGroup], [IsFinite], 0);


#############################################################################
##
#M  FrattiniSubgroup( <G> ) . . . . . . . . . .  Frattini subgroup of a group
##
InstallMethod( FrattiniSubgroup, "method for trivial groups",
            [ IsGroup and IsTrivial ], IdFunc );

InstallMethod( FrattiniSubgroup, "for abelian groups",
            [ IsGroup and IsAbelian ],
function(G)
    local i, abinv, indgen, p, q, gen;

    gen := [ ];
    abinv := AbelianInvariants(G);
    indgen := IndependentGeneratorsOfAbelianGroup(G);
    for i in [1..Length(abinv)] do
        q := abinv[i];
        if q<>0 and not IsPrime(q) then
            p := SmallestRootInt(q);
            Add(gen, indgen[i]^p);
        fi;
    od;
    return SubgroupNC(G, gen);
end);

InstallMethod( FrattiniSubgroup, "for powerful p-groups",
            [ IsPGroup and IsPowerfulPGroup and HasComputedAgemos ],100,
function(G)
    local p;
#If the group is powerful and has computed agemos, then no work needs
#to be done, since FrattiniSubgroup(G)=Agemo(G,p) in this case
#by properties of powerful p-groups.
        p:=PrimePGroup(G);
        return Agemo(G,p);
end);

InstallMethod( FrattiniSubgroup, "for nilpotent groups",
            [ IsGroup and IsNilpotentGroup ],
function(G)
    local hom, Gf;

    hom := MaximalAbelianQuotient(G);
    Gf := Image(hom);
    SetIsAbelian(Gf, true);
    return PreImage(hom, FrattiniSubgroup(Gf));
end);

InstallMethod( FrattiniSubgroup, "generic method for groups",
            [ IsGroup ],
            0,
function(G)
local m;
    if IsTrivial(G) then
      return G;
    fi;
    if not HasIsSolvableGroup(G) and IsSolvableGroup(G) then
       return FrattiniSubgroup(G);
    fi;
    m := List(ConjugacyClassesMaximalSubgroups(G),C->Core(G,Representative(C)));
    m := Intersection(m);
    if HasIsFinite(G) and IsFinite(G) then
      Assert(2,IsNilpotentGroup(m));
      SetIsNilpotentGroup(m,true);
    fi;
    return m;
end);


#############################################################################
##
#M  JenningsSeries( <G> ) . . . . . . . . . . .  jennings series of a p-group
##
InstallMethod( JenningsSeries,
    "generic method for groups",
    [ IsGroup ],
    function( G )

    local   p,  n,  i,  C,  L;

    # <G> must be a p-group
    if not IsPGroup( G ) then
        Error( "<G> must be a p-group" );
    fi;

    # get the prime
    p := PrimePGroup( G );

    # and compute the series
    # (this is a new variant thanks to Laurent Bartholdi)
    L := [ G ];
    n := 2;
    while not IsTrivial(L[n-1]) do
        L[n] := ClosureGroup(CommutatorSubgroup(G,L[n-1]),
            List(GeneratorsOfGroup(L[QuoInt(n+p-1,p)]),x->x^p));
        n := n+1;
    od;
    return L;

    end );


#############################################################################
##
#M  LowerCentralSeriesOfGroup( <G> )  . . . . lower central series of a group
##
InstallMethod( LowerCentralSeriesOfGroup,
    "generic method for groups",
    [ IsGroup ],
    function ( G )
    local   S,          # lower central series of <G>, result
            C;          # commutator subgroups

    # print out a warning for infinite groups
    if (HasIsFinite(G) and not IsFinite( G ))
      and not (HasIsNilpotentGroup(G) and IsNilpotentGroup( G )) then
      Info( InfoWarning, 1,
            "LowerCentralSeriesOfGroup: may not stop for infinite group <G>");
    fi;

    # compute the series by repeated calling of `CommutatorSubgroup'
    S := [ G ];
    Info( InfoGroup, 2, "LowerCentralSeriesOfGroup: step ", Length(S) );
    C := DerivedSubgroup( G );
    while C <> Last(S) do
        Add( S, C );
        Info( InfoGroup, 2, "LowerCentralSeriesOfGroup: step ", Length(S) );
        C := CommutatorSubgroup( G, C );
    od;

    # return the series when it becomes stable
    return S;
    end );

#############################################################################
##
#M  NilpotencyClassOfGroup( <G> )  . . . . lower central series of a group
##
InstallMethod(NilpotencyClassOfGroup,"generic",[IsGroup],0,
function(G)
  if not IsNilpotentGroup(G) then
    Error("<G> must be nilpotent");
  fi;
  return Length(LowerCentralSeriesOfGroup(G))-1;
end);

#############################################################################
##
#M  MaximalSubgroups( <G> )
##
InstallMethod(MaximalSubgroupClassReps,"default, catch dangerous options",
  true,[IsGroup],0,
function(G)
local a,m,i,l;
  # use ``try'' and set flags so that a known partial result is not used
  m:=TryMaximalSubgroupClassReps(G:
          cheap:=false,intersize:=false,inmax:=false,nolattice:=false);
  l:=[];
  for i in m do
    a:=SubgroupNC(G,GeneratorsOfGroup(i));
    if HasSize(i) then SetSize(a,Size(i));fi;
    Add(l,a);
  od;

  # now we know list is untained, store
  return l;

end);

# handle various options and flags
InstallGlobalFunction(TryMaximalSubgroupClassReps,
function(G)
local cheap,nolattice,intersize,attr,kill,i,flags,sup,sub,l;
  if HasMaximalSubgroupClassReps(G) then
    return MaximalSubgroupClassReps(G);
  fi;
  # the four possible options
  cheap:=ValueOption("cheap");
  if cheap=fail then cheap:=false;fi;
  nolattice:=ValueOption("nolattice");
  if nolattice=fail then nolattice:=false;fi;
  intersize:=ValueOption("intersize");
  if intersize=fail then intersize:=false;fi;
  #inmax:=ValueOption("inmax"); # should have no impact on validity of stored
  attr:=StoredPartialMaxSubs(G);
  # now find whether any stored information matches and which ones would be
  # superseded
  kill:=[];
  for i in [1..Length(attr)] do
    flags:=attr[i][1];
    # could use this stored result
    sup:=flags[3]=false or (IsInt(intersize) and intersize<=flags[3]);
    # would supersede the stored result
    sub:=intersize=false or (IsInt(flags[3]) and intersize>=flags[3]);
    sup:=sup and (cheap or not flags[1]);
    sub:=sub and (not cheap or flags[1]);
    sup:=sup and (nolattice or not flags[2]);
    sub:=sub and (not nolattice or flags[2]);
    if sup then return attr[i][2];fi; # use stored
    if sub then AddSet(kill,i);fi; # use stored
  od;
  l:=CalcMaximalSubgroupClassReps(G);
  Add(attr,Immutable([[cheap,nolattice,intersize],l]));
  # finally kill superseded ones (by replacing with last, which possibly was
  # just added)
  for i in Reversed(Set(kill)) do
    if i = Length(attr) then
      Remove(attr);
    else
      attr[i]:=Remove(attr);
    fi;
  od;
  return l;
end);

InstallMethod(StoredPartialMaxSubs,"set",true,[IsGroup],0,x->[]);

#############################################################################
##
#M  NrConjugacyClasses( <G> ) . . no. of conj. classes of elements in a group
##
InstallImmediateMethod( NrConjugacyClasses,
    IsGroup and HasConjugacyClasses and IsAttributeStoringRep,
    0,
    G -> Length( ConjugacyClasses( G ) ) );

InstallMethod( NrConjugacyClasses,
    "generic method for groups",
    [ IsGroup ],
    G -> Length( ConjugacyClasses( G ) ) );


#############################################################################
##
#A  IndependentGeneratorsOfAbelianGroup( <A> )
##
# to catch some trivial cases.
InstallMethod(IndependentGeneratorsOfAbelianGroup,"finite abelian group",
  true,[IsGroup and IsAbelian],0,
function(G)
local hom,gens;
  if not IsFinite(G) then
    TryNextMethod();
  fi;
  hom:=IsomorphismPermGroup(G);
  gens:=IndependentGeneratorsOfAbelianGroup(Image(hom,G));
  return List(gens,i->PreImagesRepresentative(hom,i));
end);


#############################################################################
##
#O  IndependentGeneratorExponents( <G>, <g> )
##
InstallMethod(IndependentGeneratorExponents,IsCollsElms,
  [IsGroup and IsAbelian, IsMultiplicativeElementWithInverse],0,
function(G,elm)
local ind, pcgs, primes, pos, p, i, e, f, a, j;
  if not IsBound(G!.indgenpcgs) then
    ind:=IndependentGeneratorsOfAbelianGroup(G);
    pcgs:=[];
    primes:=[];
    pos:=[];
    for i in ind do
      Assert(1, IsPrimePowerInt(Order(i)));
      p:=SmallestRootInt(Order(i));
      Add(primes,p);
      Add(pos,Length(pcgs)+1);
      while not IsOne(i) do
        Add(pcgs,i);
        i:=i^p;
      od;
    od;
    Add(pos,Length(pcgs)+1);
    pcgs:=PcgsByPcSequence(FamilyObj(One(G)),pcgs);
    G!.indgenpcgs:=rec(pcgs:=pcgs,primes:=primes,pos:=pos,gens:=ind);
  else
    pcgs:=G!.indgenpcgs.pcgs;
    primes:=G!.indgenpcgs.primes;
    pos:=G!.indgenpcgs.pos;
    ind:=G!.indgenpcgs.gens;
  fi;
  e:=ExponentsOfPcElement(pcgs,elm);
  f:=[];
  for i in [1..Length(ind)] do
    a:=0;
    for j in [pos[i+1]-1,pos[i+1]-2..pos[i]] do
      a:=a*primes[i]+e[j];
    od;
    Add(f,a);
  od;
  return f;
end);

#############################################################################
##
#M  Omega( <G>, <p>[, <n>] )  . . . . . . . . . . .  omega of a <p>-group <G>
##
InstallMethod( Omega,
    [ IsGroup, IsPosInt ],
    function( G, p )
    return Omega( G, p, 1 );
    end );

InstallMethod( Omega,
    [ IsGroup, IsPosInt, IsPosInt ],
    function( G, p, n )
    local known;

    # <G> must be a <p>-group
    if not IsPGroup(G) or PrimePGroup(G)<>p then
      Error( "Omega: <G> must be a p-group" );
    fi;

    known := ComputedOmegas( G );
    if not IsBound( known[ n ] )  then
        known[ n ] := OmegaOp( G, p, n );
    fi;
    return known[ n ];
    end );

InstallMethod( ComputedOmegas, [ IsGroup ], 0, G -> [  ] );


#############################################################################
##
#M  SolvableRadical( <G> )  . . . . . . . . . . . solvable radical of a group
##
InstallMethod( SolvableRadical,
  "factor out Fitting subgroup",
  [IsGroup and IsFinite],
function(G)
  local F,f;
  F := FittingSubgroup(G);
  if IsTrivial(F) then return F; fi;
  f := NaturalHomomorphismByNormalSubgroupNC(G,F);
  return PreImage(f,SolvableRadical(Image(f)));
end);

RedispatchOnCondition( SolvableRadical, true, [IsGroup], [IsFinite], 0);

InstallMethod( SolvableRadical,
    "solvable group is its own solvable radical",
    [ IsGroup and IsSolvableGroup ], 100,
    IdFunc );


#############################################################################
##
#M  GeneratorsSmallest( <G> ) . . . . . smallest generating system of a group
##
InstallMethod( GeneratorsSmallest,
    "generic method for groups",
    [ IsGroup ],
    function ( G )
    local   gens,       # smallest generating system of <G>, result
            gen,        # one generator of <gens>
            H;          # subgroup generated by <gens> so far

    # start with the empty generating system and the trivial subgroup
    gens := [];
    H := TrivialSubgroup( G );

    # loop over the elements of <G> in their order
    for gen  in EnumeratorSorted( G )  do

        # add the element not lying in the subgroup generated by the previous
        if not gen in H  then
            Add( gens, gen );
            #NC is safe (init with Triv)
            H := ClosureSubgroupNC( H, gen );

            # it is important to know when to stop
            if Size( H ) = Size( G )  then
                return gens;
            fi;

        fi;

    od;

    if Size(G)=1 then
      # trivial subgroup case
      return [];
    fi;

    # well we should never come here
    Error( "panic, <G> not generated by its elements" );
    end );

#############################################################################
##
#M  LargestElementGroup( <G> )
##
##  returns the largest element of <G> with respect to the ordering `\<' of
##  the elements family.
InstallMethod(LargestElementGroup,"use `EnumeratorSorted'",true,[IsGroup],
function(G)
  return EnumeratorSorted(G)[Size(G)];
end);


#############################################################################
##
#F  SupersolvableResiduumDefault( <G> ) . . . . supersolvable residuum of <G>
##
##  The algorithm constructs a descending series of normal subgroups with
##  supersolvable factor group from <G> to its supersolvable residuum such
##  that any subgroup that refines this series is normal in <G>.
##
##  In each step of the algorithm, a normal subgroup <N> of <G> with
##  supersolvable factor group is taken.
##  Then its commutator factor group is constructed and decomposed into its
##  Sylow subgroups.
##  For each, the Frattini factor group is considered as a <G>-module.
##  We are interested only in the submodules of codimension 1.
##  For these cases, the eigenspaces of the dual submodule are calculated,
##  and the preimages of their orthogonal spaces are used to construct new
##  normal subgroups with supersolvable factor groups.
##  If no eigenspace is found within one step, the residuum is reached.
##
##  The component `ds' describes a series such that any composition series
##  through `ds' from <G> down to the residuum is a chief series.
##
InstallGlobalFunction( SupersolvableResiduumDefault, function( G )
    local ssr,         # supersolvable residuum
          ds,          # component `ds' of the result
          gens,        # generators of `G'
          gs,          # small generating system of `G'
          p,           # loop variable
          o,           # group order
          size,        # size of `G'
          s,           # subgroup of `G'
          oldssr,      # value of `ssr' in the last iteration
          dh,          # nat. hom. modulo derived subgroup
          df,          # range of `dh'
          fs,          # list of factors of the size of `df'
          gen,         # generators for the next candidate
          pp,          # `p'-part of the size of `df'
          pu,          # Sylow `p' subgroup of `df'
          tmp,         # agemo generators
          ph,          # nat. hom. onto Frattini quotient of `pu'
          ff,          # Frattini factor
          ffsize,      # size of `ff'
          pcgs,        # PCGS of `ff'
          dim,         # dimension of the vector space `ff'
          field,       # prime field in char. `p'
          one,         # identity in `field'
          idm,         # identity matrix
          mg,          # matrices of `G' action on `ff'
          vsl,         # list of simult. eigenspaces
          nextvsl,     # for next iteration
          matrix,      # loop variable
          mat,         #
          eigenvalue,  # loop variable
          nullspace,   # generators of the eigenspace
          space,       # loop variable
          inter,       # intersection
          tmp2,        #
          v;           #

    ds  := [ G ];
    ssr := DerivedSubgroup( G );
    if Size( ssr ) < Size( G ) then
      ds[2]:= ssr;
    fi;

    if not IsTrivial( ssr ) then

      # Find a small generating system `gs' of `G'.
      # (We do *NOT* want to call `SmallGeneratingSet' here since
      # `MinimalGeneratingSet' is installed as a method for pc groups,
      # and for groups such as the Sylow 3 normalizer in F3+,
      # this needs more time than `SupersolvableResiduumDefault'.
      # Also the other method for `SmallGeneratingSet', which takes those
      # generators that cannot be omitted, is too slow.
      # The ``greedy'' type code below need not process all generators,
      # and it will be not too bad for pc groups.)
      gens := GeneratorsOfGroup( G );
      gs   := [ gens[1] ];
      p    := 2;
      o    := Order( gens[1] );
      size := Size( G );
      repeat
        s:= SubgroupNC( G, Concatenation( gs, [ gens[p] ] ) );
        if o < Size( s ) then
          Add( gs, gens[p] );
          o:= Size( s );
        fi;
        p:= p+1;
      until o = size;

      # Loop until we reach the residuum.
      repeat

        # Remember the last candidate as `oldssr'.
        oldssr := ssr;
        ssr    := DerivedSubgroup( oldssr );

        if Size( ssr ) < Size( oldssr ) then

          dh:= NaturalHomomorphismByNormalSubgroupNC( oldssr, ssr );

          # `df' is the commutator factor group `oldssr / ssr'.
          df:= Range( dh );
          SetIsAbelian( df, true );
          fs:= Factors(Integers, Size( df ) );

          # `gen' collects the generators for the next candidate
          gen := ShallowCopy( GeneratorsOfGroup( df ) );

          for p in Set( fs ) do

            pp:= Product( Filtered( fs, x -> x  = p ) );

            # `pu' is the Sylow `p' subgroup of `df'.
            pu:= SylowSubgroup( df, p );

            # Remove the `p'-part from the generators list `gen'.
            gen:= List( gen, x -> x^pp );

            # Add the agemo_1 of the Sylow subgroup to the generators list.
            tmp:= List( GeneratorsOfGroup( pu ), x -> x^p );
            Append( gen, tmp );
            ph:= NaturalHomomorphismByNormalSubgroupNC( pu,
                                                  SubgroupNC( df, tmp ) );

            # `ff' is the `p'-part of the Frattini factor group of `pu'.
            ff := Range( ph );
            ffsize:= Size( ff );
            if p < ffsize then

              # noncyclic case
              pcgs := Pcgs( ff );
              dim  := Length( pcgs );
              field:= GF(p);
              one  := One( field );
              idm  := IdentityMat( dim, field );

              # `mg' is the list of matrices of the action of `G' on the
              # dual space of the module, w.r.t. `pcgs'.
              mg:= List( gs, x -> TransposedMat( List( pcgs,
                     y -> one * ExponentsOfPcElement( pcgs, Image( ph,
                          Image( dh, PreImagesRepresentative(
                           dh, PreImagesRepresentative(ph,y) )^x ) ) )))^-1);
#T inverting is not necessary, or?
              mg:= Filtered( mg, x -> x <> idm );

              # `vsl' is a list of generators of all the simultaneous
              # eigenspaces.
              vsl:= [ idm ];
              for matrix in mg do

                nextvsl:= [];

                # All eigenvalues of `matrix' will be used.
                # (We expect `p' to be small, so looping over the nonzero
                # elements of the field is much faster than constructing and
                # factoring the characteristic polynomial of `matrix').
                mat:= matrix;
                for eigenvalue in [ 2 .. p ] do
                  mat:= mat - idm;
                  nullspace:= NullspaceMat( mat );
                  if not IsEmpty( nullspace ) then
                    for space in vsl do
                      inter:= SumIntersectionMat( space, nullspace )[2];
                      if not IsEmpty( inter ) then
                        Add( nextvsl, inter );
                      fi;
                    od;
                  fi;

                od;

                vsl:= nextvsl;

              od;

              # Now calculate the dual spaces of the eigenspaces.
              if IsEmpty( vsl ) then
                Append( gen, GeneratorsOfGroup( pu ) );
              else

