File: grpfp.gd

package info (click to toggle)
gap 4.15.1-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 110,212 kB
  • sloc: ansic: 97,261; xml: 48,343; cpp: 13,946; sh: 4,900; perl: 1,650; javascript: 255; makefile: 252; ruby: 9
file content (1368 lines) | stat: -rw-r--r-- 47,570 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
#############################################################################
##
##  This file is part of GAP, a system for computational discrete algebra.
##  This file's authors include Volkmar Felsch.
##
##  Copyright of GAP belongs to its developers, whose names are too numerous
##  to list here. Please refer to the COPYRIGHT file for details.
##
##  SPDX-License-Identifier: GPL-2.0-or-later
##
##  This file contains the declarations for finitely presented groups
##  (fp groups).
##


#############################################################################
##
#V  CosetTableDefaultLimit
##
##  <#GAPDoc Label="CosetTableDefaultLimit">
##  <ManSection>
##  <Var Name="CosetTableDefaultLimit"/>
##
##  <Description>
##  is the default number of cosets with which any coset table is
##  initialized before doing a coset enumeration.
##  <P/>
##  The function performing this coset enumeration will automatically extend
##  the table whenever necessary (as long as the number of cosets does not
##  exceed the value of <Ref Var="CosetTableDefaultMaxLimit"/>),
##  but this is an expensive operation. Thus, if you change the value of
##  <Ref Var="CosetTableDefaultLimit"/>, you should set it to a number of
##  cosets that you expect to be sufficient for your subsequent
##  coset enumerations.
##  On the other hand, if you make it too large, your job will unnecessarily
##  waste a lot of space.
##  <P/>
##  The default value of <Ref Var="CosetTableDefaultLimit"/> is <M>1000</M>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
CosetTableDefaultLimit := 1000;
if IsHPCGAP then
    MakeThreadLocal("CosetTableDefaultLimit");
fi;


#############################################################################
##
#V  CosetTableDefaultMaxLimit
##
##  <#GAPDoc Label="CosetTableDefaultMaxLimit">
##  <ManSection>
##  <Var Name="CosetTableDefaultMaxLimit"/>
##
##  <Description>
##  is the default limit for the number of cosets allowed in a coset
##  enumeration.
##  <P/>
##  A coset enumeration will not finish if the subgroup does not have finite
##  index, and even if it has it may take many more intermediate cosets than
##  the actual index of the subgroup is. To avoid a coset enumeration
##  <Q>running away</Q> therefore &GAP; has a <Q>safety stop</Q> built in.
##  This is controlled by the global variable
##  <Ref Var="CosetTableDefaultMaxLimit"/>.
##  <P/>
##  If this number of cosets is reached, &GAP; will issue an error message
##  and prompt the user to either continue the calculation or to stop it.
##  The default value is <M>4096000</M>.
##  <P/>
##  See also the description of the options to
##  <Ref Func="CosetTableFromGensAndRels"/>.
##  <P/>
##  <Log><![CDATA[
##  gap> f := FreeGroup( "a", "b" );;
##  gap> u := Subgroup( f, [ f.2 ] );
##  Group([ b ])
##  gap> Index( f, u );
##  Error, the coset enumeration has defined more than 4096000 cosets
##   called from
##  TCENUM.CosetTableFromGensAndRels( fgens, grels, fsgens ) called from
##  CosetTableFromGensAndRels( fgens, grels, fsgens ) called from
##  TryCosetTableInWholeGroup( H ) called from
##  CosetTableInWholeGroup( H ) called from
##  IndexInWholeGroup( H ) called from
##  ...
##  Entering break read-eval-print loop ...
##  type 'return;' if you want to continue with a new limit of 8192000 cosets,
##  type 'quit;' if you want to quit the coset enumeration,
##  type 'maxlimit := 0; return;' in order to continue without a limit
##  brk> quit;
##  ]]></Log>
##  <P/>
##  At this point, a <K>break</K>-loop
##  (see Section&nbsp;<Ref Sect="Break Loops"/>) has been entered.
##  The line beginning <C>Error</C> tells you why this occurred.
##  The next seven lines occur if <Ref Func="OnBreak"/> has its default value
##  <Ref Func="Where"/>.
##  They explain, in this case,
##  how &GAP; came to be doing a coset enumeration.
##  Then you are given a number of options of how to escape the
##  <K>break</K>-loop:
##  you can either continue the calculation with a larger
##  number of permitted cosets, stop the calculation if you don't
##  expect the enumeration to finish (like in the example above), or continue
##  without a limit on the number of cosets. (Choosing the first option will,
##  of course, land you back in a <K>break</K>-loop. Try it!)
##  <P/>
##  Setting <Ref Var="CosetTableDefaultMaxLimit"/>
##  (or the <C>max</C> option value, for any function that invokes a coset
##  enumeration) to <Ref Var="infinity"/> (or to <M>0</M>) will force all
##  coset enumerations to continue until
##  they either get a result or exhaust the whole available space.
##  For example, each of the following two inputs
##  <P/>
##  <Listing><![CDATA[
##  gap> CosetTableDefaultMaxLimit := 0;;
##  gap> Index( f, u );
##  ]]></Listing>
##  <P/>
##  or
##  <P/>
##  <Listing><![CDATA[
##  gap> Index( f, u : max := 0 );
##  ]]></Listing>
##  <P/>
##  have essentially the same effect as choosing the third option
##  (typing: <C>maxlimit := 0; return;</C>) at the <C>brk></C> prompt above
##  (instead of <C>quit;</C>).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
CosetTableDefaultMaxLimit := 2^12*1000;
if IsHPCGAP then
    MakeThreadLocal("CosetTableDefaultMaxLimit");
fi;


#############################################################################
##
#V  CosetTableStandard
##
##  <#GAPDoc Label="CosetTableStandard">
##  <ManSection>
##  <Var Name="CosetTableStandard"/>
##
##  <Description>
##  specifies the definition of a <E>standard coset table</E>. It is used
##  whenever coset tables or augmented coset tables are created. Its value
##  may be <C>"lenlex"</C> or <C>"semilenlex"</C>.
##  If it is <C>"lenlex"</C> coset tables will be standardized using
##  all their columns as defined in Charles Sims' book
##  (this is the new default standard of &GAP;). If it is <C>"semilenlex"</C>
##  they will be standardized using only their generator columns (this was
##  the original &GAP; standard).
##  The default value of <Ref Var="CosetTableStandard"/> is <C>"lenlex"</C>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
if IsHPCGAP then
    MakeThreadLocal("CosetTableStandard");
    BindThreadLocal("CosetTableStandard", MakeImmutable("lenlex"));
else
    CosetTableStandard := MakeImmutable("lenlex");
fi;


