File: grppc.gi

package info (click to toggle)
gap 4.15.1-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 110,212 kB
  • sloc: ansic: 97,261; xml: 48,343; cpp: 13,946; sh: 4,900; perl: 1,650; javascript: 255; makefile: 252; ruby: 9
file content (2998 lines) | stat: -rw-r--r-- 85,737 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
#############################################################################
##
##  This file is part of GAP, a system for computational discrete algebra.
##  This file's authors include Frank Celler, Bettina Eick.
##
##  Copyright of GAP belongs to its developers, whose names are too numerous
##  to list here. Please refer to the COPYRIGHT file for details.
##
##  SPDX-License-Identifier: GPL-2.0-or-later
##
##  This file contains the methods for groups with a polycyclic collector.
##

#############################################################################
##
#M  CanonicalPcgsWrtFamilyPcgs( <grp> )
##
InstallMethod( CanonicalPcgsWrtFamilyPcgs,
    true,
    [ IsGroup and HasFamilyPcgs ],
    0,

function( grp )
    local   cgs;

    cgs := CanonicalPcgs( InducedPcgsWrtFamilyPcgs(grp) );
    if cgs = FamilyPcgs(grp)  then
        SetIsWholeFamily( grp, true );
    fi;
    return cgs;
end );


#############################################################################
##
#M  CanonicalPcgsWrtHomePcgs( <grp> )
##
InstallMethod( CanonicalPcgsWrtHomePcgs,
    true,
    [ IsGroup and HasHomePcgs ],
    0,

function( grp )
    return CanonicalPcgs( InducedPcgsWrtHomePcgs(grp) );
end );


#############################################################################
##
#M  InducedPcgsWrtFamilyPcgs( <grp> )
##
InstallMethod( InducedPcgsWrtFamilyPcgs,
    true,
    [ IsGroup and HasFamilyPcgs ],
    0,

function( grp )
    local   pa,  igs;

    pa := FamilyPcgs(grp);
    if HasPcgs(grp) and IsInducedPcgs(Pcgs(grp))  then
        if pa = ParentPcgs(Pcgs(grp))  then
            return Pcgs(grp);
        fi;
    fi;
    igs := InducedPcgsByGenerators( pa, GeneratorsOfGroup(grp) );
    if igs = pa  then
        SetIsWholeFamily( grp, true );
    fi;
    SetGroupOfPcgs (igs, grp);
    return igs;
end );

InstallMethod( InducedPcgsWrtFamilyPcgs,"whole family", true,
  [ IsPcGroup and IsWholeFamily], 0,
FamilyPcgs);


#############################################################################
##
#M  InducedPcgsWrtHomePcgs( <G> )
##
InstallMethod( InducedPcgsWrtHomePcgs,"from generators", true, [ IsGroup ], 0,
    function( G )
    local   home, ind;

    home := HomePcgs( G );
    if HasPcgs(G) and IsInducedPcgs(Pcgs(G))  then
        if IsIdenticalObj(home,ParentPcgs(Pcgs(G)))  then
            return Pcgs(G);
        fi;
    fi;
    ind := InducedPcgsByGenerators( home, GeneratorsOfGroup( G ) );
    SetGroupOfPcgs (ind, G);
    return ind;
end );

InstallMethod( InducedPcgsWrtHomePcgs,"pc group: home=family", true,
  [ IsPcGroup ], 0,
  InducedPcgsWrtFamilyPcgs);

#############################################################################
##
#M  InducedPcgs( <pcgs>,<G> )
##
InstallGlobalFunction( InducedPcgs, function(pcgs, G)
  local cache, i, igs;

  if not IsPcgs(pcgs) then
     Error("InducedPcgs: <pcgs> must be a pcgs");
  fi;
  if not IsGroup(G) then
     Error("InducedPcgs: <G> must be a group");
  fi;

  pcgs := ParentPcgs (pcgs);
  cache := ComputedInducedPcgses(G);
  i := 1;
  while i <= Length (cache) do
     if cache[i]= pcgs then
        return cache[i+1];
     fi;
     i := i + 2;
  od;

  igs := InducedPcgsOp( pcgs, G );
  SetGroupOfPcgs (igs, G);