                # `tmp' collects the eigenspaces.
                tmp:= [];
                for matrix in vsl do

                  # `tmp2' will be the base of the dual space.
                  tmp2:= [];
                  Append( tmp, matrix );
                  for v in NullspaceMat( TransposedMat( tmp ) ) do

                    # Construct a group element corresponding to
                    # the basis element of the submodule.
                    Add( tmp2, PreImagesRepresentative( ph,
                                   PcElementByExponentsNC( pcgs, v ) ) );

                  od;
                  Add( ds, PreImagesSet( dh,
                            SubgroupNC( df, Concatenation( tmp2, gen ) ) ) );
                od;
                Append( gen, tmp2 );
              fi;

            else

              # cyclic case
              Add( ds, PreImagesSet( dh,
                           SubgroupNC( df, AsSSortedList( gen ) ) ) );

            fi;
          od;

          # Generate the new candidate.
          ssr:= PreImagesSet( dh, SubgroupNC( df, AsSSortedList( gen ) ) );

        fi;

      until IsTrivial( ssr ) or oldssr = ssr;

    fi;

    # Return the result.
    return rec( ssr := SubgroupNC( G, Filtered( GeneratorsOfGroup( ssr ),
                                                i -> Order( i ) > 1 ) ),
                ds  := ds );
    end );


#############################################################################
##
#M  SupersolvableResiduum( <G> )
##
##  Note that this method sets `IsSupersolvableGroup'.
##  Analogously, methods for `IsSupersolvableGroup' should set
##  `SupersolvableResiduum'.
##
InstallMethod( SupersolvableResiduum,
    "method for finite groups (call `SupersolvableResiduumDefault')",
    [ IsGroup and IsFinite ],
    function( G )
    local ssr;
    ssr:= SupersolvableResiduumDefault( G ).ssr;
    SetIsSupersolvableGroup( G, IsTrivial( ssr ) );
    return ssr;
    end );


#############################################################################
##
#M  ComplementSystem( <G> ) . . . . . Sylow complement system of finite group
##
InstallMethod( ComplementSystem,
    "generic method for finite groups",
    [ IsGroup and IsFinite ],
function( G )
    local spec, weights, primes, comp, i, gens, sub;

    if not IsSolvableGroup(G) then
        return fail;
    fi;
    spec := SpecialPcgs( G );
    weights := LGWeights( spec );
    primes := Set( weights, x -> x[3] );
    comp := List( primes, ReturnFalse );
    for i in [1..Length( primes )] do
        gens := spec{Filtered( [1..Length(spec)],
                     x -> weights[x][3] <> primes[i] )};
        sub  := InducedPcgsByPcSequenceNC( spec, gens );
        comp[i] := SubgroupByPcgs( G, sub );
    od;
    return comp;
end );


#############################################################################
##
#M  SylowSystem( <G> ) . . . . . . . . . . . . . Sylow system of finite group
##
InstallMethod( SylowSystem,
    "generic method for finite groups",
    [ IsGroup and IsFinite ],
function( G )
    local spec, weights, primes, comp, i, gens, sub;

    if not IsSolvableGroup(G) then
        return fail;
    fi;
    spec := SpecialPcgs( G );
    weights := LGWeights( spec );
    primes := Set( weights, x -> x[3] );
    comp := List( primes, ReturnFalse );
    for i in [1..Length( primes )] do
        gens := spec{Filtered( [1..Length(spec)],
                           x -> weights[x][3] = primes[i] )};
        sub  := InducedPcgsByPcSequenceNC( spec, gens );
        comp[i] := SubgroupByPcgs( G, sub );
        SetIsPGroup( comp[i], true );
        SetPrimePGroup( comp[i], primes[i] );
        SetSylowSubgroup(G, primes[i], comp[i]);
        SetHallSubgroup(G, [primes[i]], comp[i]);
    od;
    return comp;
end );

#############################################################################
##
#M  HallSystem( <G> ) . . . . . . . . . . . . . . Hall system of finite group
##
InstallMethod( HallSystem,
    "test whether finite group is solvable",
    [ IsGroup and IsFinite ],
function( G )
    local spec, weights, primes, comp, i, gens, pis, sub;

    if not IsSolvableGroup(G) then
        return fail;
    fi;
    spec := SpecialPcgs( G );
    weights := LGWeights( spec );
    primes := Set( weights, x -> x[3] );
    pis    := Combinations( primes );
    comp   := List( pis, ReturnFalse );
    for i in [1..Length( pis )] do
        gens := spec{Filtered( [1..Length(spec)],
                           x -> weights[x][3] in pis[i] )};
        sub  := InducedPcgsByPcSequenceNC( spec, gens );
        comp[i] := SubgroupByPcgs( G, sub );
        SetHallSubgroup(G, pis[i], comp[i]);
        if Length(pis[i])=1 then
            SetSylowSubgroup(G, pis[i][1], comp[i]);
        fi;
    od;
    return comp;
end );

#############################################################################
##
#M  Socle( <G> )  . . . . . . . . . . . . . . . . . . . . . for simple groups
##
InstallMethod( Socle, "for simple groups",
              [ IsGroup and IsSimpleGroup ], SUM_FLAGS, IdFunc );

#############################################################################
##
#M  Socle( <G> )  . . . . . . . . . . . . . . . for elementary abelian groups
##
InstallMethod( Socle, "for elementary abelian groups",
              [ IsGroup and IsElementaryAbelian ], SUM_FLAGS, IdFunc );

#############################################################################
##
#M  Socle( <G> ) . . . . . . . . . . . . . . . . . . . . for nilpotent groups
##
InstallMethod( Socle, "for nilpotent groups",
              [ IsGroup and IsNilpotentGroup ],
              {} -> RankFilter( IsGroup and IsFinite and IsNilpotentGroup )
              - RankFilter( IsGroup and IsNilpotentGroup ),
  function(G)
    local P, C, size, gen, abinv, indgen, i, p, q, soc;

    # for finite groups the usual methods are faster
    # for SylowSystem and Omega
    if ( CanComputeSize(G) or HasIsFinite(G) ) and IsFinite(G) then
      soc := TrivialSubgroup(G);
      # now socle is the product of Omega of Sylow subgroups of the center
      for P in SylowSystem(Center(G)) do
        soc := ClosureSubgroupNC(soc, AsSubgroup(G,Omega(P, PrimePGroup(P))));
      od;
    else
      # compute generators for the torsion Omega p-subgroups of the center
      C := Center(G);
      gen := [ ];
      abinv := [ ];
      indgen := [ ];
      size := 1;
      for i in [1..Length(AbelianInvariants(C))] do
        q := AbelianInvariants(C)[i];
        if q<>0 then
          p := SmallestRootInt(q);
          if not IsBound(gen[p]) then
            gen[p] := [ IndependentGeneratorsOfAbelianGroup(C)[i]^(q/p) ];
          else
            Add(gen[p], IndependentGeneratorsOfAbelianGroup(C)[i]^(q/p));
          fi;
          size := size * p;
          Add(abinv, p);
          Add(indgen, IndependentGeneratorsOfAbelianGroup(C)[i]^(q/p));
        fi;
      od;
      # Socle is the product of the torsion Omega p-groups of the center
      soc := Subgroup(G, Concatenation(Compacted(gen)));
      SetSize(soc, size);
      SetAbelianInvariants(soc, abinv);
      SetIndependentGeneratorsOfAbelianGroup(soc, indgen);
    fi;

    # Socle is central in G, set some properties and attributes accordingly
    SetIsAbelian(soc, true);
    if not HasParent(soc) then
      SetParent(soc, G);
      SetCentralizerInParent(soc, G);
      SetIsNormalInParent(soc, true);
    elif CanComputeIsSubset(G, Parent(soc))
         and IsSubgroup(G, Parent(soc)) then
      SetCentralizerInParent(soc, Parent(soc));
      SetIsNormalInParent(soc, true);
    elif CanComputeIsSubset(G, Parent(soc))
         and IsSubgroup(Parent(soc), G) and IsNormal(Parent(soc), G) then
      # characteristic subgroup of a normal subgroup is normal
      SetIsNormalInParent(soc, true);
    fi;

    return soc;
  end);

RedispatchOnCondition(Socle, true, [IsGroup], [IsNilpotentGroup], 0);

#############################################################################
##
#M  UpperCentralSeriesOfGroup( <G> )  . . . . upper central series of a group
##
InstallMethod( UpperCentralSeriesOfGroup,
    "generic method for groups",
    [ IsGroup ],
    function ( G )
    local   S,          # upper central series of <G>, result
            C,          # centre
            hom;        # homomorphisms of <G> to `<G>/<C>'

    # print out a warning for infinite groups
    if (HasIsFinite(G) and not IsFinite( G ))
      and not (HasIsNilpotentGroup(G) and IsNilpotentGroup( G )) then
      Info( InfoWarning, 1,
            "UpperCentralSeriesOfGroup: may not stop for infinite group <G>");
    fi;

    # compute the series by repeated calling of `Centre'
    S := [ TrivialSubgroup( G ) ];
    Info( InfoGroup, 2, "UpperCentralSeriesOfGroup: step ", Length(S) );
    C := Centre( G );
    while C <> Last(S) do
        Add( S, C );
        Info( InfoGroup, 2, "UpperCentralSeriesOfGroup: step ", Length(S) );
        hom := NaturalHomomorphismByNormalSubgroupNC( G, C );
        C := PreImages( hom, Centre( Image( hom ) ) );
    od;

    if Last(S) = G then
        UseIsomorphismRelation( G, Last(S) );
    fi;
    # return the series when it becomes stable
    return Reversed( S );
    end );

#############################################################################
##
#M  Agemo( <G>, <p> [, <n> ] )  . . . . . . . . . .  agemo of a <p>-group <G>
##
InstallGlobalFunction( Agemo, function( arg )
    local   G,  p,  n,  known;

    G := arg[1];
    p := arg[2];

    if IsTrivial(G) then
        return G;
    fi;

    # <G> must be a <p>-group
    if not IsPGroup(G) or PrimePGroup(G)<>p then
        Error( "Agemo: <G> must be a p-group" );
    fi;

    if Length( arg ) = 3  then  n := arg[3];
                          else  n := 1;       fi;

    known := ComputedAgemos( G );
    if not IsBound( known[ n ] )  then
        known[ n ] := AgemoOp( G, p, n );
    fi;
    return known[ n ];
end );

InstallMethod( ComputedAgemos, [ IsGroup ], 0, G -> [  ] );

#############################################################################
##
#M  AsSubgroup( <G>, <U> )
##
InstallMethod( AsSubgroup,
    "generic method for groups",
    IsIdenticalObj, [ IsGroup, IsGroup ],
    function( G, U )
    local S;
    # test if the parent is already alright
    if HasParent(U) and IsIdenticalObj(Parent(U),G) then
      return U;
    fi;

    if not IsSubset( G, U ) then
      return fail;
    fi;
    S:= SubgroupNC( G, GeneratorsOfGroup( U ) );
    UseIsomorphismRelation( U, S );
    UseSubsetRelation( U, S );
    return S;
    end );


#############################################################################
##
#F  ClosureGroupDefault( <G>, <elm> ) . . . . . closure of group with element
##
InstallGlobalFunction( ClosureGroupDefault, function( G, elm )

    local   C,          # closure `\< <G>, <obj> \>', result
            gens,       # generators of <G>
            gen,        # generator of <G> or <C>
            Celements,  # intermediate list of elements
            rg,         # rep*gen
            e,          # loop
            reps,       # representatives of cosets of <G> in <C>
            rep;        # representative of coset of <G> in <C>

    gens:= GeneratorsOfGroup( G );

    # try to avoid adding an element to a group that already contains it
    if   elm in gens
      or elm^-1 in gens
      or ( HasAsSSortedList( G ) and elm in AsSSortedList( G ) )
      or elm = One( G )
    then
        return G;
    fi;

    # make the closure group
    if HasOne( G ) and One( G ) * elm = elm and elm * One( G ) = elm  then
        C := GroupWithGenerators( Concatenation( gens, [ elm ] ), One( G ) );
    else
        C := GroupWithGenerators( Concatenation( gens, [ elm ] ) );
    fi;
    UseSubsetRelation( C, G );

    # if the elements of <G> are known then extend this list
    if HasAsSSortedList( G ) then

        # if <G>^<elm> = <G> then <C> = <G> * <elm>
        if ForAll( gens, gen -> gen ^ elm in AsSSortedList( G ) )  then
            Info( InfoGroup, 2, "new generator normalizes" );
            Celements := ShallowCopy( AsSSortedList( G ) );
            rep := elm;
            while not rep in AsSSortedList( G ) do
                #Append( Celements, AsSSortedList( G ) * rep );
                for e in AsSSortedList(G) do
                    # we cannot have duplicates here
                    Add(Celements,e*rep);
                od;
                rep := rep * elm;
            od;
            SetAsSSortedList( C, AsSSortedList( Celements ) );
            SetIsFinite( C, true );
            SetSize( C, Length( Celements ) );

        # otherwise use a Dimino step
        else
            Info( InfoGroup, 2, "new generator normalizes not" );
            Celements := ShallowCopy( AsSSortedList( G ) );
            reps := [ One( G ) ];
            Info( InfoGroup, 2, "   |<cosets>| = ", Length(reps) );
            for rep  in reps  do
                for gen  in GeneratorsOfGroup( C ) do
                    rg:=rep*gen;
                    if not rg in Celements  then
                        #Append( Celements, AsSSortedList( G ) * rg );
                        # rather do this as a set as well to compare
                        # elements better
                        for e in AsSSortedList( G ) do
                            AddSet(Celements,e*rg);
                        od;
                        Add( reps, rg );
                        Info( InfoGroup, 3,
                              "   |<cosets>| = ", Length(reps) );
                    fi;
                od;
            od;
            # Celements is sorted already
            #SetAsSSortedList( C, AsSSortedList( Celements ) );
            SetAsSSortedList( C, Celements );
            SetIsFinite( C, true );
            SetSize( C, Length( Celements ) );

        fi;
    fi;

    # return the closure
    return C;
end );


#############################################################################
##
#M  ClosureGroupAddElm( <G>, <elm> )
#M  ClosureGroupCompare( <G>, <elm> )
#M  ClosureGroupIntest( <G>, <elm> )
##
InstallGlobalFunction(ClosureGroupAddElm,function( G, elm )
local   C,  gens;

    gens := GeneratorsOfGroup( G );
    # make the closure group
    C := GroupWithGenerators( Concatenation( gens, [ elm ] ) );
    UseSubsetRelation( C, G );

    # return the closure
    return C;
end );

InstallGlobalFunction(ClosureGroupCompare,function( G, elm )
local  gens;

  gens := GeneratorsOfGroup( G );

  # try to avoid adding an element to a group that already contains it
  if   elm in gens
    or elm^-1 in gens
    or ( HasAsSSortedList( G ) and elm in AsSSortedList( G ) )
    or elm = One( G )  then
      return G;
  fi;

  return ClosureGroupAddElm(G,elm);
end );

InstallGlobalFunction(ClosureGroupIntest,function( G, elm )
local  gens;

  gens := GeneratorsOfGroup( G );

  # try to avoid adding an element to a group that already contains it
  if   elm in gens
    or elm^-1 in gens
    or ( HasAsSSortedList( G ) and elm in AsSSortedList( G ) )
    or elm = One( G )
    or elm in G then
      return G;
  fi;

  return ClosureGroupAddElm(G,elm);
end );


#############################################################################
##
#M  ClosureGroup( <G>, <elm> )  . . . .  default method for group and element
##
InstallMethod( ClosureGroup, "generic method for group and element",
    IsCollsElms, [ IsGroup, IsMultiplicativeElementWithInverse ],
function(G,elm)
  if CanEasilyCompareElements(elm) then
    return ClosureGroupCompare(G,elm);
  else
    return ClosureGroupAddElm(G,elm);
  fi;
end);

InstallMethod( ClosureGroup, "groups with cheap membership test", IsCollsElms,
  [IsGroup and CanEasilyTestMembership,IsMultiplicativeElementWithInverse],
  ClosureGroupIntest);

InstallMethod( ClosureGroup, "trivial subgroup", IsIdenticalObj,
  [IsGroup and IsTrivial,IsGroup],
function(T,U)
  return U;
end);

#############################################################################
##
#M  ClosureGroup( <G>, <elm> )  . .  for group that contains the whole family
##
InstallMethod( ClosureGroup,
    "method for group that contains the whole family",
    IsCollsElms,
    [ IsGroup and IsWholeFamily, IsMultiplicativeElementWithInverse ],
    SUM_FLAGS, # this is better than everything else
    ReturnFirst);

#############################################################################
##
#M  ClosureGroup( <G>, <U> )  . . . . . . . . . . closure of group with group
##
InstallMethod( ClosureGroup,
    "generic method for two groups",
    IsIdenticalObj, [ IsGroup, IsGroup ],
    function( G, H )

    local   C,   # closure `\< <G>, <H> \>', result
            gen; # generator of <G> or <C>

    C:= G;
    for gen in GeneratorsOfGroup( H ) do
      C:= ClosureGroup( C, gen );
    od;
    return C;
    end );

InstallMethod( ClosureGroup,
    "for two groups, the bigger containing the whole family",
    IsIdenticalObj,
    [ IsGroup and IsWholeFamily, IsGroup ],
    SUM_FLAGS, # this is better than everything else
    ReturnFirst);

InstallMethod( ClosureGroup,
    "for group and element list",
    IsIdenticalObj,
    [ IsGroup, IsCollection ],
    function( G, gens )
    local   gen;

    for gen  in gens  do
        G := ClosureGroup( G, gen );
    od;
    return G;
end );

InstallMethod( ClosureGroup, "for group and empty element list",
    [ IsGroup, IsList and IsEmpty ], ReturnFirst);

#############################################################################
##
#F  ClosureSubgroupNC( <G>, <obj> )
##
InstallGlobalFunction( ClosureSubgroupNC, function(arg)
local G,obj,close;
    G:=arg[1];
    obj:=arg[2];
    if HasIsTrivial(G) and IsTrivial(G) and IsGroup(obj) then
      obj:=AsSubgroup(Parent(G),obj);
    fi;
    if not HasParent( G ) then
      # don't be obnoxious
      Info(InfoWarning,3,"`ClosureSubgroup' called for orphan group" );
      close:=false;
    else
      close:=true;
    fi;
    if Length(arg)=2 then
      obj:= ClosureGroup( G, obj );
    else
      obj:= ClosureGroup( G, obj, arg[3] );
    fi;

    if close and not IsIdenticalObj( Parent( G ), obj ) then
      if ValueOption("noassert")<>true then
        Assert(2,IsSubset(Parent(G),obj));
      fi;
      SetParent( obj, Parent( G ) );
    fi;
    return obj;
end );


#############################################################################
##
#M  ClosureSubgroup( <G>, <obj> )
##
InstallGlobalFunction( ClosureSubgroup, function( G, obj )

    local famG, famobj, P;

    if not HasParent( G ) then
      #Error( "<G> must have a parent" );
      P:= G;
    else
      P:= Parent( G );
    fi;