#############################################################################
##
#V  InfoFpGroup
##
##  <#GAPDoc Label="InfoFpGroup">
##  <ManSection>
##  <InfoClass Name="InfoFpGroup"/>
##
##  <Description>
##  The info class for functions dealing with finitely presented groups is
##  <Ref InfoClass="InfoFpGroup"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareInfoClass( "InfoFpGroup" );


#############################################################################
##
#C  IsSubgroupFgGroup( <H> )
##
##  <ManSection>
##  <Filt Name="IsSubgroupFgGroup" Arg='H' Type='Category'/>
##
##  <Description>
##  This category (intended for future extensions) represents (subgroups of)
##  a finitely generated group, whose elements are represented as words in
##  the generators. However we do not necessarily have a set or relators.
##  </Description>
##  </ManSection>
##
DeclareCategory( "IsSubgroupFgGroup", IsGroup );

#############################################################################
##
#C  IsSubgroupFpGroup( <H> )
##
##  <#GAPDoc Label="IsSubgroupFpGroup">
##  <ManSection>
##  <Filt Name="IsSubgroupFpGroup" Arg='H' Type='Category'/>
##
##  <Description>
##  is the category for finitely presented groups
##  or subgroups of a finitely presented group.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "IsSubgroupFpGroup", IsSubgroupFgGroup );

# implications for the full family
InstallTrueMethod(CanEasilyTestMembership, IsSubgroupFgGroup and IsWholeFamily);

#############################################################################
##
#F  IsFpGroup(<G>)
##
##  <#GAPDoc Label="IsFpGroup">
##  <ManSection>
##  <Filt Name="IsFpGroup" Arg='G'/>
##
##  <Description>
##  is a synonym for
##  <C>IsSubgroupFpGroup(<A>G</A>) and IsGroupOfFamily(<A>G</A>)</C>.
##  <P/>
##  Free groups are a special case of finitely presented groups,
##  namely finitely presented groups with no relators.
##
##  <P/>
##  Note that <C>FreeGroup(infinity)</C> (which exists e.g. for purposes of
##  rewriting presentations with further generators) satisfies this filter,
##  though of course it is not finitely generated (and thus not finitely
##  presented). <C>IsFpGroup</C> thus is not a proper property test and
##  slightly misnamed for the sake of its most prominent uses.
##  <P/>
##  Another special case are groups given by polycyclic presentations.
##  &GAP; uses a special representation for these groups which is created
##  in a different way.
##  See chapter <Ref Chap="Pc Groups"/> for details.
##  <Example><![CDATA[
##  gap> g:=FreeGroup(2);
##  <free group on the generators [ f1, f2 ]>
##  gap> IsFpGroup(g);
##  true
##  gap> h:=CyclicGroup(2);
##  <pc group of size 2 with 1 generator>
##  gap> IsFpGroup(h);
##  false
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareSynonym( "IsFpGroup", IsSubgroupFpGroup and IsGroupOfFamily );

#############################################################################
##
#C  IsElementOfFpGroup
##
##  <ManSection>
##  <Filt Name="IsElementOfFpGroup" Arg='obj' Type='Category'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareCategory( "IsElementOfFpGroup",
    IsMultiplicativeElementWithInverse and IsAssociativeElement );

#############################################################################
##
#C  IsElementOfFpGroupCollection
##
##  <ManSection>
##  <Filt Name="IsElementOfFpGroupCollection" Arg='obj' Type='Category'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareCategoryCollections( "IsElementOfFpGroup" );


#############################################################################
##
#m  IsSubgroupFpGroup
##
InstallTrueMethod(IsSubgroupFpGroup,IsGroup and IsElementOfFpGroupCollection);

##  free groups also are to be fp
InstallTrueMethod(IsSubgroupFpGroup,IsGroup and IsAssocWordCollection);


#############################################################################
##
#M  IsGeneratorsOfMagmaWithInverses( <fpelmscoll> )
##
InstallTrueMethod( IsGeneratorsOfMagmaWithInverses,
    IsElementOfFpGroupCollection );


#############################################################################
##
#C  IsElementOfFpGroupFamily
##
##  <ManSection>
##  <Filt Name="IsElementOfFpGroupFamily" Arg='obj' Type='Category'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareCategoryFamily( "IsElementOfFpGroup" );


#############################################################################
##
#A  FpElmEqualityMethod(<fam>)
##
##  <ManSection>
##  <Attr Name="FpElmEqualityMethod" Arg='fam'/>
##
##  <Description>
##  If <A>fam</A> is the elements family of a finitely presented group this
##  attribute returns a function <C>equal(<A>left</A>, <A>right</A>)</C> that will be
##  used to compare elements in <A>fam</A>.
##  </Description>
##  </ManSection>
##
DeclareAttribute( "FpElmEqualityMethod",IsElementOfFpGroupFamily);

#############################################################################
##
#A  FpElmComparisonMethod(<fam>)
##
##  <#GAPDoc Label="FpElmComparisonMethod">
##  <ManSection>
##  <Attr Name="FpElmComparisonMethod" Arg='fam'/>
##
##  <Description>
##  If <A>fam</A> is the elements family of a finitely presented group this
##  attribute returns a function <C>smaller(<A>left</A>, <A>right</A>)</C>
##  that will be used to compare elements in <A>fam</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "FpElmComparisonMethod",IsElementOfFpGroupFamily);

#############################################################################
##
#F  SetReducedMultiplication(<f>)
#F  SetReducedMultiplication(<e>)
#F  SetReducedMultiplication(<fam>)
##
##  <#GAPDoc Label="SetReducedMultiplication">
##  <ManSection>
##  <Func Name="SetReducedMultiplication" Arg='obj'/>
##
##  <Description>
##  For an FpGroup <A>obj</A>, an element <A>obj</A> of it or the family
##  <A>obj</A> of its elements,
##  this function will force immediate reduction when multiplying, keeping
##  words short at extra cost per multiplication.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("SetReducedMultiplication");