  Append (cache, [pcgs, igs]);
  if not HasPcgs(G) then
     SetPcgs (G, igs);
  fi;

  # set home pcgs stuff
  if not HasHomePcgs(G) then
     SetHomePcgs (G, pcgs);
  fi;
  if IsIdenticalObj (HomePcgs(G), pcgs) then
     SetInducedPcgsWrtHomePcgs (G, igs);
  fi;

  return igs;
end );

#############################################################################
##
#M  InducedPcgsOp
##
InstallMethod (InducedPcgsOp, "generic method",
   IsIdenticalObj, [IsPcgs, IsGroup],
   function (pcgs, G)
      return InducedPcgsByGenerators(
          ParentPcgs(pcgs), GeneratorsOfGroup( G ) );
   end);

#############################################################################
##
#M  InducedPcgsOp
##
InstallMethod (InducedPcgsOp, "sift existing pcgs",
   IsIdenticalObj, [IsPcgs, IsGroup and HasPcgs],
   function (pcgs, G)
      local seq,    # pc sequence wrt pcgs (and its parent)
            depths, # depths of this sequence
            len,    # length of the sequence
            pos,    # index
            x,      # a group element
            d;      # depth of x

      pcgs := ParentPcgs (pcgs);
      seq := [];
      depths := [];
      len := 0;
      for x in Reversed (Pcgs (G)) do
         # sift x through seq
         d := DepthOfPcElement (pcgs, x);
         pos := PositionSorted (depths, d);

         while pos <= len and depths[pos] = d do
            x := ReducedPcElement (pcgs, x, seq[pos]);
            d := DepthOfPcElement (pcgs, x);
            pos := PositionSorted (depths, d);
         od;
         if d> Length(pcgs) then
            Error ("Panic: Pcgs (G) does not seem to be a pcgs");
         else
            seq{[pos+1..len+1]} := seq{[pos..len]};
            depths{[pos+1..len+1]} := depths{[pos..len]};
            seq[pos] := x;
            depths[pos] := d;
            len := len + 1;
         fi;
      od;
     return InducedPcgsByPcSequenceNC (pcgs, seq, depths);
   end);


#############################################################################
##
#M  ComputedInducedPcgses
##
InstallMethod (ComputedInducedPcgses, "default method", [IsGroup],
   G -> []);


#############################################################################
##
#F  SetInducedPcgs( <home>,<G>,<pcgs> )
##
InstallGlobalFunction(SetInducedPcgs,function(home,G,pcgs)
  home := ParentPcgs(home);
  if not HasHomePcgs(G) then
    SetHomePcgs(G,home);
  fi;
  if IsIdenticalObj(ParentPcgs(pcgs),home) then
     Append (ComputedInducedPcgses(G), [home, pcgs]);
     if IsIdenticalObj(HomePcgs(G),home) then
        SetInducedPcgsWrtHomePcgs(G,pcgs);
     fi;
  fi;
  SetGroupOfPcgs (pcgs, G);
end);

#############################################################################
##
#M  Pcgs( <G> )
##
InstallMethod( Pcgs, "fail if not solvable", true,
        [ IsGroup and HasIsSolvableGroup ],
        SUM_FLAGS, # for groups for which we know that they are not solvable
                   # this is the best we can do.
    function( G )
    if not IsSolvableGroup( G )  then  return fail;
                                 else  TryNextMethod();  fi;
end );

#############################################################################
##
#M  Pcgs( <pcgrp> )
##
InstallMethod( Pcgs,
    "for a group with known family pcgs",
    true,
    [ IsGroup and HasFamilyPcgs ],
    0,
    InducedPcgsWrtFamilyPcgs );


InstallMethod( Pcgs,
    "for a group with known home pcgs",
    true,
    [ IsGroup and HasHomePcgs ],
    1,
    InducedPcgsWrtHomePcgs );


InstallMethod( Pcgs, "take induced pcgs", true,
    [ IsGroup and HasInducedPcgsWrtHomePcgs ], SUM_FLAGS,
    InducedPcgsWrtHomePcgs );