    # Check that we may set the parent of the closure.
    famG:= FamilyObj( G );
    famobj:= FamilyObj( obj );
    # refer to `ClosureGroup' instead of issuing errors -- `ClosureSubgroup'
    # is only used to transfer information
    if   IsIdenticalObj( famG, famobj ) and not IsSubset( P, obj ) then
      return ClosureGroup(G,obj);
      #Error( "<obj> is not a subset of the parent of <G>" );
    elif IsCollsElms( famG, famobj ) and not obj in P then
      return ClosureGroup(G,obj);
      #Error( "<obj> is not an element of the parent of <G>" );
    fi;

    # Return the closure.
    return ClosureSubgroupNC( G, obj );
end );


#############################################################################
##
#M  CommutatorSubgroup( <U>, <V> )  . . . . commutator subgroup of two groups
##
InstallMethod( CommutatorSubgroup,
    "generic method for two groups",
    IsIdenticalObj, [ IsGroup, IsGroup ],
    function ( U, V )
    local   C, u, v, c;

    # [ <U>, <V> ] = normal closure of < [ <u>, <v> ] >.
    C := TrivialSubgroup( U );
    for u  in GeneratorsOfGroup( U ) do
        for v  in GeneratorsOfGroup( V ) do
            c := Comm( u, v );
            if not c in C  then
                C := ClosureSubgroup( C, c );
            fi;
        od;
    od;
    return NormalClosure( ClosureGroup( U, V ), C );
    end );

#############################################################################
##
#M  \^( <G>, <g> )
##
InstallOtherMethod( \^,
    "generic method for groups and element",
    IsCollsElms,
    [ IsGroup,
      IsMultiplicativeElementWithInverse ],
    ConjugateGroup );


#############################################################################
##
#M  ConjugateGroup( <G>, <g> )
##
InstallMethod( ConjugateGroup, "<G>, <g>", IsCollsElms,
    [ IsGroup, IsMultiplicativeElementWithInverse ],
    function( G, g )
    local   H;

    H := GroupByGenerators( OnTuples( GeneratorsOfGroup( G ), g ), One(G) );
    UseIsomorphismRelation( G, H );
    return H;
end );


#############################################################################
##
#M  ConjugateSubgroup( <G>, <g> )
##
InstallMethod( ConjugateSubgroup, "for group with parent, and group element",
  IsCollsElms,[IsGroup and HasParent,IsMultiplicativeElementWithInverse],
function( G, g )
  g:= ConjugateGroup( G, g );
  if not IsIdenticalObj(Parent(G),g) then
    SetParent( g, Parent( G ) );
  fi;
  return g;
end );

InstallOtherMethod( ConjugateSubgroup, "for group without parent",
  IsCollsElms,[IsGroup,IsMultiplicativeElementWithInverse],
ConjugateGroup);

#############################################################################
##
#M  Core( <G>, <U> )  . . . . . . . . . . . . . core of a subgroup in a group
##
InstallMethod( CoreOp,
    "generic method for two groups",
    IsIdenticalObj, [ IsGroup, IsGroup ],
    function ( G, U )

    local   C,          # core of <U> in <G>, result
            i,          # loop variable
            gens;       # generators of `G'

    Info( InfoGroup, 1,
          "Core: of ", GroupString(U,"U"), " in ", GroupString(G,"G") );

    # start with the subgroup <U>
    C := U;

    # loop until all generators normalize <C>
    i := 1;
    gens:= GeneratorsOfGroup( G );
    while i <= Length( gens )  do

        # if <C> is not normalized by this generator take the intersection
        # with the conjugate subgroup and start all over again
        if not ForAll( GeneratorsOfGroup( C ), gen -> gen ^ gens[i] in C ) then
            C := Intersection( C, C ^ gens[i] );
            Info( InfoGroup, 2, "Core: approx. is ",GroupString(C,"C") );
            i := 1;

        # otherwise try the next generator
        else
            i := i + 1;
        fi;

    od;

    # return the core
    Info( InfoGroup, 1, "Core: returns ", GroupString(C,"C") );
    return C;
    end );


#############################################################################
##
#F  FactorGroup( <G>, <N> )
#M  FactorGroupNC( <G>, <N> )
#M  \/( <G>, <N> )
##
InstallGlobalFunction( FactorGroup,function(G,N)
  if not (IsGroup(G) and IsGroup(N) and IsSubgroup(G,N) and IsNormal(G,N)) then
    Error("<N> must be a normal subgroup of <G>");
  fi;
  return FactorGroupNC(G,N);
end);

InstallMethod( FactorGroupNC, "generic method for two groups", IsIdenticalObj,
    [ IsGroup, IsGroup ],
function( G, N )
local hom,F,new;
  hom:=NaturalHomomorphismByNormalSubgroupNC( G, N );
  F:=ImagesSource(hom);
  #TODO: Remove the !.nathom component
  if not IsBound(F!.nathom) then
    F!.nathom:=hom;
  else
    # avoid cached homomorphisms
    new:=Group(GeneratorsOfGroup(F),One(F));
    hom:=hom*GroupHomomorphismByImagesNC(F,new,
      GeneratorsOfGroup(F),GeneratorsOfGroup(F));
    F:=new;
    F!.nathom:=hom;
  fi;
  return F;
end );

InstallOtherMethod( \/,
    "generic method for two groups",
    IsIdenticalObj,
    [ IsGroup, IsGroup ],
    FactorGroup );


#############################################################################
##
#M  IndexOp( <G>, <H> )
##
InstallMethod( IndexOp,
    "generic method for two groups",
    IsIdenticalObj,
    [ IsGroup, IsGroup ],
    function( G, H )
    if not IsSubset( G, H ) then
      Error( "<H> must be contained in <G>" );
    fi;
    return IndexNC( G, H );
    end );


#############################################################################
##
#M  IndexNC( <G>, <H> )
##
##  We install the method that returns the quotient of the group orders
##  twice, once as the generic method and once for the situation that the
##  group orders are known;
##  in the latter case, we choose a high enough rank, in order to avoid the
##  unnecessary computation of nice monomorphisms, images of the groups, and
##  orders of these images.
##
InstallMethod( IndexNC,
    "generic method for two groups (the second one being finite)",
    IsIdenticalObj,
    [ IsGroup, IsGroup ],
    function( G, H )
    if IsFinite( H ) then
      return Size( G ) / Size( H );
    fi;
    TryNextMethod();
    end );

InstallMethod( IndexNC,
    "for two groups with known Size value",
    IsIdenticalObj,
    [ IsGroup and HasSize, IsGroup and HasSize and IsFinite ],
    {} -> 2 * RankFilter( IsHandledByNiceMonomorphism ),
    function( G, H )
    return Size( G ) / Size( H );
    end );


#############################################################################
##
#M  IsConjugate( <G>, <x>, <y> )
##
InstallMethod(IsConjugate,"group elements",IsCollsElmsElms,[IsGroup,
  IsMultiplicativeElementWithInverse,IsMultiplicativeElementWithInverse],
function(g,x,y)
  return RepresentativeAction(g,x,y,OnPoints)<>fail;
end);

InstallMethod(IsConjugate,"subgroups",IsFamFamFam,[IsGroup, IsGroup,IsGroup],
function(g,x,y)
  # shortcut for normal subgroups
  if (HasIsNormalInParent(x) and IsNormalInParent(x)
      and CanComputeIsSubset(Parent(x),g) and IsSubset(Parent(x),g))
  or (HasIsNormalInParent(y) and IsNormalInParent(y)
      and CanComputeIsSubset(Parent(y),g) and IsSubset(Parent(y),g)) then
    return x=y;
  fi;

  return RepresentativeAction(g,x,y,OnPoints)<>fail;
end);

#############################################################################
##
#M  IsNormal( <G>, <U> )
##
InstallMethod( IsNormalOp,
    "generic method for two groups",
    IsIdenticalObj, [ IsGroup, IsGroup ],
    function( G, H )
    return ForAll(GeneratorsOfGroup(G),
             i->ForAll(GeneratorsOfGroup(H),j->j^i in H));
    end );

#############################################################################
##
#M  IsCharacteristicSubgroup( <G>, <U> )
##
InstallMethod( IsCharacteristicSubgroup, "generic method for two groups",
    IsIdenticalObj, [ IsGroup, IsGroup ],
function( G, H )
local n,a;
  if not IsNormal(G,H) then
     return false;
  fi;
  # computing the automorphism group is quite expensive. We therefore test
  # first whether there are image candidates
  if not IsAbelian(G) and not HasAutomorphismGroup(G) then #(otherwise there might be to many normal sgrps)
    n:=NormalSubgroups(G);
    n:=Filtered(n,i->Size(i)=Size(H)); # probably do further tests here
    if Length(n)=1 then
      return true; # there is no potential image - we are characteristic
    fi;
  fi;

  a:=AutomorphismGroup(G);
  return ForAll(GeneratorsOfGroup(a),i->Image(i,H)=H);
end );


#############################################################################
##
#M  IsPNilpotentOp( <G>, <p> )
##
##  A group is $p$-nilpotent if it possesses a normal $p$-complement.
##  So we compute a Hall subgroup for the set of prime divisors of $|<G>|$
##  except <p>, and check whether it is normal in <G>.
##
InstallMethod( IsPNilpotentOp,
    "for a group with special pcgs: test for normal Hall subgroup",
    [ IsGroup and HasSpecialPcgs, IsPosInt ],
    function( G, p )

    local primes, S;

    primes:= PrimeDivisors( Size( G ) );
    primes:= Filtered(primes, q -> q <> p );
    S:= HallSubgroup( G, primes );

    return S <> fail and IsNormal( G, S );
    end );

InstallMethod( IsPNilpotentOp,
    "check if p divides order of hypocentre",
    [ IsGroup and IsFinite, IsPosInt ],
    function( G, p )

    local ser;

    ser := LowerCentralSeriesOfGroup( G );
    return Size( Last(ser) ) mod p <> 0;
    end );

RedispatchOnCondition (IsPNilpotentOp, ReturnTrue, [IsGroup, IsPosInt], [IsFinite], 0);


#############################################################################
##
#M  IsPSolvable( <G>, <p> )
##
InstallMethod( IsPSolvableOp,
    "generic method: build descending series with abelian or p'-factors",
    [ IsGroup and IsFinite, IsPosInt ],
    function( G, p )

    local N;

    while Size( G ) mod p = 0 do
        N := PerfectResiduum( G );
        N := NormalClosure (N, SylowSubgroup (N, p));
        if IndexNC( G, N ) = 1 then
            return false;
        fi;
        G := N;
    od;
    return true;
    end);

InstallMethod( IsPSolvableOp,
    "for solvable groups: return true",
    [ IsGroup and IsSolvableGroup and IsFinite, IsPosInt ],
    SUM_FLAGS,
    ReturnTrue);

RedispatchOnCondition (IsPSolvableOp, ReturnTrue, [IsGroup, IsPosInt], [IsFinite], 0);


#############################################################################
##
#F  IsSubgroup( <G>, <U> )
##
InstallGlobalFunction( IsSubgroup,
    function( G, U )
    return IsGroup( U ) and IsSubset( G, U );
    end );


#############################################################################
##
#R  IsRightTransversalRep( <obj> )  . . . . . . . . . . . . right transversal
##
DeclareRepresentation( "IsRightTransversalRep",
    IsAttributeStoringRep and IsRightTransversal,
    [ "group", "subgroup" ] );

InstallMethod( PrintObj,
    "for right transversal",
    [ IsList and IsRightTransversalRep ],
function( cs )
    Print( "RightTransversal( ", cs!.group, ", ", cs!.subgroup, " )" );
end );

InstallMethod( PrintString,
    "for right transversal",
    [ IsList and IsRightTransversalRep ],
function( cs )
    return PRINT_STRINGIFY( "RightTransversal( ", cs!.group, ", ", cs!.subgroup, " )" );
end );

InstallMethod( ViewObj,
    "for right transversal",
    [ IsList and IsRightTransversalRep ],
function( cs )
    Print( "RightTransversal(");
    View(cs!.group);
    Print(",");
    View(cs!.subgroup);
    Print(")");
end );

InstallMethod( Length,
    "for right transversal",
    [ IsList and IsRightTransversalRep ],
    t -> Index( t!.group, t!.subgroup ) );

InstallMethod( Position, "right transversal: Use PositionCanonical",
  IsCollsElmsX,
    [ IsList and
    IsRightTransversalRep,IsMultiplicativeElementWithInverse,IsInt ],
function(t,e,p)
local a;
  a:=PositionCanonical(t,e);
  if a<p or t[a]<>e then
    return fail;
  else
    return a;
  fi;
end);

#############################################################################
##
#M  NormalClosure( <G>, <U> ) . . . . normal closure of a subgroup in a group
##
InstallMethod( NormalClosureOp,
    "generic method for two groups",
    IsIdenticalObj, [ IsGroup, IsGroup ],
    function ( G, N )
    local   gensG,      # generators of the group <G>
            genG,       # one generator of the group <G>
            gensN,      # generators of the group <N>
            genN,       # one generator of the group <N>
            cnj;        # conjugated of a generator of <U>

    Info( InfoGroup, 1,
          "NormalClosure: of ", GroupString(N,"U"), " in ",
          GroupString(G,"G") );

    # get a set of monoid generators of <G>
    gensG := GeneratorsOfGroup( G );
    if not IsFinite( G )  then
        gensG := Concatenation( gensG, List( gensG, gen -> gen^-1 ) );
    fi;
    Info( InfoGroup, 2, " |<gens>| = ", Length( GeneratorsOfGroup( N ) ) );

    # loop over all generators of N
    gensN := ShallowCopy( GeneratorsOfGroup( N ) );
    for genN  in gensN  do

        # loop over the generators of G
        for genG  in gensG  do

            # make sure that the conjugated element is in the closure
            cnj := genN ^ genG;
            if not cnj in N  then
                Info( InfoGroup, 2,
                      " |<gens>| = ", Length( GeneratorsOfGroup( N ) ),
                      "+1" );
                N := ClosureGroup( N, cnj );
                Add( gensN, cnj );
            fi;

        od;

    od;

    # return the normal closure
    Info( InfoGroup, 1, "NormalClosure: returns ", GroupString(N,"N") );
    return N;
    end );

InstallMethod( NormalClosureOp, "trivial subgroup",
  IsIdenticalObj, [ IsGroup, IsGroup and IsTrivial ], SUM_FLAGS,
function(G,U)
  return U;
end);

InstallOtherMethod( NormalClosure, "generic method for a list of generators",
  IsIdenticalObj, [ IsGroup, IsList ],
function(G, list)
  return NormalClosure(G, Group(list, One(G)));
end);

InstallOtherMethod( NormalClosure, "generic method for an empty list of generators",
  [ IsGroup, IsList and IsEmpty ],
function(G, list)
  return TrivialSubgroup(G);
end);

#############################################################################
##
#M  NormalIntersection( <G>, <U> )  . . . . . intersection with normal subgrp
##
InstallMethod( NormalIntersection,
    "generic method for two groups",
    IsIdenticalObj, [ IsGroup, IsGroup ],
    function( G, H ) return Intersection2( G, H ); end );


#############################################################################
##
#M  Normalizer( <G>, <g> )
#M  Normalizer( <G>, <U> )
##
InstallMethod( NormalizerOp,
    "generic method for two groups",
    IsIdenticalObj, [ IsGroup, IsGroup ],
    function ( G, U )
    local   N;          # normalizer of <U> in <G>, result

    Info( InfoGroup, 1,
          "Normalizer: of ", GroupString(U,"U"), " in ",
          GroupString(G,"G") );

    # both groups are in common undefined supergroup
    N:= Stabilizer( G, U, function(g,e)
                return GroupByGenerators(List(GeneratorsOfGroup(g),i->i^e),
                                         One(g));
            end);
#T or the following?
#T  N:= Stabilizer( G, U, ConjugateSubgroup );
#T (why to insist in the parent group?)

    # return the normalizer
    Info( InfoGroup, 1, "Normalizer: returns ", GroupString(N,"N") );
    return N;
    end );

InstallMethod( NormalizerOp,
    "generic method for group and Element",
    IsCollsElms, [ IsGroup, IsMultiplicativeElementWithInverse ],
function(G,g)
  return NormalizerOp(G,Group([g],One(G)));
end);

#############################################################################
##
#M  NrConjugacyClassesInSupergroup( <U>, <H> )
##  . . . . . . .  number of conjugacy classes of <H> under the action of <U>
##
InstallMethod( NrConjugacyClassesInSupergroup,
    "generic method for two groups",
    IsIdenticalObj, [ IsGroup, IsGroup ],
    function( U, G )
    return Number( ConjugacyClasses( U ), C -> Representative( C ) in G );
    end );


#############################################################################
##
#M  PCentralSeriesOp( <G>, <p> )  . . . . . .  . . . . . . <p>-central series
##
InstallMethod( PCentralSeriesOp,
    "generic method for group and prime",
    [ IsGroup, IsPosInt ],
    function( G, p )
    local   L,  C,  S,  N,  P;

    # Start with <G>.
    L := [];
    N := G;
    repeat
        Add( L, N );
        S := N;
        C := CommutatorSubgroup( G, S );
        P := SubgroupNC( G, List( GeneratorsOfGroup( S ), x -> x ^ p ) );
        N := ClosureGroup( C, P );
    until N = S;
    return L;
    end );

InstallOtherMethod( PCentralSeries, "pGroup", [ IsGroup ], function( G )
  if not IsPGroup(G) then
    Error("<G> must be a p-group if no prime is given");
  fi;
  return PCentralSeries(G,PrimePGroup(G));
end);

#############################################################################
##
#M  PClassPGroup( <G> )   . . . . . . . . . .  . . . . . . <p>-central series
##
InstallMethod( PClassPGroup,
    "generic method for group",
    [ IsPGroup ],
    function( G )
    if IsTrivial( G ) then
      return 0;
    fi;
    return Length( PCentralSeries( G, PrimePGroup( G ) ) ) - 1;
    end );


#############################################################################
##
#M  RankPGroup( <G> ) . . . . . . . . . . . .  . . . . . . <p>-central series
##
InstallMethod( RankPGroup,
    "generic method for group",
    [ IsPGroup ],
    G -> Length( AbelianInvariants( G ) ) );


#############################################################################
##
#M  PRumpOp( <G>, <p> )
##
InstallMethod( PRumpOp,
    "generic method for group and prime",
    [ IsGroup, IsPosInt ],
function( G, p )
    local  C, gens, V;

    # Start with the derived subgroup of <G> and add <p>-powers.
    C := DerivedSubgroup( G );
    gens := Filtered( GeneratorsOfGroup( G ), x -> not x in C );
    gens := List( gens, x -> x ^ p );
    V := Subgroup( G, Union( GeneratorsOfGroup( C ), gens ) );
    return V;
end);


#############################################################################
##
#M  PCoreOp( <G>, <p> ) . . . . . . . . . . . . . . . . . . p-core of a group
##
##  `PCore' returns the <p>-core of the group <G>, i.e., the  largest  normal
##  <p>-subgroup of <G>.  This is the core of any Sylow <p> subgroup.
##
InstallMethod( PCoreOp,
    "generic method for nilpotent group and prime",
    [ IsGroup and IsNilpotentGroup and IsFinite, IsPosInt ],
    function ( G, p )
    return SylowSubgroup( G, p );
    end );

InstallMethod( PCoreOp,
    "generic method for group and prime",
    [ IsGroup, IsPosInt ],
    function ( G, p )
    return Core( G, SylowSubgroup( G, p ) );
    end );