#############################################################################
##
#A  FpElementNFFunction(<fam>)
##
##  <ManSection>
##  <Attr Name="FpElementNFFunction" Arg='fam'/>
##
##  <Description>
##  If <A>fam</A> is the elements family of a finitely presented group this
##  attribute returns a function <A>f</A>, which, when applied to the
##  <b>underlying element</b> of an element of <A>fam</A> returns a <b>normal
##  form</b> (whose format is not defined and will differ on the method used).
##  This normal form can be used (and is used by
##  <Ref Func="SetReducedMultiplication"/>) to
##  compare elements or to reduce long products.
##  </Description>
##  </ManSection>
##
DeclareAttribute( "FpElementNFFunction",IsElementOfFpGroupFamily);

# #############################################################################
# ##
# #A  FpElmKBRWS(<fam>)
# ##
# ##  <ManSection>
# ##  <Attr Name="FpElmKBRWS" Arg='fam'/>
# ##
# ##  <Description>
# ##  If <A>fam</A> is the elements family of a finitely presented group this
# ##  attribute returns a list [<A>iso</A>,<A>k</A>,<A>id</A>] where <A>iso</A> is a isomorphism to an
# ##  fp monoid, <A>k</A> a confluent rewriting system for the image of <A>iso</A> and
# ##  <A>id</A> the element in the free monoid corresponding to the image of the
# ##  identity element under <A>iso</A>.
# ##  </Description>
# ##  </ManSection>
# ##
#DeclareAttribute( "FpElmKBRWS",IsElementOfFpGroupFamily);


#############################################################################
##
#O  ElementOfFpGroup( <fam>, <word> )
##
##  <#GAPDoc Label="ElementOfFpGroup">
##  <ManSection>
##  <Oper Name="ElementOfFpGroup" Arg='fam, word'/>
##
##  <Description>
##  If <A>fam</A> is the elements family of a finitely presented group
##  and <A>word</A> is a word in the free generators underlying this
##  finitely presented group, this operation creates the element with the
##  representative <A>word</A> in the free group.
##  <Example><![CDATA[
##  gap> ge := ElementOfFpGroup( FamilyObj( g.1 ), f.1*f.2 );
##  a*b
##  gap> ge in f;
##  false
##  gap> ge in g;
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "ElementOfFpGroup",
    [ IsElementOfFpGroupFamily, IsAssocWordWithInverse ] );


#############################################################################
##
#V  TCENUM
#V  GAPTCENUM
##
##  <ManSection>
##  <Var Name="TCENUM"/>
##  <Var Name="GAPTCENUM"/>
##
##  <Description>
##  TCENUM is a global record variable whose components contain functions
##  used for coset enumeration. By default <C>TCENUM</C> is assigned to
##  <C>GAPTCENUM</C>, which contains the coset enumeration functions provided by
##  the GAP library.
##  </Description>
##  </ManSection>
##
BindGlobal("GAPTCENUM",rec(name:="GAP Felsch-type enumerator"));
TCENUM:=GAPTCENUM;

#############################################################################
##
#F  CosetTableFromGensAndRels( <fgens>, <grels>, <fsgens> )
##
##  <#GAPDoc Label="CosetTableFromGensAndRels">
##  <ManSection>
##  <Func Name="CosetTableFromGensAndRels" Arg='fgens, grels, fsgens'/>
##
##  <Description>
##  <Index Key="TCENUM"><C>TCENUM</C></Index>
##  <Index Key="GAPTCENUM"><C>GAPTCENUM</C></Index>
##  is an internal function which is called by the functions
##  <Ref Oper="CosetTable"/>, <Ref Attr="CosetTableInWholeGroup"/>
##  and others.
##  It is, in fact, the workhorse that performs a Todd-Coxeter
##  coset enumeration.
##  <A>fgens</A> must be a set of free generators and <A>grels</A> a set
##  of relators in these generators. <A>fsgens</A> are subgroup generators
##  expressed as words in these generators. The function returns a coset
##  table with respect to <A>fgens</A>.
##  <P/>
##  <Ref Func="CosetTableFromGensAndRels"/> will call
##  <C>TCENUM.CosetTableFromGensAndRels</C>.
##  This makes it possible to replace the built-in coset enumerator with
##  another one by assigning <C>TCENUM</C> to another record.
##  <P/>
##  The library version which is used by default performs a standard Felsch
##  strategy coset enumeration. You can call this function explicitly as
##  <C>GAPTCENUM.CosetTableFromGensAndRels</C> even if other coset enumerators
##  are installed.
##  <P/>
##  The expected parameters are
##  <List>
##  <Mark><A>fgens</A></Mark>
##  <Item>
##  generators of the free group <A>F</A>
##  </Item>
##  <Mark><A>grels</A></Mark>
##  <Item>
##  relators as words in <A>F</A>
##  </Item>
##  <Mark><A>fsgens</A></Mark>
##  <Item>
##  subgroup generators as words in <A>F</A>.
##  </Item>
##  </List>
##  <P/>
##  <Ref Func="CosetTableFromGensAndRels"/> processes two options (see
##  chapter&nbsp;<Ref Chap="Options Stack"/>):
##  <List>
##  <Mark><C>max</C></Mark>
##  <Item>
##    The limit of the number of cosets to be defined. If the
##    enumeration does not finish with this number of cosets, an error is
##    raised and the user is asked whether she wants to continue. The
##    default value is the value given in the variable
##    <C>CosetTableDefaultMaxLimit</C>. (Due to the algorithm the actual
##    limit used can be a bit higher than the number given.)
##  </Item>
##  <Mark><C>silent</C></Mark>
##  <Item>
##    If set to <K>true</K> the algorithm will not raise the error
##    mentioned under option <C>max</C> but silently return <K>fail</K>.
##    This can be useful if an enumeration is only wanted unless it becomes
##    too big.
##  </Item>
##  </List>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("CosetTableFromGensAndRels");


#############################################################################
##
#F  IndexCosetTab( <table> )
##
##  <ManSection>
##  <Func Name="IndexCosetTab" Arg='table'/>
##
##  <Description>
##  this function returns <C>Length(table[1])</C>, but the table might be empty
##  for a no-generator group, in which case 1 is returned.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("IndexCosetTab");