#############################################################################
##
#M  Pcgs( <whole-family-grp> )
##
InstallMethod( Pcgs,
    "for a group containing the whole family and with known family pcgs",
    true,
    [ IsGroup and HasFamilyPcgs and IsWholeFamily ],
    0,
    FamilyPcgs );


#############################################################################
##
#M  GeneralizedPcgs( <G> )
##
#  This used to be an immediate method. It was replaced by an ordinary
#  method as the attribute is set when creating pc groups.
InstallMethod( GeneralizedPcgs,true,[ IsGroup and HasPcgs], 0, Pcgs );


#############################################################################
##
#M  HomePcgs( <G> )
##
##  BH: changed Pcgs to G -> ParentPcgs (Pcgs(G))
##
InstallMethod( HomePcgs, true, [ IsGroup ], 0, G -> ParentPcgs( Pcgs( G ) ) );

#############################################################################
##
#M  PcgsChiefSeries( <pcgs> )
##
InstallMethod( PcgsChiefSeries,"compute chief series and pcgs",true,
  [IsGroup],0,
function(G)
local p,cs,csi,l,i,pcs,ins,j,u;
  p:=Pcgs(G);
  if p=fail then
    Error("<G> must be solvable");
  fi;
  if not HasParent(G) then
    SetParentAttr(G,Parent(G));
  fi;
  cs:=ChiefSeries(G);
  csi:=List(cs,i->InducedPcgs(p,i));
  l:=Length(cs);
  pcs:=[];
  ins:=[0];
  for i in [l-1,l-2..1] do
    # extend the pc sequence. We have a vector space factor, so we can
    # simply add *some* further generators.
    u:=AsSubgroup(Parent(G),cs[i+1]);
    for j in Reversed(Filtered(csi[i],k->not k in cs[i+1])) do
      if not j in u then
        Add(pcs,j);
        #NC is safe
        u:=ClosureSubgroupNC(u,j);
      fi;
    od;
    if Length(pcs)<>Length(csi[i]) then
      Error("pcgs length!");
    fi;
    Add(ins,Length(pcs));
  od;
  l:=Length(pcs)+1;
  pcs:=PcgsByPcSequenceNC(FamilyObj(OneOfPcgs(p)),Reversed(pcs));
  SetGroupOfPcgs (pcs, G);
  # store the indices
  SetIndicesChiefNormalSteps(pcs,Reversed(List(ins,i->l-i)));
  return pcs;
end);


#############################################################################
##
#M  GroupWithGenerators( <gens> ) . . . . . . . . . . . . group by generators
#M  GroupWithGenerators( <gens>, <id> )
##
##  These methods override the generic code. They are installed for
##  `IsMultiplicativeElementWithInverseByPolycyclicCollectorCollection' and
##  automatically set family pcgs and home pcgs.
##
InstallMethod( GroupWithGenerators,
    "method for pc elements collection",
    true, [ IsCollection and
    IsMultiplicativeElementWithInverseByPolycyclicCollectorCollection and
    IsFinite] ,
    # override methods for `IsList' or `IsEmpty'.
    10,
function( gens )
local G,fam,id,pcgs;

  fam:=FamilyObj(gens);
  pcgs:=DefiningPcgs(ElementsFamily(fam));
  id:=One(gens[1]);

  # pc groups are always finite and gens is finite.
  G:=MakeGroupyObj(fam, IsSolvableGroup and IsFinite,
        AsList(gens),id,
        FamilyPcgs,pcgs,HomePcgs,pcgs,GeneralizedPcgs,pcgs);

  return G;
end );

InstallOtherMethod( GroupWithGenerators,
    "method for pc collection and identity element",
    IsCollsElms, [ IsCollection and
    IsMultiplicativeElementWithInverseByPolycyclicCollectorCollection
    and IsFinite,
    IsMultiplicativeElementWithInverseByPolycyclicCollector] ,
    0,
function( gens, id )
local G,fam,pcgs;

  fam:=FamilyObj(gens);
  pcgs:=DefiningPcgs(ElementsFamily(fam));