#############################################################################
##
#M  Stabilizer( <G>, <obj>, <opr> )
#M  Stabilizer( <G>, <obj> )
##

#############################################################################
##
#M  StructuralSeriesOfGroup( <G> )
##
InstallMethod( StructuralSeriesOfGroup, "generic",true,[IsGroup and IsFinite],0,
function(G)
local ser,r,nat,f,Pker,d,i,j,u,loc,p;
  ser:=[];
  r:=SolvableRadical(G);
  ser:=[G];
  if Size(r)<Size(G) then
    nat:=NaturalHomomorphismByNormalSubgroupNC(G,r);
    f:=Image(nat,G);
    Pker:=f;
    d:=DirectFactorsFittingFreeSocle(f);
    for i in d do
      Pker:=Intersection(Pker,Normalizer(f,i));
    od;
    if Size(Pker)<Size(f) then Add(ser,PreImage(nat,Pker)); fi;
    if Size(Socle(f))<Size(Pker) then Add(ser,PreImage(nat,Socle(f)));fi;
    Add(ser,r);
  fi;
  d:=DerivedSeriesOfGroup(r);
  for i in [2..Length(d)] do
    u:=d[i];
    loc:=[u];
    p:=Set(Factors(IndexNC(d[i-1],u)));
    for j in p do
      u:=ClosureGroup(u,SylowSubgroup(d[i-1],j));
      #force elementary
      while not ForAll(GeneratorsOfGroup(u),x->x^j in Last(loc)) do
        r:=NaturalHomomorphismByNormalSubgroupNC(u,Last(loc));
        Pker:=Omega(Range(r),j,1);
        r:=PreImage(r,Pker);
        Add(loc,r);
      od;
      if Size(u)<Size(Last(ser)) then
        Add(loc,u);
      fi;
    od;
    Append(ser,Reversed(loc));
  od;
  return ser;
end);

#############################################################################
##
#M  SubnormalSeries( <G>, <U> ) . subnormal series from a group to a subgroup
##
InstallMethod( SubnormalSeriesOp,
    "generic method for two groups",
    IsIdenticalObj, [ IsGroup, IsGroup ],
    function ( G, U )
    local   S,          # subnormal series of <U> in <G>, result
            C;          # normal closure of <U> in <G> resp. <C>

    Info( InfoGroup, 1,
          "SubnormalSeries: of ", GroupString(U,"U"), " in ",
          GroupString(G,"G") );

    # compute the subnormal series by repeated calling of `NormalClosure'
    #N 9-Dec-91 fceller: we could use a subnormal series of the parent
    S := [ G ];
    Info( InfoGroup, 2, "SubnormalSeries: step ", Length(S) );
    C := NormalClosure( G, U );
    while C <> Last(S)  do
        Add( S, C );
        Info( InfoGroup, 2, "SubnormalSeries: step ", Length(S) );
        C := NormalClosure( C, U );
    od;

    # return the series
    Info( InfoGroup, 1, "SubnormalSeries: returns series of length ",
                Length( S ) );
    return S;
    end );

#############################################################################
##
#M  IsSubnormal( <G>, <U> )
##
InstallMethod( IsSubnormal,"generic method for two groups",IsIdenticalObj,
  [IsGroup,IsGroup],
function ( G, U )
local s;
  s:=SubnormalSeries(G,U);
  return U=Last(s);
end);


#############################################################################
##
#M  SylowSubgroupOp( <G>, <p> ) . . . . . . . . . . . for a group and a prime
##
InstallMethod( SylowSubgroupOp,
    "generic method for group and prime",
    [ IsGroup, IsPosInt ],
    function( G, p )
    local   S,          # Sylow <p> subgroup of <G>, result
            r,          # random element of <G>
            ord;        # order of `r'

    # repeat until <S> is the full Sylow <p> subgroup
    S := TrivialSubgroup( G );
    while Size( G ) / Size( S ) mod p = 0  do

        # find an element of <p> power order that normalizes <S>
        repeat
            repeat
                r := Random( G );
                ord:= Order( r );
            until ord mod p = 0;
            while ord mod p = 0 do
              ord:= ord / p;
            od;
            r := r ^ ord;
        until not r in S and ForAll( GeneratorsOfGroup( S ), g -> g^r in S );

        # add it to <S>
        # NC is safe (init with Triv)
        S := ClosureSubgroupNC( S, r );

    od;

    # return the Sylow <p> subgroup
    if Size(S) > 1 then
        SetIsPGroup( S, true );
        SetPrimePGroup( S, p );
    fi;
    return S;
    end );


#############################################################################
##
#M  SylowSubgroupOp( <G>, <p> ) . . . . . . for a nilpotent group and a prime
##
InstallMethod( SylowSubgroupOp,
    "method for a nilpotent group, and a prime",
    [ IsGroup and IsNilpotentGroup and IsFinite, IsPosInt ],
    function( G, p )
    local gens, g, ord, S;

    gens:= [];
    for g in GeneratorsOfGroup( G ) do
      ord:= Order( g );
      if ord mod p = 0 then
        while ord mod p = 0 do
          ord:= ord / p;
        od;
        Add( gens, g^ord );
      fi;
    od;

    S := SubgroupNC( G, gens );
    if Size(S) > 1 then
        SetIsPGroup( S, true );
        SetPrimePGroup( S, p );
        SetHallSubgroup(G, [p], S);
        SetPCore(G, p, S);
    fi;
    return S;
    end );


############################################################################
##
#M  HallSubgroupOp (<grp>, <pi>)
##
InstallMethod (HallSubgroupOp, "test trivial cases", true,
    [IsGroup and IsFinite and HasSize, IsList], SUM_FLAGS,
    function (grp, pi)

        local size, p;

        size := Size (grp);
        pi := Filtered (pi, p -> size mod p = 0);
        if IsEmpty (pi) then
            return TrivialSubgroup (grp);
        elif Length (pi) = 1 then
            return SylowSubgroup (grp, pi[1]);
        else
        # try if grp is a pi-group, but avoid factoring size
            for p in pi do
                repeat
                    size := size / p;
                until size mod p <> 0;
            od;
            if size = 1 then
                return grp;
            else
                TryNextMethod();
            fi;
        fi;
    end);


#############################################################################
##
#M  HallSubgroupOp( <G>, <pi> ) . . . . . . . . . . . . for a nilpotent group
##
InstallMethod( HallSubgroupOp,
    "method for a nilpotent group",
    [ IsGroup and IsNilpotentGroup and IsFinite, IsList ],
    function( G, pi )
    local p, smallpi, S;

    S := TrivialSubgroup(G);
    smallpi := [];
    for p in pi do
      AddSet(smallpi, p);
      S := ClosureSubgroupNC(S, SylowSubgroup(G, p));
      SetHallSubgroup(G, ShallowCopy(smallpi), S);
    od;
    return S;
    end );


#############################################################################
##
#M  HallSubgroupOp( <G>, <pi> ) . . . . . . . . . . . . .  for a finite group
##
InstallMethod( HallSubgroupOp,
    "fallback method for a finite group",
    [ IsGroup and IsFinite, IsList ],
    function( G, pi )
    local iso, H;

    iso := IsomorphismPermGroup( G );
    H := HallSubgroup( ImagesSource( iso ), pi );
    return PreImagesSet(iso, H);
    end );


#############################################################################
##
#M  NormalHallSubgroupsFromSylows( <G> )
##
InstallGlobalFunction( NormalHallSubgroupsFromSylows, function( arg )

  local G, method, primes, edges, i, j, S, N, UpSets, part, U, NHs;

  if Length(arg) = 1 and IsGroup(arg[1]) then
    G := arg[1];
    method := "all";
  elif Length(arg) = 2 and IsGroup(arg[1]) and arg[2] in ["all", "any"] then
    G := arg[1];
    method := arg[2];
  else
    Error("usage: NormalHallSubgroupsFromSylows( <G> [, <mthd> ] )");
  fi;
  if HasNormalHallSubgroups(G) then
    if method = "any" then
      for N in NormalHallSubgroups(G) do
        if not IsTrivial(N) and G<>N then
          return N;
        fi;
      od;
      return fail;
    else
      return NormalHallSubgroups(G);
    fi;
  elif method ="any" and Length(ComputedHallSubgroups(G))>0 then
    i := 0;
    while i < Length(ComputedHallSubgroups(G)) do
      i := i+2;
      N := ComputedHallSubgroups(G)[i];
      if N <> fail and IsNormal(G, N) then
        return N;
      fi;
    od;
  # no need to factor Size(G) if G is a p-group
  elif IsTrivial(G) or IsPGroup(G) then
    SetNormalHallSubgroups(G, Set([ TrivialSubgroup(G), G ]));
    if method = "any" then
      return fail;
    else
      return Set([ TrivialSubgroup(G), G ]);
    fi;
  ## ? might take a long time to check if G is simple ?
  # simple groups have no nontrivial normal subgroups
  elif IsSimpleGroup(G) then
    SetNormalHallSubgroups(G, Set([ TrivialSubgroup(G), G ]));
    if method = "any" then
      return fail;
    else
      return Set([ TrivialSubgroup(G), G ]);
    fi;
  fi;
  primes := PrimeDivisors(Size(G));
  edges := [];
  S := [];
  # create edges of directed graph
  for i in [1..Length(primes)] do
    # S[i] is the normal closure of the Sylow subgroup for primes[i]
    if IsNilpotentGroup(G) then
      S[i] := SylowSubgroup(G, primes[i]);
    else
      S[i] := NormalClosure(G, SylowSubgroup(G, primes[i]));
    fi;
    if IsNilpotentGroup(G) then
      edges[i] := [i];
    else
      edges[i] := [];
      # factoring Size(S[i]) probably takes more time
      for j in [1..Length(primes)] do
        # i -> j is an edge if Size(S[i]) has prime divisor primes[j]
        if Size(S[i]) mod primes[j] = 0 then
          AddSet(edges[i], j);
        fi;
      od;
    fi;
    if method = "any" and edges[i] = [i] then
      return S[i];
    fi;
  od;
  # compute the reachable points from every point of the digraph
  # and then collapse same sets
  # the relation defined by edges is already reflexive
  UpSets := Set(Successors(TransitiveClosureBinaryRelation(
                                            BinaryRelationOnPoints(edges))));
  NHs := [ TrivialSubgroup(G), G ];
  for part in IteratorOfCombinations(UpSets) do
    U := Union(part);
    # trivial subgroup and G should not be added again
    if U <> [] and U <> [1..Length(primes)] then
      N := TrivialSubgroup(G);
      for i in Union(part) do
        N := ClosureGroup(N, S[i]);
      od;
      if method = "any" then
        return N;
      else
        AddSet(NHs, N);
      fi;
    fi;
  od;
  if method = "any" then
    SetNormalHallSubgroups(G, Set([ TrivialSubgroup(G), G ]));
    return fail;
  else
    SetNormalHallSubgroups(G, NHs);
    return NHs;
  fi;
end);

############################################################################
##
#M  NormalHallSubgroups( <G> )
##
InstallMethod( NormalHallSubgroups,
               "by normal closure of Sylow subgroups", true,
               [ IsGroup and CanComputeSizeAnySubgroup and IsFinite ], 0,

function( G )
  return NormalHallSubgroupsFromSylows(G, "all");
end);


############################################################################
##
#M  SylowComplementOp (<grp>, <p>)
##
InstallMethod (SylowComplementOp, "test trivial case", true,
    [IsGroup and IsFinite and HasSize, IsPosInt], SUM_FLAGS,
    function (grp, p)
        local size, q;
        size := Size (grp);
        if size mod p <> 0 then
            return grp;
        else
            repeat
                size := size / p;
            until size mod p <> 0;
            if size = 1 then
                return TrivialSubgroup (grp);
            else
                q := SmallestRootInt (size);
                if IsPrimeInt (q) then
                    return SylowSubgroup (grp, q);
                fi;
            fi;
         fi;
         TryNextMethod();
    end);


#############################################################################
##
#M  \=( <G>, <H> )  . . . . . . . . . . . . . .  test if two groups are equal
##
InstallMethod( \=,
    "generic method for two groups",
    IsIdenticalObj, [ IsGroup, IsGroup ],
    function ( G, H )
    if IsFinite( G )  then
      if IsFinite( H )  then
        return GeneratorsOfGroup( G ) = GeneratorsOfGroup( H )
               or IsEqualSet( GeneratorsOfGroup( G ), GeneratorsOfGroup( H ) )
               or (Size( G ) = Size( H )
                and ((Size(G)>1 and ForAll(GeneratorsOfGroup(G),gen->gen in H))
                  or (Size(G)=1 and One(G) in H)) );
      else
        return false;
      fi;
    elif IsFinite( H )  then
      return false;
    else
      return GeneratorsOfGroup( G ) = GeneratorsOfGroup( H )
             or IsEqualSet( GeneratorsOfGroup( G ), GeneratorsOfGroup( H ) )
             or (    ForAll( GeneratorsOfGroup( G ), gen -> gen in H )
                 and ForAll( GeneratorsOfGroup( H ), gen -> gen in G ));
    fi;
    end );

#############################################################################
##
#M  IsCentral( <G>, <U> )  . . . . . . . . is a group centralized by another?
##
InstallMethod( IsCentral,
    "generic method for two groups",
    IsIdenticalObj, [ IsGroup, IsGroup ],
    IsCentralFromGenerators( GeneratorsOfGroup,
                             GeneratorsOfGroup ) );

#############################################################################
##
#M  IsCentral( <G>, <g> ) . . . . . . . is an element centralized by a group?
##
InstallMethod( IsCentral,
    "for a group and an element",
    IsCollsElms, [ IsGroup, IsMultiplicativeElementWithInverse ],
    IsCentralElementFromGenerators( GeneratorsOfGroup ) );

#############################################################################
##
#M  IsSubset( <G>, <H> ) . . . . . . . . . . . . .  test for subset of groups
##
InstallMethod( IsSubset,
    "generic method for two groups",
    IsIdenticalObj, [ IsGroup, IsGroup ],
    function( G, H )
    if GeneratorsOfGroup( G ) = GeneratorsOfGroup( H )
#T be more careful:
#T ask whether the entries of H-generators are found as identical
#T objects in G-generators
       or IsSubsetSet( GeneratorsOfGroup( G ), GeneratorsOfGroup( H ) ) then
      return true;
    elif IsFinite( G ) then
      if IsFinite( H ) then
        return     (not HasSize(G) or not HasSize(H) or Size(G) mod Size(H) = 0)
               and ForAll( GeneratorsOfGroup( H ), gen -> gen in G );
      else
        return false;
      fi;
    else
      return ForAll( GeneratorsOfGroup( H ), gen -> gen in G );
    fi;
    end );
#T is this really meaningful?


#############################################################################
##
#M  Intersection2( <G>, <H> ) . . . . . . . . . . . .  intersection of groups
##
InstallMethod( Intersection2,
    "generic method for two groups",
    IsIdenticalObj, [ IsGroup, IsGroup ],
    function( G, H )

#T use more parent info?
#T (if one of the arguments is the parent of the other, return the other?)

    # construct this group as stabilizer of a right coset
    if not IsFinite( G )  then
        return Stabilizer( H, RightCoset( G, One(G) ), OnRight );
    elif not IsFinite( H )  then
        return Stabilizer( G, RightCoset( H, One(H) ), OnRight );
    elif Size( G ) < Size( H )  then
        return Stabilizer( G, RightCoset( H, One(H) ), OnRight );
    else
        return Stabilizer( H, RightCoset( G, One(G) ), OnRight );
    fi;
    end );


#############################################################################
##
#M  Enumerator( <G> ) . . . . . . . . . . . .  set of the elements of a group
##
InstallGlobalFunction("GroupEnumeratorByClosure",function( G )

    local   H,          # subgroup of the first generators of <G>
            gen;        # generator of <G>

    # The following code only does not work infinite groups.
    if HasIsFinite( G ) and not IsFinite( G ) then
      TryNextMethod();
    fi;

    # start with the trivial group and its element list
    H:= TrivialSubgroup( G );
    SetAsSSortedList( H, Immutable( [ One( G ) ] ) );

    # Add the generators one after the other.
    # We use a function that maintains the elements list for the closure.
    for gen in GeneratorsOfGroup( G ) do
      H:= ClosureGroupDefault( H, gen );
    od;

    # return the list of elements
    Assert( 2, HasAsSSortedList( H ) );
    return AsSSortedList( H );
end);

InstallMethod( Enumerator, "generic method for a group",
        [ IsGroup and IsAttributeStoringRep ],
        GroupEnumeratorByClosure );

# the element list is only stored in the locally created new group H
InstallMethod(AsSSortedListNonstored, "generic method for groups",
        [ IsGroup ],
        GroupEnumeratorByClosure );


#############################################################################
##
#M  Centralizer( <G>, <elm> ) . . . . . . . . . . . .  centralizer of element
#M  Centralizer( <G>, <H> )   . . . . . . . . . . . . centralizer of subgroup
##
InstallMethod( CentralizerOp,
    "generic method for group and object",
    IsCollsElms, [ IsGroup, IsObject ],
    function( G, elm )
    return Stabilizer( G, elm, OnPoints );
    end );

InstallMethod( CentralizerOp,
    "generic method for two groups",
    IsIdenticalObj, [ IsGroup, IsGroup ],
    function( G, H )

    local C,    # iterated stabilizer
          gen;  # one generator of subgroup <obj>

    C:= G;
    for gen in GeneratorsOfGroup( H ) do
      C:= Stabilizer( C, gen, OnPoints );
    od;
    return C;
    end );

#############################################################################
##
#F  IsomorphismTypeInfoFiniteSimpleGroup( <G> ) . . . . isomorphism type info
##
IsomorphismTypeInfoFiniteSimpleGroup_fun:= function( G )
    local   size,       # size of <G>
            size2,      # size of simple group
            p,          # dominant prime of <size>
            q,          # power of <p>
            m,          # <q> = <p>^<m>
            n,          # index, e.g., the $n$ in $A_n$
            g,          # random element of <G>
            C;          # centralizer of <g>

    # check that <G> is simple
    if IsGroup( G )  and not IsSimpleGroup( G )  then
        Error("<G> must be simple");
    fi;

    # grab the size of <G>
    if IsGroup( G )  then
        size := Size(G);
    elif IsPosInt( G )  then
        size := G;
        if size = 1 then
          return fail;
        fi;
    else
        Error("<G> must be a group or the size of a group");
    fi;

    # test if <G> is a cyclic group of prime size
    if IsPrimeInt( size )  then
        return rec(series:="Z",parameter:=size,
                   name:=Concatenation( "Z(", String(size), ")" ),
                   shortname:= Concatenation( "C", String( size ) ));
    fi;

    # test if <G> is A(5) ~ A(1,4) ~ A(1,5)
    if size = 60  then
        return rec(series:="A",parameter:=5,
                   name:=Concatenation( "A(5) ",
                            "~ A(1,4) = L(2,4) ",
                            "~ B(1,4) = O(3,4) ",
                            "~ C(1,4) = S(2,4) ",
                            "~ 2A(1,4) = U(2,4) ",
                            "~ A(1,5) = L(2,5) ",
                            "~ B(1,5) = O(3,5) ",
                            "~ C(1,5) = S(2,5) ",
                            "~ 2A(1,5) = U(2,5)" ),
                   shortname:= "A5");
    fi;