#############################################################################
##
#F  StandardizeTable( <table>, <standard> )
##
##  <#GAPDoc Label="StandardizeTable">
##  <ManSection>
##  <Func Name="StandardizeTable" Arg='table, standard'/>
##
##  <Description>
##  standardizes the given coset table <A>table</A>. The second argument is
##  optional. It defines the standard to be used, its values may be
##  <C>"lenlex"</C> or <C>"semilenlex"</C> specifying the new or the old
##  convention, respectively.
##  If no value for the parameter <A>standard</A> is provided the
##  function will use the global variable <Ref Var="CosetTableStandard"/>
##  instead.
##  Note that the function alters the given table, it does not create a copy.
##  <Example><![CDATA[
##  gap> StandardizeTable( tab, "semilenlex" );
##  gap> PrintArray( TransposedMat( tab ) );
##  [ [  1,  1,  2,  4 ],
##    [  3,  3,  4,  1 ],
##    [  2,  2,  3,  3 ],
##    [  5,  5,  1,  2 ],
##    [  4,  4,  5,  5 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("StandardizeTable");

#############################################################################
##
#F  StandardizeTable2( <table>, <table2>, <standard> )
##
##  <ManSection>
##  <Func Name="StandardizeTable2" Arg='table, table2, standard'/>
##
##  <Description>
##  standardizes the augmented coset table given by <A>table</A> and <A>table2</A>.
##  The third argument is optional. It defines the standard to be used, its
##  values may be <C>"lenlex"</C> or <C>"semilenlex"</C> specifying the new or the old
##  convention, respectively. If no value for the parameter <A>standard</A> is
##  provided the function will use the global variable <C>CosetTableStandard</C>
##  instead. Note that the function alters the given table, it does not
##  create a copy.
##  <P/>
##  Warning: The function alters just the two tables. Any further lists
##  involved in the object <E>augmented coset table</E> which refer to these two
##  tables will not be updated.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("StandardizeTable2");


#############################################################################
##
#A  CosetTableInWholeGroup(< H >)
#O  TryCosetTableInWholeGroup(< H >)
##
##  <#GAPDoc Label="CosetTableInWholeGroup">
##  <ManSection>
##  <Attr Name="CosetTableInWholeGroup" Arg='H'/>
##  <Oper Name="TryCosetTableInWholeGroup" Arg='H'/>
##
##  <Description>
##  is equivalent to <C>CosetTable(<A>G</A>,<A>H</A>)</C> where <A>G</A> is
##  the (unique)  finitely presented group such that <A>H</A> is a subgroup
##  of <A>G</A>.
##  It overrides a <C>silent</C> option
##  (see&nbsp;<Ref Func="CosetTableFromGensAndRels"/>) with <K>false</K>.
##  <P/>
##  The variant <Ref Oper="TryCosetTableInWholeGroup"/> does not override the
##  <C>silent</C> option with <K>false</K> in case a coset table is only
##  wanted if not too expensive.
##  It will store a result that is not <K>fail</K> in the attribute
##  <Ref Attr="CosetTableInWholeGroup"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "CosetTableInWholeGroup", IsGroup );
DeclareOperation( "TryCosetTableInWholeGroup", [IsGroup] );

InstallTrueMethod(CanEasilyTestMembership,
  IsSubgroupFpGroup and HasCosetTableInWholeGroup);


#############################################################################
##
#A  CosetTableNormalClosureInWholeGroup(< H >)
##
##  <ManSection>
##  <Attr Name="CosetTableNormalClosureInWholeGroup" Arg='H'/>
##
##  <Description>
##  is equivalent to <C>CosetTableNormalClosure(<A>G</A>,<A>H</A>)</C> where <A>G</A> is the
##  (unique) finitely presented group such that <A>H</A> is a subgroup of <A>G</A>.
##  It overrides a <C>silent</C> option (see&nbsp;<Ref Func="CosetTableFromGensAndRels"/>) with
##  <K>false</K>.
##  </Description>
##  </ManSection>
##
DeclareAttribute( "CosetTableNormalClosureInWholeGroup", IsGroup );


#############################################################################
##
#F  TracedCosetFpGroup( <tab>, <word>, <pt> )
##
##  <#GAPDoc Label="TracedCosetFpGroup">
##  <ManSection>
##  <Func Name="TracedCosetFpGroup" Arg='tab, word, pt'/>
##
##  <Description>
##  Traces the coset number <A>pt</A> under the word <A>word</A> through the
##  coset table <A>tab</A>.
##  (Note: <A>word</A> must be in the free group, use
##  <Ref Oper="UnderlyingElement" Label="fp group elements"/> if in doubt.)
##  <Example><![CDATA[
##  gap> TracedCosetFpGroup(tab,UnderlyingElement(g.1),2);
##  4
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("TracedCosetFpGroup");


#############################################################################
##
#F  SubgroupOfWholeGroupByCosetTable( <fpfam>, <tab> )
##
##  <#GAPDoc Label="SubgroupOfWholeGroupByCosetTable">
##  <ManSection>
##  <Func Name="SubgroupOfWholeGroupByCosetTable" Arg='fpfam, tab'/>
##
##  <Description>
##  takes a family <A>fpfam</A> of an FpGroup and a standardized coset
##  table <A>tab</A>
##  and returns the subgroup of <A>fpfam</A><C>!.wholeGroup</C> defined by
##  this coset table. The function will not check whether the coset table is
##  standardized.
##  See also&nbsp;<Ref Oper="CosetTableBySubgroup"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("SubgroupOfWholeGroupByCosetTable");


#############################################################################
##
#F  SubgroupOfWholeGroupByQuotientSubgroup( <fpfam>, <Q>, <U> )
##
##  <#GAPDoc Label="SubgroupOfWholeGroupByQuotientSubgroup">
##  <ManSection>
##  <Func Name="SubgroupOfWholeGroupByQuotientSubgroup" Arg='fpfam, Q, U'/>
##
##  <Description>
##  takes a FpGroup family <A>fpfam</A>, a finitely generated group <A>Q</A>
##  such that the fp generators of <A>fpfam</A> can be mapped by an
##  epimorphism <M>phi</M> onto the <Ref Attr="GeneratorsOfGroup"/> value
##  of <A>Q</A>, and a subgroup <A>U</A> of <A>Q</A>.
##  It returns the subgroup of <A>fpfam</A><C>!.wholeGroup</C> which is
##  the full preimage of <A>U</A> under <M>phi</M>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("SubgroupOfWholeGroupByQuotientSubgroup");