    # test if <G> is A(6) ~ A(1,9)
    if size = 360  then
        return rec(series:="A",parameter:=6,
                   name:=Concatenation( "A(6) ",
                            "~ A(1,9) = L(2,9) ",
                            "~ B(1,9) = O(3,9) ",
                            "~ C(1,9) = S(2,9) ",
                            "~ 2A(1,9) = U(2,9)" ),
                   shortname:= "A6");
    fi;

    # test if <G> is either A(8) ~ A(3,2) ~ D(3,2) or A(2,4)
    if size = 20160  then

        # check that <G> is a group
        if not IsGroup( G )  then
            return rec(name:=Concatenation(
                                  "cannot decide from size alone between ",
                                  "A(8) ",
                                "~ A(3,2) = L(4,2) ",
                                "~ D(3,2) = O+(6,2) ",
                                "and ",
                                  "A(2,4) = L(3,4) " ));
        fi;

        # compute the centralizer of an element of order 5
        repeat
            g := Random(G);
        until Order(g) mod 5 = 0;
        g := g ^ (Order(g) / 5);
        C := Centralizer( G, g );

        # The centralizer in A(8) has size 15, the one in A(2,4) has size 5.
        if Size(C) = 15 then
            return rec(series:="A",parameter:=8,
                       name:=Concatenation( "A(8) ",
                                "~ A(3,2) = L(4,2) ",
                                "~ D(3,2) = O+(6,2)" ),
                       shortname:= "A8");
        else
            return rec(series:="L",parameter:=[3,4],
                       name:="A(2,4) = L(3,4)",
                       shortname:= "L3(4)");
        fi;

    fi;

    # test if <G> is A(n)
    n := 6;
    size2 := 360;
    repeat
        n := n + 1;
        size2 := size2 * n;
    until size <= size2;
    if size = size2  then
        return rec(series:="A",parameter:=n,
                   name:=Concatenation( "A(", String(n), ")" ),
                   shortname:= Concatenation( "A", String( n ) ));
    fi;

    # test if <G> is one of the sporadic simple groups
    if size = 2^4 * 3^2 * 5 * 11  then
        return rec(series:="Spor",name:="M(11)",
                   shortname:= "M11");
    elif size = 2^6 * 3^3 * 5 * 11  then
        return rec(series:="Spor",name:="M(12)",
                   shortname:= "M12");
    elif size = 2^3 * 3 * 5 * 7 * 11 * 19  then
        return rec(series:="Spor",name:="J(1)",
                   shortname:= "J1");
    elif size = 2^7 * 3^2 * 5 * 7 * 11  then
        return rec(series:="Spor",name:="M(22)",
                   shortname:= "M22");
    elif size = 2^7 * 3^3 * 5^2 * 7  then
        return rec(series:="Spor",name:="HJ = J(2) = F(5-)",
                   shortname:= "J2");
    elif size = 2^7 * 3^2 * 5 * 7 * 11 * 23  then
        return rec(series:="Spor",name:="M(23)",
                   shortname:= "M23");
    elif size = 2^9 * 3^2 * 5^3 * 7 * 11  then
        return rec(series:="Spor",name:="HS",
                   shortname:= "HS");
    elif size = 2^7 * 3^5 * 5 * 17 * 19  then
        return rec(series:="Spor",name:="J(3)",
                   shortname:= "J3");
    elif size = 2^10 * 3^3 * 5 * 7 * 11 * 23  then
        return rec(series:="Spor",name:="M(24)",
                   shortname:= "M24");
    elif size = 2^7 * 3^6 * 5^3 * 7 * 11  then
        return rec(series:="Spor",name:="Mc",
                   shortname:= "McL");
    elif size = 2^10 * 3^3 * 5^2 * 7^3 * 17  then
        return rec(series:="Spor",name:="He = F(7)",
                   shortname:= "He");
    elif size = 2^14 * 3^3 * 5^3 * 7 * 13 * 29  then
        return rec(series:="Spor",name:="Ru",
                   shortname:= "Ru");
    elif size = 2^13 * 3^7 * 5^2 * 7 * 11 * 13  then
        return rec(series:="Spor",name:="Suz",
                   shortname:= "Suz");
    elif size = 2^9 * 3^4 * 5 * 7^3 * 11 * 19 * 31  then
        return rec(series:="Spor",name:="ON",
                   shortname:= "ON");
    elif size = 2^10 * 3^7 * 5^3 * 7 * 11 * 23  then
        return rec(series:="Spor",name:="Co(3)",
                   shortname:= "Co3");
    elif size = 2^18 * 3^6 * 5^3 * 7 * 11 * 23  then
        return rec(series:="Spor",name:="Co(2)",
                   shortname:= "Co2");
    elif size = 2^17 * 3^9 * 5^2 * 7 * 11 * 13  then
        return rec(series:="Spor",name:="Fi(22)",
                   shortname:= "Fi22");
    elif size = 2^14 * 3^6 * 5^6 * 7 * 11 * 19  then
        return rec(series:="Spor",name:="HN = F(5) = F = F(5+)",
                   shortname:= "HN");
    elif size = 2^8 * 3^7 * 5^6 * 7 * 11 * 31 * 37 * 67  then
        return rec(series:="Spor",name:="Ly",
                   shortname:= "Ly");
    elif size = 2^15 * 3^10 * 5^3 * 7^2 * 13 * 19 * 31  then
        return rec(series:="Spor",name:="Th = F(3) = E = F(3/3)",
                   shortname:= "Th");
    elif size = 2^18 * 3^13 * 5^2 * 7 * 11 * 13 * 17 * 23  then
        return rec(series:="Spor",name:="Fi(23)",
                   shortname:= "Fi23");
    elif size = 2^21 * 3^9 * 5^4 * 7^2 * 11 * 13 * 23  then
        return rec(series:="Spor",name:="Co(1) = F(2-)",
                   shortname:= "Co1");
    elif size = 2^21 * 3^3 * 5 * 7 * 11^3 * 23 * 29 * 31 * 37 * 43  then
        return rec(series:="Spor",name:="J(4)",
                   shortname:= "J4");
    elif size = 2^21 * 3^16 * 5^2 * 7^3 * 11 * 13 * 17 * 23 * 29  then
        return rec(series:="Spor",name:="Fi(24) = F(3+)",
                   shortname:= "F3+");
    elif size = 2^41*3^13*5^6*7^2*11*13*17*19*23*31*47  then
        return rec(series:="Spor",name:="B = F(2+)",
                   shortname:= "B");
    elif size = 2^46*3^20*5^9*7^6*11^2*13^3*17*19*23*29*31*41*47*59*71  then
        return rec(series:="Spor",name:="M = F(1)",
                   shortname:= "M");
    fi;

    # from now on we deal with groups of Lie-type

    # calculate the dominant prime of size
    q := Maximum( List( Collected( Factors(Integers, size ) ), s -> s[1]^s[2] ) );
    p := Factors(Integers, q )[1];

    # test if <G> is the Chevalley group A(1,7) ~ A(2,2)
    if size = 168  then
        return rec(series:="L",parameter:=[2,7],
                   name:=Concatenation( "A(1,7) = L(2,7) ",
                            "~ B(1,7) = O(3,7) ",
                            "~ C(1,7) = S(2,7) ",
                            "~ 2A(1,7) = U(2,7) ",
                            "~ A(2,2) = L(3,2)" ),
                   shortname:= "L3(2)");
    fi;

    # test if <G> is the Chevalley group A(1,8), where p = 3 <> char.
    if size = 504  then
        return rec(series:="L",parameter:=[2,8],
                   name:=Concatenation( "A(1,8) = L(2,8) ",
                            "~ B(1,8) = O(3,8) ",
                            "~ C(1,8) = S(2,8) ",
                            "~ 2A(1,8) = U(2,8)" ),
                   shortname:= "L2(8)");
    fi;

    # test if <G> is a Chevalley group A(1,2^<k>-1), where p = 2 <> char.
    if    size>59 and p = 2  and IsPrime(q-1)
      and size = (q-1) * ((q-1)^2-1) / Gcd(2,(q-1)-1)
    then
        return rec(series:="L",parameter:=[2,q-1],
                   name:=Concatenation( "A(1,", String(q-1), ") ",
                            "= L(2,",  String(q-1), ") ",
                            "~ B(1,",  String(q-1), ") ",
                            "= O(3,",  String(q-1), ") ",
                            "~ C(1,",  String(q-1), ") ",
                            "= S(2,",  String(q-1), ") ",
                            "~ 2A(1,", String(q-1), ") ",
                            "= U(2,",  String(q-1), ")" ),
                   shortname:= Concatenation( "L2(", String( q-1 ), ")" ));
    fi;

    # test if <G> is a Chevalley group A(1,2^<k>), where p = 2^<k>+1 <> char.
    if    size>59 and p <> 2  and IsPrimePowerInt( p-1 )
      and size = (p-1) * ((p-1)^2-1) / Gcd(2,(p-1)-1)
    then
        return rec(series:="L",parameter:=[2,p-1],
                   name:=Concatenation( "A(1,", String(p-1), ") ",
                            "= L(2,",  String(p-1), ") ",
                            "~ B(1,",  String(p-1), ") ",
                            "= O(3,",  String(p-1), ") ",
                            "~ C(1,",  String(p-1), ") ",
                            "= S(2,",  String(p-1), ") ",
                            "~ 2A(1,", String(p-1), ") ",
                            "= U(2,",  String(p-1), ")" ),
                   shortname:= Concatenation( "L2(", String( p-1 ), ")" ));
    fi;

    # try to find <n> and <q> for size of A(n,q)
    m := 0;  q := 1;
    repeat
        m := m + 1;  q := q * p;
        n := 0;
        repeat
            n := n + 1;
            size2 := q^(n*(n+1)/2)
                   * Product( [2..n+1], i -> q^i-1 ) / Gcd(n+1,q-1);
        until size <= size2;
    until size = size2 or n = 1;

    # test if <G> is a Chevalley group A(1,q) ~ B(1,q) ~ C(1,q) ~ 2A(1,q)
    # non-simple: A(1,2) ~ S(3), A(1,3) ~ A(4),
    # exceptions: A(1,4) ~ A(1,5) ~ A(5), A(1,7) ~ A(2,2), A(1,9) ~ A(6)
    if n = 1  and size = size2  then
        return rec(series:="L",parameter:=[2,q],
                   name:=Concatenation( "A(1,", String(q), ") ",
                            "= L(2,",  String(q), ") ",
                            "~ B(1,",  String(q), ") ",
                            "= O(3,",  String(q), ") ",
                            "~ C(1,",  String(q), ") ",
                            "= S(2,",  String(q), ") ",
                            "~ 2A(1,", String(q), ") ",
                            "= U(2,",  String(q), ")" ),
                   shortname:= Concatenation( "L2(", String( q ), ")" ));
    fi;

    # test if <G> is a Chevalley group A(3,q) ~ D(3,q)
    # exceptions: A(3,2) ~ A(8)
    if n = 3  and size = size2  then
        return rec(series:="L",parameter:=[4,q],
                   name:=Concatenation( "A(3,", String(q), ") ",
                            "= L(4,",  String(q), ") ",
                            "~ D(3,",  String(q), ") ",
                            "= O+(6,", String(q), ") " ),
                   shortname:= Concatenation( "L4(", String( q ), ")" ));
    fi;

    # test if <G> is a Chevalley group A(n,q)
    if size = size2  then
        return rec(series:="L",parameter:=[n+1,q],
                   name:=Concatenation( "A(", String(n),   ",", String(q), ") ",
                            "= L(", String(n+1), ",", String(q), ") " ),
                   shortname:= Concatenation( "L", String( n+1 ), "(", String( q ), ")" ));
    fi;

    # try to find <n> and <q> for size of B(n,q) = size of C(n,q)
    # exceptions: B(1,q) ~ A(1,q)
    m := 0;  q := 1;
    repeat
        m := m + 1;  q := q * p;
        n := 1;
        repeat
            n := n + 1;
            size2 := q^(n^2)
                   * Product( [1..n], i -> q^(2*i)-1 ) / Gcd(2,q-1);
        until size <= size2;
    until size = size2  or n = 2;

    # test if <G> is a Chevalley group B(2,3) ~ C(2,3) ~ 2A(3,2) ~ 2D(3,2)
    if n = 2  and q = 3  and size = size2  then
        return rec(series:="B",parameter:=[2,3],
                   name:=Concatenation( "B(2,3) = O(5,3) ",
                            "~ C(2,3) = S(4,3) ",
                            "~ 2A(3,2) = U(4,2) ",
                            "~ 2D(3,2) = O-(6,2)" ),
                   shortname:= "U4(2)");
    fi;

    # Rule out the case B(2,2) ~ S(6) if only the group order is given.
    if size = 720 then
      if IsGroup( G ) then
        Error( "A new simple group, whoaw" );
      else
        return fail;
      fi;
    fi;

    # test if <G> is a Chevalley group B(2,q) ~ C(2,q)
    # non-simple: B(2,2) ~ S(6)
    if n = 2  and size = size2  then
        return rec(series:="B",parameter:=[2,q],
                   name:=Concatenation( "B(2,", String(q), ") ",
                            "= O(5,", String(q), ") ",
                            "~ C(2,", String(q), ") ",
                            "= S(4,", String(q), ")" ),
                   shortname:= Concatenation( "S4(", String( q ), ")" ));
    fi;

    # test if <G> is a Chevalley group B(n,2^m) ~ C(n,2^m)
    # non-simple: B(2,2) ~ S(6)
    if p = 2  and size = size2  then
        return rec(series:="B",parameter:=[n,q],
                   name:=Concatenation("B(",String(n),  ",", String(q), ") ",
                            "= O(", String(2*n+1), ",", String(q), ") ",
                            "~ C(", String(n),     ",", String(q), ") ",
                            "= S(", String(2*n),   ",", String(q), ")" ),
                   shortname:= Concatenation( "S", String( 2*n ), "(", String( q ), ")" ));
    fi;

    # test if <G> is a Chevalley group B(n,q) or C(n,q), 2 < n and q odd
    if p <> 2  and size = size2  then

        # check that <G> is a group
        if not IsGroup( G )  then
            return rec(parameter:= [ n, q ],
                       name:=Concatenation( "cannot decide from size alone between ",
                                  "B(", String(n),     ",", String(q), ") ",
                                "= O(", String(2*n+1), ",", String(q), ") ",
                                "and ",
                                  "C(", String(n),   ",", String(q), ") ",
                                "= S(", String(2*n), ",", String(q), ")" ));
        fi;

        # find a <p>-central element and its centralizer
        C := Centre(SylowSubgroup(G,p));
        repeat
            g := Random(C);
        until Order(g) = p;
        C := Centralizer(G,g);

        if Size(C) mod (q^(2*n-2)-1) <> 0 then
            return rec(series:="B",parameter:=[n,q],
                       name:=Concatenation("B(", String(n),",",String(q),") ",
                                "= O(", String(2*n+1), ",", String(q), ")"),
                       shortname:= Concatenation( "O", String( 2*n+1 ), "(", String( q ), ")" ));
        else
            return rec(series:="C",parameter:=[n,q],
                       name:=Concatenation( "C(",String(n),",",String(q),") ",
                                "= S(", String(2*n), ",", String(q), ")" ),
                       shortname:= Concatenation( "S", String( 2*n ), "(", String( q ), ")" ));
        fi;

    fi;

    # test if <G> is a Chevalley group D(n,q)
    # non-simple: D(2,q) ~ A(1,q)xA(1,q)
    # exceptions: D(3,q) ~ A(3,q)
    m := 0;  q := 1;
    repeat
        m := m + 1;  q := q * p;
        n := 3;
        repeat
            n := n + 1;
            size2 := q^(n*(n-1)) * (q^n-1)
                   * Product([1..n-1],i->q^(2*i)-1) / Gcd(4,q^n-1);
        until size <= size2;
    until size = size2  or n = 4;
    if size = size2  then
        return rec(series:="D",parameter:=[n,q],
                   name:=Concatenation("D(",String(n),",",String(q), ") ",
                            "= O+(", String(2*n), ",", String(q), ")" ),
                   shortname:= Concatenation( "O", String( 2*n ), "+(", String( q ), ")" ));
    fi;

    # test whether <G> is an exceptional Chevalley group E(6,q)
    m := 0;  q := 1;
    repeat
        m := m + 1;  q := q * p;
        size2 := q^36 * (q^12-1)*(q^9-1)*(q^8-1)
                      *(q^6-1)*(q^5-1)*(q^2-1) / Gcd(3,q-1);
    until size <= size2;
    if size = size2 then
        return rec(series:="E",parameter:=[6,q],
                   name:=Concatenation( "E(6,", String(q), ")" ),
                   shortname:= Concatenation( "E6(", String( q ), ")" ));
    fi;

    # test whether <G> is an exceptional Chevalley group E(7,q)
    m := 0;  q := 1;
    repeat
        m := m + 1;  q := q * p;
        size2 := q^63 * (q^18-1)*(q^14-1)*(q^12-1)*(q^10-1)
                      *(q^8-1)*(q^6-1)*(q^2-1) / Gcd(2,q-1);
    until size <= size2;
    if size = size2  then
        return rec(series:="E",parameter:=[7,q],
                   name:=Concatenation( "E(7,", String(q), ")" ),
                   shortname:= Concatenation( "E7(", String( q ), ")" ));
    fi;

    # test whether <G> is an exceptional Chevalley group E(8,q)
    m := 0;  q := 1;
    repeat
        m := m + 1;  q := q * p;
        size2 := q^120 * (q^30-1)*(q^24-1)*(q^20-1)*(q^18-1)
                       *(q^14-1)*(q^12-1)*(q^8-1)*(q^2-1);
    until size <= size2;
    if size = size2  then
        return rec(series:="E",parameter:=[8,q],
                   name:=Concatenation( "E(8,", String(q), ")" ),
                   shortname:= Concatenation( "E8(", String( q ), ")" ));
    fi;

    # test whether <G> is an exceptional Chevalley group F(4,q)
    m := 0;  q := 1;
    repeat
        m := m + 1;  q := q * p;
        size2 := q^24 * (q^12-1)*(q^8-1)*(q^6-1)*(q^2-1);
    until size <= size2;
    if size = size2  then
        return rec(series:="F",parameter:=q,
                   name:=Concatenation( "F(4,", String(q), ")" ),
                   shortname:= Concatenation( "F4(", String( q ), ")" ));
    fi;

    # Rule out the case G(2,2) ~ U(3,3).2 if only the group order is given.
    if size = 12096 then
      if IsGroup( G ) then
        Error( "A new simple group, whoaw" );
      else
        return fail;
      fi;
    fi;

    # test whether <G> is an exceptional Chevalley group G(2,q)
    # exceptions: G(2,2) ~ U(3,3).2
    m := 0;  q := 1;
    repeat
        m := m + 1;  q := q * p;
        size2 := q^6 * (q^6-1)*(q^2-1);
    until size <= size2;
    if size = size2  then
        return rec(series:="G",parameter:=q,
                   name:=Concatenation( "G(2,", String(q), ")" ),
                   shortname:= Concatenation( "G2(", String( q ), ")" ));
    fi;