#############################################################################
##
#R  IsSubgroupOfWholeGroupByQuotientRep(<G>)
##
##  <#GAPDoc Label="IsSubgroupOfWholeGroupByQuotientRep">
##  <ManSection>
##  <Filt Name="IsSubgroupOfWholeGroupByQuotientRep" Arg='G'
##   Type='Representation'/>
##
##  <Description>
##  is the representation for subgroups of an FpGroup, given by a quotient
##  subgroup. The components <A>G</A><C>!.quot</C> and <A>G</A><C>!.sub</C>
##  hold quotient, respectively subgroup.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareRepresentation("IsSubgroupOfWholeGroupByQuotientRep",
  IsSubgroupFpGroup and IsComponentObjectRep,["quot","sub"]);

#############################################################################
##
#F  DefiningQuotientHomomorphism(<U>)
##
##  <#GAPDoc Label="DefiningQuotientHomomorphism">
##  <ManSection>
##  <Func Name="DefiningQuotientHomomorphism" Arg='U'/>
##
##  <Description>
##  if <A>U</A> is a subgroup in quotient representation
##  (<Ref Filt="IsSubgroupOfWholeGroupByQuotientRep"/>),
##  this function returns the
##  defining homomorphism from the whole group to <A>U</A><C>!.quot</C>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("DefiningQuotientHomomorphism");

#############################################################################
##
#A  AsSubgroupOfWholeGroupByQuotient(<U>)
##
##  <#GAPDoc Label="AsSubgroupOfWholeGroupByQuotient">
##  <ManSection>
##  <Attr Name="AsSubgroupOfWholeGroupByQuotient" Arg='U'/>
##
##  <Description>
##  returns the same subgroup in the representation
##  <Ref Attr="AsSubgroupOfWholeGroupByQuotient"/>.
##  <P/>
##  See also <Ref Func="SubgroupOfWholeGroupByCosetTable"/>
##  and <Ref Oper="CosetTableBySubgroup"/>.
##  <P/>
##  This technique is used by &GAP; for example to represent the derived
##  subgroup, which is obtained from the quotient <M>G/G'</M>.
##  <Example><![CDATA[
##  gap> f:=FreeGroup(2);;g:=f/[f.1^6,f.2^6,(f.1*f.2)^6];;
##  gap> d:=DerivedSubgroup(g);
##  Group(<fp, no generators known>)
##  gap> Index(g,d);
##  36
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("AsSubgroupOfWholeGroupByQuotient", IsSubgroupFpGroup);


############################################################################
##
#O  LowIndexSubgroupsFpGroupIterator( <G>[, <H>], <index>[, <excluded>] )
#O  LowIndexSubgroupsFpGroup( <G>[, <H>], <index>[, <excluded>] )
##
##  <#GAPDoc Label="LowIndexSubgroupsFpGroupIterator">
##  <ManSection>
##  <Oper Name="LowIndexSubgroupsFpGroupIterator"
##   Arg='G[, H], index[, excluded]'/>
##  <Oper Name="LowIndexSubgroupsFpGroup" Arg='G[, H], index[, excluded]'/>
##
##  <Description>
##  <Index Subkey="for low index subgroups">iterator</Index>
##  These functions compute representatives of the conjugacy classes of
##  subgroups of the finitely presented group <A>G</A> that contain the
##  subgroup <A>H</A> of <A>G</A> and that have index less than or equal to
##  <A>index</A>.
##  <P/>
##  <Ref Oper="LowIndexSubgroupsFpGroupIterator"/> returns an iterator
##  (see&nbsp;<Ref Sect="Iterators"/>)
##  that can be used to run over these subgroups,
##  and <Ref Oper="LowIndexSubgroupsFpGroup"/> returns the list of these
##  subgroups.
##  If one is interested only in one or a few subgroups up to a given index
##  then preferably the iterator should be used.
##  <P/>
##  If the optional argument <A>excluded</A> has been specified, then it is
##  expected to be a list of words in the free generators of the underlying
##  free group of <A>G</A>, and <Ref Oper="LowIndexSubgroupsFpGroup"/>
##  returns only those subgroups of index at most <A>index</A> that contain
##  <A>H</A>, but do not contain any conjugate of any of the group elements
##  defined by these words.
##  <P/>
##  If not given, <A>H</A> defaults to the trivial subgroup.
##  <P/>
##  The algorithm used finds the requested subgroups
##  by systematically running through a tree of all potential coset tables
##  of <A>G</A> of length at most <A>index</A> (where it skips all branches
##  of that tree for which it knows in advance that they cannot provide new
##  classes of such subgroups).
##  The time required to do this depends, of course, on the presentation of
##  <A>G</A>, but in general it will grow exponentially with
##  the value of <A>index</A>. So you should be careful with the choice of
##  <A>index</A>.
##  <Example><![CDATA[
##  gap> li:=LowIndexSubgroupsFpGroup( g, TrivialSubgroup( g ), 10 );
##  [ Group(<fp, no generators known>), Group(<fp, no generators known>),
##    Group(<fp, no generators known>), Group(<fp, no generators known>) ]
##  ]]></Example>
##  <P/>
##  By default, the algorithm computes no generating sets for the subgroups.
##  This can be enforced with <Ref Attr="GeneratorsOfGroup"/>:
##  <Example><![CDATA[
##  gap> GeneratorsOfGroup(li[2]);
##  [ a, b*a*b^-1 ]
##  ]]></Example>
##  <P/>
##  If we are interested just in one (proper) subgroup of index at most
##  <M>10</M>, we can use the function that returns an iterator.
##  The first subgroup found is the group itself,
##  except if a list of excluded elements is entered (see below),
##  so we look at the second subgroup.
##  <P/>
##  <Example><![CDATA[
##  gap> iter:= LowIndexSubgroupsFpGroupIterator( g, 10 );;
##  gap> s1:= NextIterator( iter );;  Index( g, s1 );
##  1
##  gap> IsDoneIterator( iter );
##  false
##  gap> s2:= NextIterator( iter );;  s2 = li[2];
##  true
##  ]]></Example>
##  <P/>
##  As an example for an application of the optional parameter
##  <A>excluded</A>, we
##  compute all conjugacy classes of torsion free subgroups of index at most
##  <M>24</M> in the group <M>G =
##  \langle x,y,z \mid x^2, y^4, z^3, (xy)^3, (yz)^2, (xz)^3 \rangle</M>.
##  It is know from theory that each torsion element of this
##  group is conjugate to a power of <M>x</M>, <M>y</M>, <M>z</M>, <M>xy</M>,
##  <M>xz</M>, or <M>yz</M>.
##  (Note that this includes conjugates of <M>y^2</M>.)
##  <P/>
##  <Example><![CDATA[
##  gap> F := FreeGroup( "x", "y", "z" );;
##  gap> x := F.1;; y := F.2;; z := F.3;;
##  gap> G := F / [ x^2, y^4, z^3, (x*y)^3, (y*z)^2, (x*z)^3 ];;
##  gap> torsion := [ x, y, y^2, z, x*y, x*z, y*z ];;
##  gap> SetInfoLevel( InfoFpGroup, 2 );
##  gap> lis := LowIndexSubgroupsFpGroup(G, TrivialSubgroup(G), 24, torsion);;
##  #I  LowIndexSubgroupsFpGroup called
##  #I   class 1 of index 24 and length 8
##  #I   class 2 of index 24 and length 24
##  #I   class 3 of index 24 and length 24
##  #I   class 4 of index 24 and length 24
##  #I   class 5 of index 24 and length 24
##  #I  LowIndexSubgroupsFpGroup done. Found 5 classes
##  gap> SetInfoLevel( InfoFpGroup, 0 );
##  ]]></Example>
##  <P/>
##  If a particular image group is desired, the operation
##  <Ref Oper="GQuotients"/>
##  (see&nbsp;<Ref Sect="Quotient Methods"/>) can be useful as well.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "LowIndexSubgroupsFpGroupIterator",
    [ IsSubgroupFpGroup, IsPosInt ] );
DeclareOperation( "LowIndexSubgroupsFpGroupIterator",
    [ IsSubgroupFpGroup, IsSubgroupFpGroup, IsPosInt ] );
DeclareOperation( "LowIndexSubgroupsFpGroupIterator",
    [ IsSubgroupFpGroup and IsWholeFamily, IsPosInt, IsList ] );
DeclareOperation( "LowIndexSubgroupsFpGroupIterator",
    [ IsSubgroupFpGroup and IsWholeFamily, IsSubgroupFpGroup, IsPosInt,
      IsList ] );

DeclareOperation("LowIndexSubgroupsFpGroup",
  [IsSubgroupFpGroup,IsSubgroupFpGroup,IsPosInt]);


############################################################################
##
#F  MostFrequentGeneratorFpGroup( <G> )
##
##  <#GAPDoc Label="MostFrequentGeneratorFpGroup">
##  <ManSection>
##  <Func Name="MostFrequentGeneratorFpGroup" Arg='G'/>
##
##  <Description>
##  is an internal function which is used in some applications of coset
##  table methods. It returns the first of those generators of the given
##  finitely presented group <A>G</A> which occur most frequently in the
##  relators.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("MostFrequentGeneratorFpGroup");


#############################################################################
##
#A  FreeGeneratorsOfFpGroup( <G> )
#O  FreeGeneratorsOfWholeGroup( <U> )
##
##  <#GAPDoc Label="FreeGeneratorsOfFpGroup">
##  <ManSection>
##  <Attr Name="FreeGeneratorsOfFpGroup" Arg='G'/>
##  <Oper Name="FreeGeneratorsOfWholeGroup" Arg='U'/>
##
##  <Description>
##  <Ref Attr="FreeGeneratorsOfFpGroup"/> returns the underlying free
##  generators corresponding to the generators of the finitely presented
##  group <A>G</A> which must be a full FpGroup.
##  <P/>
##  <Ref Oper="FreeGeneratorsOfWholeGroup"/> also works for subgroups of an
##  FpGroup and returns the free generators of the full group that defines
##  the family.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "FreeGeneratorsOfFpGroup",
     IsSubgroupFpGroup and IsGroupOfFamily  );
DeclareOperation( "FreeGeneratorsOfWholeGroup",
     [IsSubgroupFpGroup]  );

############################################################################
##
#A  RelatorsOfFpGroup(<G>)
##
##  <#GAPDoc Label="RelatorsOfFpGroup">
##  <ManSection>
##  <Attr Name="RelatorsOfFpGroup" Arg='G'/>
##
##  <Description>
##  returns the relators of the finitely presented group <A>G</A> as words
##  in the free generators provided by the
##  <Ref Attr="FreeGeneratorsOfFpGroup"/> value of <A>G</A>.
##  <Example><![CDATA[
##  gap> f := FreeGroup( "a", "b" );;
##  gap> g := f / [ f.1^5, f.2^2, f.1^f.2*f.1 ];
##  <fp group on the generators [ a, b ]>
##  gap> Size( g );
##  10
##  gap> FreeGroupOfFpGroup( g ) = f;
##  true
##  gap> FreeGeneratorsOfFpGroup( g );
##  [ a, b ]
##  gap> RelatorsOfFpGroup( g );
##  [ a^5, b^2, b^-1*a*b*a ]
##  ]]></Example>
##  <P/>
##  Note that these attributes are only available for the <E>full</E>
##  finitely presented group.
##  It is possible (for example by using <Ref Func="Subgroup"/>) to
##  construct a subgroup of index <M>1</M> which is not identical to the
##  whole group.
##  The latter one can be obtained in this situation via
##  <Ref Func="Parent"/>.
##  <P/>
##  Elements of a finitely presented group are not words, but are represented
##  using a word from the free group as representative. The following two
##  commands obtain this representative, respectively create an element in the
##  finitely presented group.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("RelatorsOfFpGroup",IsSubgroupFpGroup and IsGroupOfFamily);