    # test if <G> is 2A(2,3), where p = 2 <> char.
    if size = 3^3*(3^2-1)*(3^3+1)  then
        return rec(series:="2A",parameter:=[2,3],
                   name:="2A(2,3) = U(3,3)",
                   shortname:= "U3(3)");
    fi;

    # try to find <n> and <q> for size of 2A(n,q)
    m := 0;  q := 1;
    repeat
        m := m + 1;  q := q * p;
        n := 1;
        repeat
            n := n + 1;
            size2 := q^(n*(n+1)/2)
                   * Product([2..n+1],i->q^i-(-1)^i) / Gcd(n+1,q+1);
        until size <= size2;
    until size = size2  or n = 2;
    # test if <G> is a Steinberg group 2A(3,q) ~ 2D(3,q)
    # exceptions: 2A(3,2) ~ B(2,3) ~ C(2,3)
    # (The exception need not be ruled out in the case that only the group
    # order is given, since the dominant prime for group order 72 is 3.)
    if n = 3  and size = size2  then
        return rec(series:="2A",parameter:=[3,q],
                   name:=Concatenation( "2A(3,", String(q), ") ",
                            "= U(4,",  String(q), ") ",
                            "~ 2D(3,", String(q), ") ",
                            "= O-(6,", String(q), ")" ),
                   shortname:= Concatenation( "U4(", String( q ), ")" ));
    fi;

    # test if <G> is a Steinberg group 2A(n,q)
    # non-simple: 2A(2,2) ~ 3^2 . Q(8)
    if size = size2  then
        return rec(series:="2A",parameter:=[n,q],
                   name:=Concatenation("2A(",String(n),",", String(q), ") ",
                            "= U(",  String(n+1), ",", String(q), ")" ),
                   shortname:= Concatenation( "U", String( n+1 ), "(", String( q ), ")" ));
    fi;

    # test whether <G> is a Suzuki group 2B(2,q) = 2C(2,q) = Sz(q)
    # non-simple: 2B(2,2) = 5:4
    # (The exception need not be ruled out in the case that only the group
    # order is given, since the dominant prime for group order 20 is 5.)
    m := 0;  q := 1;
    repeat
        m := m + 1;  q := q * p;
        size2 := q^2 * (q^2+1)*(q-1);
    until size <= size2;
    if p = 2  and m mod 2 = 1  and size = size2  then
        return rec(series:="2B",parameter:=q,
                   name:=Concatenation( "2B(2,", String(q), ") ",
                            "= 2C(2,", String(q), ") ",
                            "= Sz(",   String(q), ")" ),
                   shortname:= Concatenation( "Sz(", String( q ), ")" ));
    fi;

    # test whether <G> is a Steinberg group 2D(n,q)
    # exceptions: 2D(3,q) ~ 2A(3,q)
    m := 0;  q := 1;
    repeat
        m := m + 1;  q := q * p;
        n := 3;
        repeat
            n := n + 1;
            size2 := q^(n*(n-1)) * (q^n+1)
                   * Product([1..n-1],i->q^(2*i)-1) / Gcd(4,q^n+1);
        until size <= size2;
    until size = size2  or n = 4;
    if size = size2  then
        return rec(series:="2D",parameter:=[n,q],
                   name:=Concatenation("2D(",String(n),",", String(q), ") ",
                            "= O-(", String(2*n), ",", String(q), ")" ),
                   shortname:= Concatenation( "O", String( 2*n ), "-(", String( q ), ")" ));
    fi;

    # test whether <G> is a Steinberg group 3D4(q)
    m := 0;  q := 1;
    repeat
        m := m + 1;  q := q * p;
        size2 := q^12 * (q^8+q^4+1)*(q^6-1)*(q^2-1);
    until size <= size2;
    if size = size2  then
        return rec(series:="3D",parameter:=q,
                   name:=Concatenation( "3D(4,", String(q), ")" ),
                   shortname:= Concatenation( "3D4(", String( q ), ")" ));
    fi;


    # test whether <G> is a Steinberg group 2E6(q)
    m := 0;  q := 1;
    repeat
        m := m + 1;  q := q * p;
        size2 := q^36 * (q^12-1)*(q^9+1)*(q^8-1)
                       *(q^6-1)*(q^5+1)*(q^2-1) / Gcd(3,q+1);
    until size <= size2;
    if size = size2  then
        return rec(series:="2E",parameter:=q,
                   name:=Concatenation( "2E(6,", String(q), ")" ),
                   shortname:= Concatenation( "2E6(", String( q ), ")" ));
    fi;

    # test if <G> is the Ree group 2F(4,q)'
    if size = 2^12 * (2^6+1)*(2^4-1)*(2^3+1)*(2-1) / 2  then
        return rec(series:="2F",parameter:=2,
                   name:="2F(4,2)' = Ree(2)' = Tits",
                   shortname:= "2F4(2)'");
    fi;

    # test whether <G> is a Ree group 2F(4,q)
    m := 0;  q := 1;
    repeat
        m := m + 1;  q := q * p;
        size2 := q^12 * (q^6+1)*(q^4-1)*(q^3+1)*(q-1);
    until size <= size2;
    if p = 2  and 1 < m  and m mod 2 = 1  and size = size2  then
        return rec(series:="2F",parameter:=q,
                   name:=Concatenation( "2F(4,", String(q), ") ",
                            "= Ree(",            String(q), ")" ),
                   shortname:= Concatenation( "2F4(", String( q ), ")" ));
    fi;

    # test whether <G> is a Ree group 2G(2,q)
    m := 0;  q := 1;
    repeat
        m := m + 1;  q := q * p;
        size2 := q^3 * (q^3+1)*(q-1);
    until size <= size2;
    if p = 3  and 1 < m  and m mod 2 = 1  and size = size2  then
        return rec(series:="2G",parameter:=q,
                   name:=Concatenation( "2G(2,", String(q), ") ",
                            "= Ree(",            String(q), ")" ),
                   shortname:= Concatenation( "R(", String( q ), ")" ));
    fi;

    # or a new simple group is found
    if IsGroup( G ) then
      Error( "A new simple group, whoaw" );
    else
      return fail;
    fi;
end;

InstallMethod( IsomorphismTypeInfoFiniteSimpleGroup,
    [ IsGroup ], IsomorphismTypeInfoFiniteSimpleGroup_fun );

InstallMethod( IsomorphismTypeInfoFiniteSimpleGroup,
    [ IsPosInt ], IsomorphismTypeInfoFiniteSimpleGroup_fun );

Unbind( IsomorphismTypeInfoFiniteSimpleGroup_fun );


#############################################################################
##
#F  SmallSimpleGroup( <order>, <i> )
#F  SmallSimpleGroup( <order> )
##
InstallGlobalFunction( SmallSimpleGroup,

  function ( arg )

    local  order, i, grps,j;

    if   not Length(arg) in [1,2] or not ForAll(arg,IsPosInt)
    then Error("usage: SmallSimpleGroup( <order> [, <i> ] )"); fi;

    order := arg[1];
    if Length(arg) = 2 then i := arg[2]; else i := 1; fi;

    if IsPrime(order) then
      if i = 1 then return CyclicGroup(order); else return fail; fi;
    fi;

    if order < 60 then return fail; fi;

    if   order > SIMPLE_GROUPS_ITERATOR_RANGE then
      Error("simple groups of order > ",SIMPLE_GROUPS_ITERATOR_RANGE,
                " are currently\n",
               "not available via this function.");
    fi;

    order:=SimpleGroupsIterator(order,order);
    for j in [1..i-1] do NextIterator(order);od;
    return NextIterator(order);

  end );


#############################################################################
##
#F  AllSmallNonabelianSimpleGroups( <orders> )
##
InstallGlobalFunction( AllSmallNonabelianSimpleGroups,

  function ( orders )

    local  grps,it,a,min,max;

    if   not IsList(orders) or not ForAll(orders,IsPosInt)
    then Error("usage: AllSmallNonabelianSimpleGroups( <orders> )"); fi;

    min:=Minimum(orders);
    max:=Maximum(orders);
    if max> SIMPLE_GROUPS_ITERATOR_RANGE then
      Error("simple groups of order > ",SIMPLE_GROUPS_ITERATOR_RANGE,
        " are currently\n",
        "not available via this function.");
    fi;
    it:=SimpleGroupsIterator(min,max);
    grps:=[];
    for a in it do
      if Size(a) in orders then
        Add(grps,a);
      fi;
    od;

    return grps;
  end );


#############################################################################
##
#M  PrintObj( <G> )
##
InstallMethod( PrintObj,
    "for a group",
    [ IsGroup ],
    function( G )
    Print( "Group( ... )" );
    end );

InstallMethod( String,
    "for a group",
    [ IsGroup ],
    function( G )
    return "Group( ... )";
    end );

InstallMethod( PrintObj,
    "for a group with generators",
    [ IsGroup and HasGeneratorsOfGroup ],
    function( G )
    if IsEmpty( GeneratorsOfGroup( G ) ) then
      Print( "Group( ", One( G ), " )" );
    else
      Print( "Group( ", GeneratorsOfGroup( G ), " )" );
    fi;
    end );

InstallMethod( String,
    "for a group with generators",
    [ IsGroup and HasGeneratorsOfGroup ],
    function( G )
    if IsEmpty( GeneratorsOfGroup( G ) ) then
      return STRINGIFY( "Group( ", One( G ), " )" );
    else
      return STRINGIFY( "Group( ", GeneratorsOfGroup( G ), " )" );
    fi;
    end );

InstallMethod( PrintString,
    "for a group with generators",
    [ IsGroup and HasGeneratorsOfGroup ],
    function( G )
    if IsEmpty( GeneratorsOfGroup( G ) ) then
      return PRINT_STRINGIFY( "Group( ", One( G ), " )" );
    else
      return PRINT_STRINGIFY( "Group( ", GeneratorsOfGroup( G ), " )" );
    fi;
    end );

#############################################################################
##
#M  ViewObj( <M> )  . . . . . . . . . . . . . . . . . . . . . .  view a group
##
InstallMethod( ViewString,
    "for a group",
    [ IsGroup ],
    function( G )
    return "<group>";
end );

InstallMethod( ViewString,
    "for a group with generators",
    [ IsGroup and HasGeneratorsOfMagmaWithInverses ],
    function( G )
    local nrgens;
    nrgens := Length( GeneratorsOfMagmaWithInverses( G ) );
    if nrgens = 0 then
        return "<trivial group>";
    fi;
    return Concatenation("<group with ", Pluralize( nrgens, "generator" ), ">");
    end );

InstallMethod( ViewString,
    "for a group with generators and size",
    [ IsGroup and HasGeneratorsOfMagmaWithInverses and HasSize],
    function( G )
    local nrgens;
    nrgens := Length(GeneratorsOfMagmaWithInverses( G ) );
    if nrgens = 0 then
        return "<trivial group>";
    fi;
    return Concatenation("<group of size ", String(Size(G))," with ",
                         Pluralize(nrgens, "generator"), ">");
    end );

InstallMethod( ViewObj, "for a group",
    [ IsGroup ],
        function(G)
    Print(ViewString(G));
end);

#############################################################################
##
#M  GroupString( <M> )
##
InstallMethod(GroupString, "for a group", [ IsGroup,IsString ],
function( G,nam )
local s,b;
  if HasName(G) then
    s:=Name(G);
  else
    s:=nam;
  fi;
  s:=ShallowCopy(s);
  b:= false;
  if HasGeneratorsOfGroup(G) then
    b:=true;
    Append(s," (");
    Append(s,String(Length(GeneratorsOfGroup(G))));
    Append(s," gens");
  fi;
  if HasSize(G) then
    if not b then
      b:=true;
      Append(s," (");
    else
      Append(s,", ");
    fi;
    Append(s,"size ");
    Append(s,String(Size(G)));
  fi;
  if b then
    Append(s,")");
  fi;
  return s;
end );

#F  MakeGroupyType( <fam>, <filt>, <gens>, <id>, <isgroup> )
# type creator function to incorporate basic deductions so immediate methods
# are not needed. Parameters are family, filter to start with, generator
# list, is it indeed a group (or only magma)?
InstallGlobalFunction(MakeGroupyType,
function(fam,filt,gens,id,isgroup)

  filt:=filt and HasIsEmpty;  # having HasIsEmpty but not IsEmpty indicates "non-empty"
  if IsFinite(gens) then
    if isgroup then
      filt:=filt and IsFinitelyGeneratedGroup;
    fi;

    if Length(gens)>0 and CanEasilyCompareElements(gens) then
      if id=false then
        id:=One(gens[1]);
      fi;
      if id<>fail then # cannot do identity in magma
        if ForAny(gens,x->x<>id) then
          filt:=filt and IsNonTrivial;
          if isgroup and Length(gens)<=1 then # cyclic not for magmas
            filt:=filt and IsCyclic;
          fi;
        else
          filt:=filt and IsTrivial;
        fi;
      fi;
    elif isgroup and Length(gens)<=1 then # cyclic not for magmas
      if Length(gens) = 0 then
        filt:=filt and IsTrivial;
      else
        filt:=filt and IsCyclic;
      fi;
    fi;
  fi;
  return NewType(fam,filt);
end);

InstallGlobalFunction(MakeGroupyObj,
function(fam,filt,gens,id,attr...)
  local isgroup, typ;
  Assert(0, IsList(attr));
  Assert(0, IsEvenInt(Length(attr)));

  # set generators
  Append(attr, [ GeneratorsOfMagmaWithInverses, gens ]);

  # set one, if given
  if not IsBool(id) then
    Append(attr, [ One, id ]);
  fi;

  # make the type
  filt := IsAttributeStoringRep and filt;
  isgroup := IS_IMPLIED_BY(IsGroup, filt);
  typ := MakeGroupyType(fam,filt,gens,id,isgroup);

  if isgroup and IS_IMPLIED_BY(IsTrivial, typ) then
    Append(attr, [ Size, 1 ]);
  fi;

  return CallFuncList(ObjectifyWithAttributes, Concatenation([rec(), typ], attr));

end);

#############################################################################
##
#M  GroupWithGenerators( <gens> ) . . . . . . . . group with given generators
#M  GroupWithGenerators( <gens>, <id> ) . . . . . group with given generators
##
InstallMethod( GroupWithGenerators,
    "generic method for collection",
    [ IsCollection ],
function( gens )

  if IsGroup(gens) then
    Info( InfoPerformance, 1,
      "Calling `GroupWithGenerators' on a group usually is very inefficient.");
    Info( InfoPerformance, 1,
      "Use the list of generators of the group instead.");
  fi;

  gens:=AsList(gens);
  return MakeGroupyObj(FamilyObj(gens), IsGroup, gens, false);
end );

InstallMethod( GroupWithGenerators,
    "generic method for collection and identity element",
    IsCollsElms, [ IsCollection, IsMultiplicativeElementWithInverse ],
function( gens, id )

  if IsGroup(gens) then
    Info( InfoPerformance, 1,
      "Calling `GroupWithGenerators' on a group usually is very inefficient.");
    Info( InfoPerformance, 1,
      "Use the list of generators of the group instead.");
  fi;

  gens:=AsList(gens);
  return MakeGroupyObj(FamilyObj(gens), IsGroup, gens, id);
end );

InstallMethod( GroupWithGenerators,"method for empty list and element",
  [ IsList and IsEmpty, IsMultiplicativeElementWithInverse ],
  function( empty, id )
local fam;

  fam:= CollectionsFamily( FamilyObj( id ) );

  return MakeGroupyObj(fam, IsGroup, empty, id);
end );


InstallMethod( GroupWithGenerators,
    "generic method for cyclotomic collection",
    [ IsCyclotomicCollection ],
function( gens )
  Error("no groups of cyclotomics allowed because of incompatible ^");
end );

InstallMethod( GroupWithGenerators,
    "generic method for cyclotomic collection and identity element",
    IsCollsElms, [ IsCollection, IsCyclotomic ],
function( gens, id )
  Error("no groups of cyclotomics allowed because of incompatible ^");
end );

InstallMethod( GroupWithGenerators,"method for empty list and cyclotomic element",
  [ IsList and IsEmpty, IsCyclotomic ],
function( empty, id )
  Error("no groups of cyclotomics allowed because of incompatible ^");
end );


#############################################################################
##
#M  GroupByGenerators( <gens> ) . . . . . . . . . . . . . group by generators
#M  GroupByGenerators( <gens>, <id> )
##
InstallMethod( GroupByGenerators,
    "delegate to `GroupWithGenerators'",
    [ IsCollection ],
    GroupWithGenerators );

InstallMethod( GroupByGenerators,
    "delegate to `GroupWithGenerators'",
    IsCollsElms,
    [ IsCollection, IsMultiplicativeElementWithInverse ],
    GroupWithGenerators );

InstallMethod( GroupByGenerators,
    "delegate to `GroupWithGenerators'",
    [ IsList and IsEmpty, IsMultiplicativeElementWithInverse ],
    GroupWithGenerators );


#############################################################################
##
#M  IsCommutative( <G> ) . . . . . . . . . . . . . test if a group is abelian
##
InstallMethod( IsCommutative,
    "generic method for groups",
    [ IsGroup ],
    IsCommutativeFromGenerators( GeneratorsOfGroup ) );


#############################################################################
##
#M  IsGeneratorsOfMagmaWithinverses( <emptylist> )
##
InstallMethod( IsGeneratorsOfMagmaWithInverses,
    "for an empty list",
    [ IsList ],
    function( list )
    if IsEmpty( list ) then
      return true;
    else
      TryNextMethod();
    fi;
    end );


#############################################################################
##
#M  IsGeneratorsOfMagmaWithInverses( <gens> )
##
##  Eventually this default method should not be allowed to return `true'
##  since for each admissible generating set,
##  a specific method should be responsible.
##
InstallMethod( IsGeneratorsOfMagmaWithInverses,
    "for a list or collection",
    [ IsListOrCollection ],
    function( gens )
    if IsCollection( gens ) and
       ForAll( gens, x -> IsMultiplicativeElementWithInverse( x ) and
                          Inverse( x ) <> fail ) then
      Info( InfoWarning, 1,
            "default `IsGeneratorsOfMagmaWithInverses' method returns ",
            "`true' for ", gens );
      return true;
    fi;
    return false;
    end );


#############################################################################
##
#F  Group( <gen>, ... )
#F  Group( <gens> )
#F  Group( <gens>, <id> )
##
InstallGlobalFunction( Group, function( arg )
    #  special case for matrices, because they may look like lists
    if Length( arg ) = 1 and IsMatrix( arg[1] )
                           and IsGeneratorsOfMagmaWithInverses( arg ) then
      return GroupByGenerators( arg );

    # special case for matrices, because they may look like lists
    elif Length( arg ) = 2 and IsMatrix( arg[1] )
                           and IsGeneratorsOfMagmaWithInverses( arg ) then
      return GroupByGenerators( arg );

    # list of generators
    elif Length( arg ) = 1 and IsList( arg[1] ) and not IsEmpty( arg[1] )
                           and IsGeneratorsOfMagmaWithInverses( arg[1] ) then
      return GroupByGenerators( arg[1] );