#############################################################################
##
#A  FreeGroupOfFpGroup(<G>)
##
##  <#GAPDoc Label="FreeGroupOfFpGroup">
##  <ManSection>
##  <Attr Name="FreeGroupOfFpGroup" Arg='G'/>
##
##  <Description>
##  returns the underlying free group for the finitely presented group
##  <A>G</A>.
##  This is the group generated by the free generators provided by the
##  <Ref Attr="FreeGeneratorsOfFpGroup"/> value of <A>G</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("FreeGroupOfFpGroup",IsSubgroupFpGroup and IsGroupOfFamily);

#############################################################################
##
#A  IndicesInvolutaryGenerators( <G> )
##
##  <#GAPDoc Label="IndicesInvolutaryGenerators">
##  <ManSection>
##  <Attr Name="IndicesInvolutaryGenerators" Arg='G'/>
##
##  <Description>
##  returns the indices of those generators of the finitely presented group
##  <A>G</A> which are known to be involutions. This knowledge is used by
##  internal functions to improve the performance of coset enumerations.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("IndicesInvolutaryGenerators",
  IsSubgroupFpGroup and IsGroupOfFamily);

############################################################################
##
#F  RelatorRepresentatives(<rels>)
##
##  <ManSection>
##  <Func Name="RelatorRepresentatives" Arg='rels'/>
##
##  <Description>
##  returns a set of  relators,  that  contains for each relator in the list
##  <A>rels</A> its minimal cyclical  permutation (which is automatically
##  cyclically reduced).
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("RelatorRepresentatives");


#############################################################################
##
#F  RelsSortedByStartGen( <gens>, <rels>, <table> )
##
##  <ManSection>
##  <Func Name="RelsSortedByStartGen" Arg='gens, rels, table'/>
##
##  <Description>
##  is a  subroutine of the  Felsch Todd-Coxeter and the  Reduced
##  Reidemeister-Schreier  routines. It returns a list which for each
##  generator or  inverse generator in <A>gens</A> contains a list  of all
##  cyclically reduced relators,  starting  with that element,  which can be
##  obtained by conjugating or inverting the given relators <A>rels</A>.  The
##  relators are represented as lists of the coset table columns from the
##  table <A>table</A> corresponding to the generators and, in addition, as lists
##  of the respective column numbers.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("RelsSortedByStartGen");

#############################################################################
##
#A  IsomorphismPermGroupOrFailFpGroup( <G> [,<max>] )
##
##  <ManSection>
##  <Attr Name="IsomorphismPermGroupOrFailFpGroup" Arg='G [,max]'/>
##
##  <Description>
##  returns an isomorphism <M>\varphi</M> from the fp group <A>G</A> onto
##  a permutation group <A>P</A> which is isomorphic to <A>G</A>, if one can be found
##  with reasonable effort and of reasonable degree. The function
##  returns <K>fail</K> otherwise.
##  <P/>
##  The optional argument <C>max</C> can be used to override the default maximal
##  size of a coset table used (and thus the maximal degree of the resulting
##  permutation).
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("IsomorphismPermGroupOrFailFpGroup");


#############################################################################
##
#F  SubgroupGeneratorsCosetTable(<freegens>,<fprels>,<table>)
##
##  <ManSection>
##  <Func Name="SubgroupGeneratorsCosetTable" Arg='freegens,fprels,table'/>
##
##  <Description>
##  determinates subgroup generators for the subgroup given by the coset
##  table <A>table</A> from the free generators <A>freegens</A>,
##  the  relators <A>fprels</A> (as words in <A>freegens</A>).
##  It returns words in <A>freegens</A>.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "SubgroupGeneratorsCosetTable" );

#############################################################################
##
#F  LiftFactorFpHom(<hom>,<G>,<N>,<dec>)
##
##  <ManSection>
##  <Func Name="LiftFactorFpHom" Arg='hom,G,N,dec'/>
##
##  <Description>
##  Let <A>hom</A> be an epimorphism from a group <A>G</A> to a finitely presented
##  group <A>F</A> with kernel <A>M</A> and <M>M/N</M> a chief factor.
##  If <M>M/N</M> is abelian, then <A>dec</A> is a modulo pcgs. Otherwise <A>dec</A> is a
##  homomorphism from <A>M</A> onto a finitely presented group, with kernel <A>N</A>.
##  This function
##  constructs a new fp group <A>F2</A> isomorphic to <M>G/N</M> and returns an
##  epimorphism from <A>G</A> onto <A>F2</A>.
##  <P/>
##  No test of the arguments is performed.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "LiftFactorFpHom" );

DeclareGlobalFunction( "IsomorphismFpGroupByChiefSeriesFactor" );

#############################################################################
##
#F  ComplementFactorFpHom(<hom>,<M>,<N>,<C>,<Ggens>,<Cgens>)
##
##  <ManSection>
##  <Func Name="ComplementFactorFpHom" Arg='hom,M,N,C,Ggens,Cgens'/>
##
##  <Description>
##  Let <A>hom</A> be an epimorphism from a group <C>G</C> to a finitely presented
##  group <A>F</A> with kernel <A>M</A> and <M>M/N</M> be elementary abelian and <M>C/N</M> a
##  complement to <A>M</A> in <M>G/N</M>. The set <A>Cgens</A> is a set of generators of
##  <A>C</A> modulo <A>N</A>, <A>Ggens</A> are corresponding representatives in <C>G</C>.
##  This function constructs a new epimorphism from <A>C</A> onto <A>F</A>.
##  <P/>
##  No test of the arguments is performed.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "ComplementFactorFpHom" );

#############################################################################
##
#F  FactorGroupFpGroupByRels( <G>, <elts> )
##
##  <#GAPDoc Label="FactorGroupFpGroupByRels">
##  <ManSection>
##  <Func Name="FactorGroupFpGroupByRels" Arg='G, elts'/>
##
##  <Description>
##  returns the factor group <A>G</A>/<M>N</M> of <A>G</A> by
##  the normal closure <M>N</M> of <A>elts</A>
##  where <A>elts</A> is expected to be a list of elements of <A>G</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "FactorGroupFpGroupByRels" );