    # list of generators plus identity
    elif Length( arg ) = 2 and IsList( arg[1] )
                           and IsGeneratorsOfMagmaWithInverses( arg[1] )
                           and IsOne( arg[2] ) then
      return GroupByGenerators( arg[1], arg[2] );

    elif 0 < Length( arg ) and IsGeneratorsOfMagmaWithInverses( arg ) then
      return GroupByGenerators( arg );
    fi;

    # no argument given, error
    Error("usage: Group(<gen>,...), Group(<gens>), Group(<gens>,<id>)");
end );

#############################################################################
##
#M  \in( <g>, <G> ) . for groups, checking for <g> being among the generators
##
InstallMethod(\in,
              "default method, checking for <g> being among the generators",
              ReturnTrue,
              [ IsMultiplicativeElementWithInverse,
                IsGroup and HasGeneratorsOfGroup ], 0,

  function ( g, G )
    if   g = One(G)
      or (IsFinite(GeneratorsOfGroup(G)) and g in GeneratorsOfGroup(G))
    then return true;
    else TryNextMethod(); fi;
  end );

#############################################################################
##
#F  SubgroupByProperty ( <G>, <prop> )
##
InstallGlobalFunction( SubgroupByProperty, function( G, prop )
local K, S;

  K:= NewType( FamilyObj(G), IsMagmaWithInverses
                  and IsAttributeStoringRep
                  and HasElementTestFunction);
  S:=rec();
  ObjectifyWithAttributes(S, K, ElementTestFunction, prop );
  SetParent( S, G );
  return S;
end );

InstallMethod( PrintObj, "subgroup by property",
    [ IsGroup and HasElementTestFunction ],100,
function( G )
  Print( "SubgroupByProperty( ", Parent( G ), ",",
          ElementTestFunction(G)," )" );
end );

InstallMethod( ViewObj, "subgroup by property",
    [ IsGroup and HasElementTestFunction ],100,
function( G )
  Print( "<subgrp of ");
  View(Parent(G));
  Print(" by property>");
end );

InstallMethod( \in, "subgroup by property",
    [ IsObject, IsGroup and HasElementTestFunction ],100,
function( e,G )
  return e in Parent(G) and ElementTestFunction(G)(e);
end );

InstallMethod(GeneratorsOfGroup, "Schreier generators",
    [ IsGroup and HasElementTestFunction ],0,
function(G )
  return GeneratorsOfGroup(Stabilizer(Parent(G),RightCoset(G,One(G)),OnRight));
end );

#############################################################################
##
#F  SubgroupShell ( <G> )
##
InstallGlobalFunction( SubgroupShell, function( G )
local K, S;

  K:= NewType( FamilyObj(G), IsMagmaWithInverses
                  and IsAttributeStoringRep);
  S:=rec();
  Objectify(K,S);
  SetParent( S, G );
  return S;
end );


#############################################################################
##
#M  PrimePowerComponents( <g> )
##
InstallMethod( PrimePowerComponents,
    "generic method",
    [ IsMultiplicativeElement ],
function( g )
    local o, f, p, x, q, r, gcd, split;

    # catch the trivial case
    o := Order( g );
    if o = 1 then return []; fi;

    # start to split
    f := Factors(Integers, o );
    if Length( Set( f ) ) = 1  then
        return [ g ];
    else
        p := f[1];
        x := Number( f, y -> y = p );
        q := p ^ x;
        r := o / q;
        gcd := Gcdex ( q, r );
        split := PrimePowerComponents( g ^ (gcd.coeff1 * q) );
        return Concatenation( split, [ g ^ (gcd.coeff2 * r) ] );
    fi;
end );


#############################################################################
##
#M  PrimePowerComponent( <g>, <p> )
##
InstallMethod( PrimePowerComponent,
    "generic method",
    [ IsMultiplicativeElement,
      IsPosInt ],
function( g, p )
    local o, f, x, q, r, gcd;

    o := Order( g );
    if o = 1 then return g; fi;

    f := Factors(Integers, o );
    x := Number( f, x -> x = p );
    if x = 0 then return g^o; fi;

    q := p ^ x;
    r := o / q;
    gcd := Gcdex( q, r );
    return g ^ (gcd.coeff2 * r);
end );

#############################################################################
##
#M  \.   Access to generators
##
InstallMethod(\.,"group generators",true,
  [IsGroup and HasGeneratorsOfGroup,IsPosInt],
function(g,n)
  g:=GeneratorsOfGroup(g);
  n:=NameRNam(n);
  n:=Int(n);
  if n=fail or Length(g)<n then
    TryNextMethod();
  fi;
  return g[n];
end);

#############################################################################
##
#F  NormalSubgroups( <G> )  . . . . . . . . . . . normal subgroups of a group
##
InstallGlobalFunction( NormalSubgroupsAbove, function (G,N,avoid)
local   R,         # normal subgroups above <N>,result
        C,         # one conjugacy class of <G>
        g,         # representative of a conjugacy class of <G>
        M;          # normal closure of <N> and <g>

    # initialize the list of normal subgroups
    Info(InfoGroup,1,"normal subgroup of order ",Size(N));
    R:=[N];

    # make a shallow copy of avoid,because we are going to change it
    avoid:=ShallowCopy(avoid);

    # for all representative that need not be avoided and do not ly in <N>
    for C  in ConjugacyClasses(G)  do
        g:=Representative(C);

        if not g in avoid  and not g in N  then

            # compute the normal closure of <N> and <g> in <G>
            M:=NormalClosure(G,ClosureGroup(N,g));
            if ForAll(avoid,rep -> not rep in M)  then
                Append(R,NormalSubgroupsAbove(G,M,avoid));
            fi;

            # from now on avoid this representative
            Add(avoid,g);
        fi;
    od;

    # return the list of normal subgroups
    return R;

end );

InstallMethod(NormalSubgroups,"generic class union",true,[IsGroup],
function (G)
local nrm;        # normal subgroups of <G>,result

    # compute the normal subgroup lattice above the trivial subgroup
    nrm:=NormalSubgroupsAbove(G,TrivialSubgroup(G),[]);

    # sort the normal subgroups according to their size
    SortBy(nrm, Size);

    # and return it
    return nrm;

end);


##############################################################################
##
#F  MaximalNormalSubgroups(<G>)
##
##  *Note* that the maximal normal subgroups of a group <G> can be computed
##  easily if the character table of <G> is known.  So if you need the table
##  anyhow,you should compute it before computing the maximal normal
##  subgroups.
##
##  *Note* that for abelian and solvable groups the maximal normal subgroups
##  can be computed very quickly. Thus if you suspect your group to be
##  abelian or solvable, then check it before computing the maximal normal
##  subgroups.
##
InstallMethod( MaximalNormalSubgroups,
    "generic search",
    [ IsGroup and IsFinite ],
    function(G)
    local
          maximal, # list of maximal normal subgroups,result
          normal,  # list of normal subgroups
          n;        # one normal subgroup

    # Compute all normal subgroups.
    normal:= ShallowCopy(NormalSubgroups(G));

    # Remove non-maximal elements.
    Sort(normal,function(x,y) return Size(x) > Size(y); end);
    maximal:= [];
    for n in normal{ [ 2 .. Length(normal) ] } do
      if ForAll(maximal,x -> not IsSubset(x,n)) then

        # A new maximal element is found.
        Add(maximal,n);

      fi;
    od;

    # Return the result.
    return maximal;

end);

RedispatchOnCondition( MaximalNormalSubgroups, true,
    [ IsGroup ],
    [ IsFinite ], 0);

#############################################################################
##
#M  MaximalNormalSubgroups( <G> )
##
InstallMethod( MaximalNormalSubgroups, "for simple groups",
              [ IsGroup and IsSimpleGroup ], SUM_FLAGS,
              function(G) return [ TrivialSubgroup(G) ]; end);


#############################################################################
##
#M  MaximalNormalSubgroups( <G> )
##
InstallMethod( MaximalNormalSubgroups, "general method selection",
              [ IsGroup ],
    function(G)

    if 0 in AbelianInvariants(G) then
      # (p) is a maximal normal subgroup in Z for every prime p
      Error("number of maximal normal subgroups is infinity");
    else
      TryNextMethod();
    fi;
end);


##############################################################################
##
#F  MinimalNormalSubgroups(<G>)
##
InstallMethod( MinimalNormalSubgroups,
    "generic search in NormalSubgroups",
    [ IsGroup and IsFinite],
    function (G)

    local grps, sizes, n, min, i, j, k, size;

    # force an IsNilpotent check
    # should have and IsSolvable check, as well,
    # but methods for solvable groups are only in CRISP
    # which aggeressively checks for solvability, anyway
    if (not HasIsNilpotentGroup(G) and IsNilpotentGroup(G)) then
      return MinimalNormalSubgroups( G );
    fi;

    grps := ShallowCopy (NormalSubgroups (G));
    sizes := List (grps, Size);
    n := Length (grps);
    if n = 0 then
      return [];
    fi;
    SortParallel (sizes, grps);

    # if a group is not minimal, we set the corresponding size to 1,

    min := [];

    for i in [1..n] do
      if sizes[i] > 1 then
        G := grps[i];
        Add (min, G);
        size := sizes[i];
        j := i + 1;
        while j <= n and sizes[j] <= size do
          j := j + 1;
        od;
        for k in [j..n] do
          if sizes[k] mod size = 0 and IsSubgroup (grps[k], G) then
            sizes[k] := 1; # mark grps[k] as deleted
          fi;
        od;
      fi;
    od;
    return min;
  end);


RedispatchOnCondition(MinimalNormalSubgroups, true,
    [IsGroup],
    [IsFinite], 0);


#############################################################################
##
#M  MinimalNormalSubgroups (<G>)
##
InstallMethod (MinimalNormalSubgroups,
   "handled by nice monomorphism",
   true,
   [IsGroup and IsHandledByNiceMonomorphism and IsFinite],
   0,
   function( grp )
      local hom;
      hom := NiceMonomorphism (grp);
      return List (MinimalNormalSubgroups (NiceObject (grp)),
        N -> PreImagesSet (hom, N));
   end);


#############################################################################
##
#M  MinimalNormalSubgroups( <G> )
##
InstallMethod( MinimalNormalSubgroups, "for simple groups",
              [ IsGroup and IsSimpleGroup ], SUM_FLAGS,
              function(G) return [ G ]; end);


#############################################################################
##
#M  MinimalNormalSubgroups (<G>)
##
InstallMethod( MinimalNormalSubgroups, "for nilpotent groups",
              [ IsGroup and IsNilpotentGroup ],
  # IsGroup and IsFinite ranks higher than IsGroup and IsNilpotentGroup
  # so we have to increase the rank, otherwise the method for computation
  # by NormalSubgroups above is selected.
  {} -> RankFilter( IsGroup and IsFinite and IsNilpotentGroup )
  - RankFilter( IsGroup and IsNilpotentGroup ),
  function(G)
    local soc, i, p, primes, gen, min, MinimalSubgroupsOfPGroupByGenerators;

    MinimalSubgroupsOfPGroupByGenerators := function(G, p, gen)
    # G is the big group
    # p is the prime p
    # gens is the generators by which the p-group is given
      local min, tuples, g, h, k, i;

      min := [ ];
      if Length(gen[p])=1 then
        Add(min, Subgroup(G, gen[p]));
      else
        g := Remove(gen[p]);
        for tuples in IteratorOfTuples([0..p-1], Length(gen[p])) do
          h := g;
          for i in [1..Length(tuples)] do
            h := h*gen[p][i]^tuples[i];
          od;
          Add(min, Subgroup(G, [h]));
        od;
        Append(min, MinimalSubgroupsOfPGroupByGenerators(G, p, gen));
      fi;

      return min;
    end;

    soc := Socle(G);
    primes := [ ];
    gen := [ ];
    min := [ ];
    for i in [1..Length(AbelianInvariants(soc))] do
      p := AbelianInvariants(soc)[i];
      AddSet(primes, p);
      if not IsBound(gen[p]) then
        gen[p] := [ IndependentGeneratorsOfAbelianGroup(soc)[i] ];
      else
        Add(gen[p], IndependentGeneratorsOfAbelianGroup(soc)[i]);
      fi;
    od;

    for p in primes do
      Append(min, MinimalSubgroupsOfPGroupByGenerators(G, p, gen));
    od;
    return min;
  end);

RedispatchOnCondition(MinimalNormalSubgroups, true,
    [IsGroup],
    [IsNilpotentGroup], 0);

#############################################################################
##
#M  SmallGeneratingSet(<G>)
##
##  Restrict the criteria used by the generic method to situations where
##  "no method found" errors and expensive/impossible membership computations
##  do not occur.
##
BindGlobal("SMALLGENERATINGSETGENERIC",function (G)
local  gens, x, i, Ugens, U, test;

  gens:= GeneratorsOfGroup(G);
  if IsEmpty( gens ) then
    return gens;
  fi;

  x:= gens[1];
  if CanEasilySortElements( x ) then
    gens:= Set( gens );
  elif CanEasilyCompareElements( x ) then
    gens:= DuplicateFreeList( gens );
  fi;

  i := 1;
  while i < Length(gens)  do
    Ugens:= gens{ Difference( [ 1 .. Length( gens ) ], [ i ] ) };
    U:= SubgroupNC( G, Ugens );
    test:= false;
    if HasIsFinite(G) and IsFinite(G) and CanComputeSizeAnySubgroup(G) then
      test:=Size(U)=Size(G);
    elif CanEasilyTestMembership( U ) then
      test:= gens[i] in U;
    fi;
    if test then
      gens:= Ugens;
      # this throws out i, so i is the new i+1;
    else
      i:=i+1;
    fi;
  od;
  return gens;
end);

InstallMethod(SmallGeneratingSet,"generators subset",
  [IsGroup and HasGeneratorsOfGroup],SMALLGENERATINGSETGENERIC);

#############################################################################
##
#M  \<(G,H) comparison of two groups by the list of their smallest generators
##
InstallMethod(\<,"groups by smallest generating sets",IsIdenticalObj,
  [IsGroup,IsGroup],
function(a,b)
local l,m;
  l:=GeneratorsSmallest(a);
  m:=GeneratorsSmallest(b);
  # we now MUST pad the shorter list!
  if Length(l)<Length(m) then
    a:=LargestElementGroup(a);
    l:=ShallowCopy(l);
    while Length(l)<Length(m) do Add(l,a);od;
  else
    b:=LargestElementGroup(b);
    m:=ShallowCopy(m);
    while Length(m)<Length(l) do Add(m,b);od;
  fi;
  return l<m;
end);


#############################################################################
##
#F  PowerMapOfGroupWithInvariants( <n>, <ccl>, <invariants> )
##
InstallGlobalFunction( PowerMapOfGroupWithInvariants,
    function( n, ccl, invariants )

    local reps,      # list of representatives
          ord,       # list of representative orders
          invs,      # list of invariant tuples for representatives
          map,       # power map, result
          nccl,      # no. of classes
          i,         # loop over the classes
          candord,   # order of the power
          cand,      # candidates for the power class
          len,       # no. of candidates for the power class
          j,         # loop over `cand'
          c,         # one candidate
          pow,       # power of a representative
          powinv,    # invariants of `pow'
          limit;     # do we limit calculation if exponent exceeds order?

    reps := List( ccl, Representative );
    ord  := List( reps, Order );
    invs := [];
    map  := [];
    nccl := Length( ccl );
    limit:=ValueOption("onlyuptoorder")=true;

    # Loop over the classes
    for i in [ 1 .. nccl ] do

      if ord[i]=1 then
        # identity always maps to itself
        map[i]:=i;
      elif n>ord[i] and limit then
        map[i]:=0;
      else
        candord:= ord[i] / Gcd( ord[i], n );
        cand:= Filtered( [ 1 .. nccl ], x -> ord[x] = candord );
        if Length( cand ) = 1 then

          # The image is unique, no membership test is necessary.
          map[i]:= cand[1];

        else

          # We check the invariants.
          pow:= Representative( ccl[i] )^n;
          powinv:= List( invariants, fun -> fun( pow ) );
          for c in cand do
            if not IsBound( invs[c] ) then
              invs[c]:= List( invariants, fun -> fun( reps[c] ) );
            fi;
          od;
          cand:= Filtered( cand, c -> invs[c] = powinv );
          len:= Length( cand );
          if len = 1 then

            # The image is unique, no membership test is necessary.
            map[i]:= cand[1];

          else

            # We have to check all candidates except one.
            for j in [ 1 .. len - 1 ] do
              c:= cand[j];
              if pow in ccl[c] then
                map[i]:= c;
                break;
              fi;
            od;

            # The last candidate may be the right one.
            if not IsBound( map[i] ) then
              map[i]:= cand[ len ];
            fi;

          fi;
        fi;

      fi;

    od;

    # Return the power map.
    return map;
end );


#############################################################################
##
#M  PowerMapOfGroup( <G>, <n>, <ccl> )  . . . . . . . . . . . . . for a group
##
##  We use only element orders as invariant of conjugation.
##
InstallMethod( PowerMapOfGroup,
    "method for a group",
    [ IsGroup, IsInt, IsHomogeneousList ],
    function( G, n, ccl )
    return PowerMapOfGroupWithInvariants( n, ccl, [] );
    end );


#############################################################################
##
#M  PowerMapOfGroup( <G>, <n>, <ccl> )  . . . . . . . for a permutation group
##
##  We use also the numbers of moved points as invariant of conjugation.
##
InstallMethod( PowerMapOfGroup,
    "method for a permutation group",
    [ IsGroup and IsPermCollection, IsInt, IsHomogeneousList ],
    function( G, n, ccl )
    return PowerMapOfGroupWithInvariants( n, ccl, [CycleStructurePerm] );
    end );


#############################################################################
##
#M  PowerMapOfGroup( <G>, <n>, <ccl> )  . . . . . . . . .  for a matrix group
##
##  We use also the traces as invariant of conjugation.
##
InstallMethod( PowerMapOfGroup,
    "method for a matrix group",
    [ IsGroup and IsRingElementCollCollColl, IsInt, IsHomogeneousList ],
    function( G, n, ccl )
    return PowerMapOfGroupWithInvariants( n, ccl, [ TraceMat ] );
    end );


#############################################################################
##
#M  KnowsHowToDecompose(<G>,<gens>)      test whether the group can decompose
##                                       into the generators
##
InstallMethod( KnowsHowToDecompose,"generic: just groups of order < 1000",
    IsIdenticalObj, [ IsGroup, IsList ],
function(G,l)
  if CanComputeSize(G) then
    return Size(G)<1000;
  else
    return false;
  fi;
end);

InstallOtherMethod( KnowsHowToDecompose,"trivial group",true,
  [IsGroup,IsEmpty], ReturnTrue);

InstallMethod( KnowsHowToDecompose,
    "group: use GeneratorsOfGroup",
    [ IsGroup ],
    G -> KnowsHowToDecompose( G, GeneratorsOfGroup( G ) ) );


#############################################################################
##
#M  HasAbelianFactorGroup(<G>,<N>)   test whether G/N is abelian
##
InstallGlobalFunction(HasAbelianFactorGroup,function(G,N)
local gen;
  if HasIsAbelian(G) and IsAbelian(G) then
    return true;
  fi;
  Assert(2,IsNormal(G,N) and IsSubgroup(G,N));
  gen:=Filtered(GeneratorsOfGroup(G),i->not i in N);
  return ForAll([1..Length(gen)],
                i->ForAll([1..i-1],j->Comm(gen[i],gen[j]) in N));
end);