#############################################################################
##
#F  ExcludedOrders( <fpgrp>[,<ords>] )
#A  StoredExcludedOrders( <fpgrp> )
##
##  <ManSection>
##  <Func Name="ExcludedOrders" Arg='fpgrp[,ords]'/>
##  <Attr Name="StoredExcludedOrders" Arg='fpgrp'/>
##
##  <Description>
##  for a (full) finitely presented group <A>fpgrp</A> this attribute returns
##  a list of orders, corresponding to <Ref Func="GeneratorsOfGroup"/>,
##  for which the presentation collapses.
##  (That is, the group becomes trivial when a relator <M>g_i^o</M> is
##  added.) If given, the list <A>ords</A> contains a set of
##  orders corresponding to the generators which are explicitly to be
##  tested.
##  (The mutable attribute <Ref Func="StoredExcludedOrders"/> is used to
##  store results.)
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("ExcludedOrders");
DeclareAttribute( "StoredExcludedOrders",IsSubgroupFpGroup,"mutable");


#############################################################################
##
#F  NewmanInfinityCriterion(<G>,<p>)
##
##  <#GAPDoc Label="NewmanInfinityCriterion">
##  <ManSection>
##  <Func Name="NewmanInfinityCriterion" Arg='G, p'/>
##
##  <Description>
##  Let <A>G</A> be a finitely presented group and <A>p</A> a prime that
##  divides the order of the commutator factor group of <A>G</A>.
##  This function applies an infinity criterion due to M. F.&nbsp;Newman
##  <Cite Key="New90"/> to <A>G</A>.
##  (See <Cite Key="Joh97" Where="chapter 16"/> for a more explicit
##  description.)
##  It returns <K>true</K>
##  if the criterion succeeds in proving that <A>G</A> is infinite and
##  <K>fail</K> otherwise.
##  <P/>
##  Note that the criterion uses the number of generators and
##  relations in the presentation of <A>G</A>.
##  Reduction of the presentation via Tietze transformations
##  (<Ref Attr="IsomorphismSimplifiedFpGroup"/>) therefore might
##  produce an isomorphic group, for which the criterion will work better.
##  <Example><![CDATA[
##  gap> g:=FibonacciGroup(2,9);
##  <fp group on the generators [ f1, f2, f3, f4, f5, f6, f7, f8, f9 ]>
##  gap> hom:=EpimorphismNilpotentQuotient(g,2);;
##  gap> k:=Kernel(hom);;
##  gap> Index(g,k);
##  152
##  gap> AbelianInvariants(k);
##  [ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 ]
##  gap> NewmanInfinityCriterion(Kernel(hom),5);
##  true
##  ]]></Example>
##  <P/>
##  This proves that the subgroup <C>k</C>
##  (and thus the whole group <C>g</C>) is infinite.
##  (This is the original example from&nbsp;<Cite Key="New90"/>.)
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("NewmanInfinityCriterion");

#############################################################################
##
#F  FibonacciGroup(<r>,<n>)
#F  FibonacciGroup(<n>)
##
##  <ManSection>
##  <Func Name="FibonacciGroup" Arg='r,n'/>
##  <Func Name="FibonacciGroup" Arg='n'/>
##
##  <Description>
##  This function returns the <E>Fibonacci group</E> with parameters <A>r</A>, <A>n</A>.
##  This is a finitely presented group with <A>n</A> generators <M>x_i</M> and <A>n</A>
##  relators <M>x_i\cdot\cdots\cdot x_{r+i-1}/x_{r+i}</M> (with indices reduced
##  modulo <A>n</A>).
##  <P/>
##  If <A>r</A> is omitted, it defaults to 2.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("FibonacciGroup");

#############################################################################
##
#A  FPFaithHom(<fam>)
##
##  <ManSection>
##  <Attr Name="FPFaithHom" Arg='fam'/>
##
##  <Description>
##  For the elements family <A>fam</A> of a finite fp group <A>G</A> this returns an
##  isomorphism to a permutation
##  or a pc group isomorphic to <A>G</A>.
##  </Description>
##  </ManSection>
##
DeclareAttribute("FPFaithHom",IsFamily);

#############################################################################
##
#F  ParseRelators(<gens>,<rels>)
##
##  <#GAPDoc Label="ParseRelators">
##  <ManSection>
##  <Func Name="ParseRelators" Arg='gens, rels'/>
##
##  <Description>
##  Will translate a list of relations as given in print, e.g.
##  <M>x y^2 = (x y^3 x)^2 xy = yzx</M> into relators.
##  <A>gens</A> must be a list of generators of a free group,
##  each being displayed by a single letter.
##  <A>rels</A> is a string that lists a sequence of equalities.
##  These must be written in the letters which are the names of
##  the generators in <A>gens</A>.
##  Change of upper/lower case is interpreted to indicate inverses.
##  <P/>
##  <Example><![CDATA[
##  gap> f:=FreeGroup("x","y","z");;
##  gap> AssignGeneratorVariables(f);
##  #I  Assigned the global variables [ x, y, z ]
##  gap> r:=ParseRelators([x,y,z],
##  > "x^2 = y^5 = z^3 = (xyxyxy^4)^2 = (xz)^2 = (y^2z)^2 = 1");
##  [ x^2, y^5, z^3, (x*z)^2, (y^2*z)^2, ((x*y)^3*y^3)^2 ]
##  gap> g:=f/r;
##  <fp group on the generators [ x, y, z ]>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("ParseRelators");

#############################################################################
##
#F  StringFactorizationWord(<w>)
##
##  <#GAPDoc Label="StringFactorizationWord">
##  <ManSection>
##  <Func Name="StringFactorizationWord" Arg='w'/>
##
##  <Description>
##  returns a string that expresses a given word <A>w</A> in compact form
##  written as a string. Inverses are expressed by changing the upper/lower
##  case of the generators, recurring expressions are written as products.
##  <Example><![CDATA[
##  gap> StringFactorizationWord(z^-1*x*y*y*y*x*x*y*y*y*x*y^-1*x);
##  "Z(xy3x)2Yx"
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("StringFactorizationWord");

# used to test whether abeliniazation can be mapped in GQuotients
DeclareGlobalFunction("CanMapFiniteAbelianInvariants");

# map fpgrp->fpmon creator
DeclareGlobalFunction("MakeFpGroupToMonoidHomType1");

# used in homomorphisms
DeclareGlobalName("TRIVIAL_FP_GROUP");

DeclareAttribute("CyclicSubgroupFpGroup", IsFpGroup);