#############################################################################
##
#M  HasSolvableFactorGroup(<G>,<N>)   test whether G/N is solvable
##
InstallGlobalFunction(HasSolvableFactorGroup,function(G,N)
local gen, D, s, l;

  if HasIsSolvableGroup(G) and IsSolvableGroup(G) then
    return true;
  fi;
  Assert(2,IsNormal(G,N) and IsSubgroup(G,N));
  if HasDerivedSeriesOfGroup(G) then
    s := DerivedSeriesOfGroup(G);
    l := Length(s);
    return IsSubgroup(N,s[l]);
  fi;
  D := G;
  repeat
    gen:=Filtered(GeneratorsOfGroup(D),i->not i in N);
    if ForAll([1..Length(gen)],
                i->ForAll([1..i-1],j->Comm(gen[i],gen[j]) in N)) then
      return true;
    fi;
    D := DerivedSubgroup(D);
  until IsPerfectGroup(D);
  # this may be dangerous if N does not contain the identity of G
  SetIsSolvableGroup(G, false);
  return false;
end);

#############################################################################
##
#M  HasElementaryAbelianFactorGroup(<G>,<N>)   test whether G/N is el. abelian
##
InstallGlobalFunction(HasElementaryAbelianFactorGroup,function(G,N)
local gen,p;
  if HasIsElementaryAbelian(G) and IsElementaryAbelian(G) then
    return true;
  fi;
  if not HasAbelianFactorGroup(G,N) then
    return false;
  fi;
  gen:=Filtered(GeneratorsOfGroup(G),i->not i in N);
  if gen = [] then
    return true;
  fi;
  p:=First([2..Order(gen[1])],i->gen[1]^i in N);
  return IsPrime(p) and ForAll(gen{[2..Length(gen)]},i->i^p in N);
end);


#############################################################################
##
#M  PseudoRandom( <group> ) . . . . . . . . pseudo random elements of a group
##
BindGlobal("Group_InitPseudoRandom",function( grp, len, scramble )
    local   gens,  seed,  i;

    # we need at least as many seeds as generators
    if CanEasilySortElements(One(grp)) then
        gens := Set(GeneratorsOfGroup(grp));
    elif CanEasilyCompareElements(One(grp)) then
        gens := DuplicateFreeList(GeneratorsOfGroup( grp ));
    else
        gens := GeneratorsOfGroup(grp);
    fi;
    if 0 = Length(gens)  then
        SetPseudoRandomSeed( grp, [[],One(grp),One(grp)] );
        return;
    fi;
    len := Maximum( len, Length(gens), 2 );

    # add random generators
    seed := ShallowCopy(gens);
    for i  in [ Length(gens)+1 .. len ]  do
        seed[i] := Random(gens);
    od;
    SetPseudoRandomSeed( grp, [seed,One(grp),One(grp)] );

    # scramble seed
    for i  in [ 1 .. scramble ]  do
        PseudoRandom(grp);
    od;

end);


InstallGlobalFunction(Group_PseudoRandom,
function( grp )
    local   seed,  i,  j, k;

    # set up the seed
    if not HasPseudoRandomSeed(grp)  then
        i := Length(GeneratorsOfGroup(grp));
        Group_InitPseudoRandom( grp, i+10, Maximum( i*10, 100 ) );
    fi;
    seed := PseudoRandomSeed(grp);
    if 0 = Length(seed[1])  then
        return One(grp);
    fi;

    # construct the next element
    i := Random( 1, Length(seed[1]) );
    j := Random( 1, Length(seed[1]) );
    k := Random( 1, Length(seed[1]) );

    seed[3] := seed[3]*seed[1][i];
    seed[1][j] := seed[1][j]*seed[3];
    seed[2] := seed[2]*seed[1][k];

    return seed[2];

end );

InstallMethod( PseudoRandom, "product replacement",
    [ IsGroup and HasGeneratorsOfGroup ], Group_PseudoRandom);

#############################################################################
##
#M  ConjugateSubgroups( <G>, <U> )
##
InstallMethod(ConjugateSubgroups,"generic",IsIdenticalObj,[IsGroup,IsGroup],
function(G,U)
  # catch a few normal cases
  if HasIsNormalInParent(U) and IsNormalInParent(U) then
    if CanComputeIsSubset(Parent(U),G) and IsSubset(Parent(U),G) then
      return [U];
    fi;
  fi;
  return AsList(ConjugacyClassSubgroups(G,U));
end);

#############################################################################
##
#M  CharacteristicSubgroups( <G> )
##
InstallMethod(CharacteristicSubgroups,"use automorphisms",true,[IsGroup],
  G->Filtered(NormalSubgroups(G),x->IsCharacteristicSubgroup(G,x)));

InstallTrueMethod( CanComputeSize, HasSize );

InstallMethod( CanComputeIndex,"by default impossible unless identical",
  IsIdenticalObj, [IsGroup,IsGroup], IsIdenticalObj );

InstallMethod( CanComputeIndex,"if sizes can be computed",IsIdenticalObj,
  [IsGroup and CanComputeSize,IsGroup and CanComputeSize],
function(G,U)
  # if the size can be computed only because it is known to be infinite bad
  # luck
  if HasSize(G) and Size(G)=infinity or
     HasSize(U) and Size(U)=infinity then
    TryNextMethod();
  fi;
  return true;
end);

InstallMethod( CanComputeIsSubset,"if membership test works",IsIdenticalObj,
  [IsDomain and CanEasilyTestMembership,IsGroup and HasGeneratorsOfGroup],
  ReturnTrue);

#############################################################################
##
#M  CanComputeSizeAnySubgroup( <grp> ) . . .. . . . . . subset relation
##
##  Since factor groups might be in a different representation,
##  they should *not* inherit this filter automagically.
##
InstallSubsetMaintenance( CanComputeSizeAnySubgroup,
     IsGroup and CanComputeSizeAnySubgroup, IsGroup );

#############################################################################
##
#F  Factorization( <G>, <elm> ) . . . . . . . . . . . . . . .  generic method
##

BindGlobal("GenericFactorizationGroup",
# code based on work by N. Rohrbacher
function(G,elm)
  local maxlist, rvalue, setrvalue, one, hom, names, F, gens, letters, info,
  iso, e, objelm, objnum, numobj, actobj, S, cnt, SC, i, p, olens, stblst,
  l, rs, idword, dist, aim, ll, from, to, total, diam, write, count, cont,
  ri, old, new, a, rna, w, stop, num, hold, g,OG,spheres;

  # A list can have length at most 2^27
  maxlist:=2^27;
  # for determining the mod3 entry for element number i we need to access
  # within the right list
  rvalue:=function(i)
  local q, r, m;
    i:=(i-1)*2; # 2 bits per number
    q:=QuoInt(i,maxlist);
    r:=rs[q+1];
    m:=(i mod maxlist)+1;
    if r[m] then
      if r[m+1] then
        return 2;
      else
        return 1;
      fi;
    elif r[m+1] then
      return 0;
    else
      return 8; # both false is ``infinity'' value
    fi;
  end;

  setrvalue:=function(i,v)
  local q, r, m;
    i:=(i-1)*2; # 2 bits per number
    q:=QuoInt(i,maxlist);
    r:=rs[q+1];
    m:=(i mod maxlist)+1;
    if v=0 then
      r[m]:=false;r[m+1]:=true;
    elif v=1 then
      r[m]:=true;r[m+1]:=false;
    elif v=2 then
      r[m]:=true;r[m+1]:=true;
    else
      r[m]:=false;r[m+1]:=false;
    fi;
  end;

  if not elm in G and elm<>fail then
    return fail;
  fi;

  spheres:=[];
  one:=One(G);

  OG:=G;
  if not IsBound(G!.factorinfo) then
    names:=ValueOption("names");
    if not IsList(names) or Length(names)<>Length(GeneratorsOfGroup(G)) then
      names:="x";
    fi;
    hom:=EpimorphismFromFreeGroup(G:names:=names);
    G!.factFreeMap:=hom; # compatibility
    F:=Source(hom);
    gens:=ShallowCopy(MappingGeneratorsImages(hom)[2]);
    letters:=List(MappingGeneratorsImages(hom)[1],UnderlyingElement);
    info:=rec(hom:=hom);

    iso:=fail;
    if not (IsPermGroup(G) or IsPcGroup(G)) then
      # the group likely does not have a good enumerator
      iso:=IsomorphismPermGroup(G);
      G:=Image(iso,G);
      one:=One(G);
      gens:=List(gens,i->Image(iso,i));
      hom:=GroupHomomorphismByImagesNC(F,G,
               MappingGeneratorsImages(hom)[1],gens);
      if not HasEpimorphismFromFreeGroup(G) then
        SetEpimorphismFromFreeGroup(G,hom);
        G!.factFreeMap:=hom; # compatibility
      fi;
    fi;
    info.iso:=iso;
    e:= Enumerator(G);
    objelm:=x->x;
    objnum:=x->e[x];
    numobj:=x->PositionCanonical(e,x);
    actobj:=OnRight;
    if IsPermGroup(G) and Size(G)>1 then

      #tune enumerator (use a bit more memory to get unfactorized transversal
      # on top level)
      if not IsPlistRep(e) then
        e:=EnumeratorByFunctions( G, rec(
                    ElementNumber:=e!.ElementNumber,
                    NumberElement:=e!.NumberElement,
                    Length:=e!.Length,
                    PrintObj:=e!.PrintObj,
                    stabChain:=ShallowCopy(e!.stabChain)));
        S:=e!.stabChain;
      else
        S:=ShallowCopy(StabChainMutable(G));
      fi;

      cnt:=QuoInt(10^6,4*NrMovedPoints(G));
      SC:=S;
      repeat
        S.newtransversal:=ShallowCopy(S.transversal);
        S.stabilizer:=ShallowCopy(S.stabilizer);
        i:=1;
        while i<=Length(S.orbit) do
          p:=S.orbit[i];
          S.newtransversal[p]:=InverseRepresentative(S,p);
          i:=i+1;
        od;
        cnt:=cnt-Length(S.orbit);
        S.transversal:=S.newtransversal;
        Unbind(S.newtransversal);
        S:=S.stabilizer;
      until cnt<1 or Length(S.generators)=0;
      # store orbit lengths
      olens:=[];
      stblst:=[];
      S:=SC;
      while Length(S.generators)>0 do
        Add(olens,Length(S.orbit));
        Add(stblst,S);
        S:=S.stabilizer;
      od;
      stblst:=Reversed(stblst);

      # do we want to use base images instead
      if Length(BaseStabChain(SC))<Length(SC.orbit)/3 then
        e:=BaseStabChain(SC);
        objelm:=x->OnTuples(e,x);
        objnum:=
          function(pos)
          local stk, S, l, img, te, d, elm, i;
            pos:=pos-1;
            stk:=[];
            S:=SC;
            l:=Length(e);
            for d in [1..l] do
              img:=S.orbit[pos mod olens[d] + 1];
              pos:=QuoInt(pos,olens[d]);
              while img<>S.orbit[1] do
                te:=S.transversal[img];
                Add(stk,te);
                img:=img^te;
              od;
              S:=S.stabilizer;
            od;
            elm:=ShallowCopy(e); # base;
            for d in [Length(stk),Length(stk)-1..1] do
              te:=stk[d];
              for i in [1..l] do
                elm[i]:=elm[i]/te;
              od;
            od;
            return elm;
          end;

        numobj:=
          function(elm)
          local pos, val, S, img, d,te;
            pos:=1;
            val:=1;
            S:=SC;
            for d in [1..Length(e)] do
              img:=elm[d]; # image base point
              #pos:=pos+val*S.orbitpos[img];
              #val:=val*S.ol;
              pos:=pos+val*(Position(S.orbit,img)-1);
              val:=val*Length(S.orbit);
              #elm:=OnTuples(elm,InverseRepresentative(S,img));
              while img<>S.orbit[1] do
                te:=S.transversal[img];
                img:=img^te;
                elm:=OnTuples(elm,te);
              od;
              S:=S.stabilizer;
            od;
            return pos;
          end;

        actobj:=OnTuples;
      fi;

    fi;

    info.objelm:=objelm;
    info.objnum:=objnum;
    info.numobj:=numobj;
    info.actobj:=actobj;
    info.dist:=[1];

    l:=Length(gens);
    gens:=ShallowCopy(gens);
    for i in [1..l] do
      if Order(gens[i])>2 then
        Add(gens,gens[i]^-1);
        Add(letters,letters[i]^-1);
      fi;
    od;

    info.mygens:=gens;
    info.mylett:=letters;
    info.fam:=FamilyObj(One(Source(hom)));
    info.rvalue:=rvalue;
    info.setrvalue:=setrvalue;

    # initialize all lists
    rs:=List([1..QuoInt(2*Size(G),maxlist)],i->BlistList([1..maxlist],[]));
    Add(rs,BlistList([1..(2*Size(G) mod maxlist)],[]));
    setrvalue(numobj(objelm(one)),0);
    info.prodlist:=rs;
    info.count:=Order(G)-1;
    info.last:=[numobj(objelm(one))];
    info.from:=1;
    info.write:=1;
    info.to:=1;

    info.diam:=0;
    info.spheres:=spheres;
    OG!.factorinfo:=info;

  else
    info:=G!.factorinfo;
    spheres:=info.spheres;
    rs:=info.prodlist;
    if info.iso<>fail then
      G:=Image(info.iso);
    fi;
  fi;

  hom:=info.hom;
  if info.iso<>fail then
    elm:=Image(info.iso,elm);
  fi;

  F:=Source(hom);
  idword:=One(F);
  if elm<>fail and IsOne(elm) then return idword;fi; # special treatment length 0

  gens:=info.mygens;
  letters:= info.mylett;
  objelm:=info.objelm;
  objnum:=info.objnum;
  numobj:=info.numobj;
  actobj:=info.actobj;

  dist:=info.dist;

  if elm=fail then
    aim:=fail;
  else
    aim:=numobj(objelm(elm));
  fi;
  if aim=fail or rvalue(aim)=8 then
    # element not yet found. We need to expand

    ll:=info.last;
    from:=info.from;
    to:=info.to;
    total:=to-from+1;
    diam:=info.diam;
    write:=info.write;
    count:=info.count;
    if diam>1 then
      Info(InfoGroup,1,"continue diameter ",diam,", extend ",total,
           " elements, ",count," elements left");
    fi;

    cont:=true;

    while cont do
      if from=1 then
        diam:=diam+1;
        dist[diam]:=total;
        Info(InfoGroup,1,"process diameter ",diam,", extend ",total,
          " elements, ",count," elements left");
        if IsMutable(spheres) then
          Add(spheres,total);
        fi;
        if count=0 and elm=fail then
          info.from:=from;
          info.to:=to;
          info.write:=write;
          info.count:=count;
          info.diam:=diam;
          MakeImmutable(spheres);
          return spheres;
        fi;
      fi;
      i:=ll[from];
      from:=from+1;
      if 0=from mod 20000 then
        CompletionBar(InfoGroup,2,"#I  processed ",(total-(to-from))/(total+1));
      fi;
      ri:=(rvalue(i)+1) mod 3;
      old:=objnum(i);
      for g in gens do
        new:=numobj(actobj(old,g));
        if rvalue(new)=8 then
          setrvalue(new,ri);
          if new=aim then cont:=false;fi;
          # add new element
          if from>write then
            # overwrite old position
            ll[write]:=new;
            write:=write+1;
          else
            Add(ll,new);
          fi;
          count:=count-1;
        fi;
      od;
      if from>to then
        # we did all of the current length
        l:=Length(ll);
        # move the end in free space
        i:=write;
        while i<=to and l>to do
          ll[i]:=ll[l];
          Unbind(ll[l]);
          i:=i+1;
          l:=l-1;
        od;
        # the list gets shorter
        while i<=to do
          Unbind(ll[i]);
          i:=i+1;
        od;

        if from>19999 then
          CompletionBar(InfoGroup,2,"#I  processed ",false);
        fi;
        from:=1;
        to:=Length(ll);
        total:=to-from+1;
        write:=1;
      fi;

    od;
    CompletionBar(InfoGroup,2,"#I  processed ",false);
    info.from:=from;
    info.to:=to;
    info.write:=write;
    info.count:=count;
    info.diam:=diam;
  fi;


  # no pool needed: If the length of w is n, and g is a generator, the
  # length of w/g cannot be less than n-1 (otherwise (w/g)*g is a shorter
  # word) and cannot be more than n+1 (otherwise w/g is a shorter word for
  # it). Thus, if the length of w/g is OK mod 3, it is the right path.

  one:=objelm(One(G));
  a:=objelm(elm);
  rna:=rvalue(numobj(a));
  w:=UnderlyingElement(idword);
  while a<>one do
    stop:=false;
    num:=1;
    while num<=Length(gens) and stop=false do
      old:=actobj(a,gens[num]^-1);
      hold:=numobj(old);
      if rvalue(hold)= (rna - 1) mod 3 then
        # reduced to shorter
        a:=old;
        w:=w/letters[num];
        rna:=rna-1;
        stop:=true;
      fi;
      num:=num+1;
    od;
  od;
  return ElementOfFpGroup(info.fam,w^-1);

end);

InstallMethod(Factorization,"generic method", true,
               [ IsGroup, IsMultiplicativeElementWithInverse ], 0,
  GenericFactorizationGroup);

InstallMethod(GrowthFunctionOfGroup,"finite groups",[IsGroup and
  HasGeneratorsOfGroup and IsFinite],0,
function(G)
local s;
  s:=GenericFactorizationGroup(G,fail);
  return s;
end);

InstallMethod(GrowthFunctionOfGroup,"groups and orders",
  [IsGroup and HasGeneratorsOfGroup,IsPosInt],0,
function(G,r)
local s,prev,old,sort,geni,new,a,i,j,g;
  geni:=DuplicateFreeList(Concatenation(GeneratorsOfGroup(G),
                          List(GeneratorsOfGroup(G),Inverse)));
  if (IsFinite(G) and (CanEasilyTestMembership(G) or HasSize(G))
   and Length(geni)^r>Size(G)/2) or HasGrowthFunctionOfGroup(G) then
    s:=GrowthFunctionOfGroup(G);
    return s{[1..Minimum(Length(s),r+1)]};
  fi;

  # enumerate the bubbles
  s:=[1];
  prev:=[One(G)];
  old:=ShallowCopy(prev);
  sort:=CanEasilySortElements(One(G));
  for i in [1..r] do
    new:=[];
    for j in prev do
      for g in geni do
        a:=j*g;
        if not a in old then
          Add(new,a);
          if sort then
            AddSet(old,a);
          else
            Add(old,a);
          fi;
        fi;
      od;
    od;
    if Length(new)>0 then
      Add(s,Length(new));
    fi;
    prev:=new;
  od;
  return s;
end);

#############################################################################
##
#M  Order( <G> )
##
##  Since groups are domains, the recommended command to compute the order
##  of a group is `Size' (see~"Size").
##  For convenience, group orders can also be computed with `Order'.
##
##  *Note* that the existence of this method makes it necessary that no
##  group will ever be regarded as a multiplicative element!
##
InstallOtherMethod( Order,
    "for a group",
    [ IsGroup ],
    Size );