  # pc groups are always finite and gens is finite.
  G:=MakeGroupyObj(fam, IsSolvableGroup and IsFinite,
        AsList(gens),id,
        FamilyPcgs,pcgs,HomePcgs,pcgs,GeneralizedPcgs,pcgs);

  return G;
end );

InstallOtherMethod( GroupWithGenerators,
    "method for empty pc collection and identity element",
    true, [ IsList and IsEmpty,
    IsMultiplicativeElementWithInverseByPolycyclicCollector] ,
    # override methods for `IsList' or `IsEmpty'.
    10,
function( empty, id )
local G,fam,pcgs;

  fam:= CollectionsFamily( FamilyObj( id ) );
  pcgs:=DefiningPcgs(ElementsFamily(fam));

  # pc groups are always finite and gens is finite.
  G:=MakeGroupyObj(fam, IsSolvableGroup and IsFinite,
        empty,id,
        FamilyPcgs,pcgs,HomePcgs,pcgs,GeneralizedPcgs,pcgs);

  return G;
end );

#############################################################################
##
#M  <elm> in <pcgrp>
##
InstallMethod( \in,
    "for pc group",
    IsElmsColls,
    [ IsMultiplicativeElementWithInverse,
      IsGroup and HasFamilyPcgs and CanEasilyComputePcgs
    ],
    2, # rank this method higher than the following one

function( elm, grp )
    return SiftedPcElement(InducedPcgsWrtFamilyPcgs(grp),elm) = One(grp);
end );


#############################################################################
##
#M  <elm> in <pcgrp>
##
InstallMethod( \in,
    "for pcgs computable groups with home pcgs",
    IsElmsColls,
    [ IsMultiplicativeElementWithInverse,
      IsGroup and HasInducedPcgsWrtHomePcgs and CanEasilyComputePcgs
    ],
    1, # rank this method higher than the following one

function( elm, grp )
    local pcgs, ppcgs;

    pcgs := InducedPcgsWrtHomePcgs (grp);
    ppcgs := ParentPcgs (pcgs);
    if Length (pcgs) = Length (ppcgs) or not CanEasilyTestMembership (GroupOfPcgs(ppcgs)) then
        TryNextMethod();
    fi;
    if elm in GroupOfPcgs (ppcgs) then
        return SiftedPcElement(InducedPcgsWrtHomePcgs(grp),elm) = One(grp);
    else
        return false;
    fi;
end );


#############################################################################
##
#M  <elm> in <pcgrp>
##
InstallMethod( \in,
    "for pcgs computable groups with induced pcgs",
    IsElmsColls,
    [ IsMultiplicativeElementWithInverse,
      IsGroup and HasComputedInducedPcgses and CanEasilyComputePcgs
    ],
    0,

function( elm, grp )
    local pcgs, ppcgs;

    for pcgs in ComputedInducedPcgses(grp) do
        ppcgs := ParentPcgs (pcgs);
        if Length (pcgs) < Length (ppcgs) and CanEasilyTestMembership (GroupOfPcgs(ppcgs)) then
            if elm in GroupOfPcgs (ppcgs) then
                return SiftedPcElement(pcgs, elm) = One(grp);
            else
                return false;
            fi;
        fi;
    od;
    TryNextMethod();
end );


#############################################################################
##
#M  <pcgrp1> = <pcgrp2>
##
InstallMethod( \=,
    "pcgs computable groups using home pcgs",
    IsIdenticalObj,
    [ IsGroup and HasHomePcgs and HasCanonicalPcgsWrtHomePcgs,
      IsGroup and HasHomePcgs and HasCanonicalPcgsWrtHomePcgs ],
    0,

function( left, right )
    if HomePcgs(left) <> HomePcgs(right)  then
        TryNextMethod();
    fi;
    return CanonicalPcgsWrtHomePcgs(left) = CanonicalPcgsWrtHomePcgs(right);
end );


#############################################################################
##
#M  <pcgrp1> = <pcgrp2>
##
InstallMethod( \=,
    "pcgs computable groups using family pcgs",
    IsIdenticalObj,
    [ IsGroup and HasFamilyPcgs and HasCanonicalPcgsWrtFamilyPcgs,
      IsGroup and HasFamilyPcgs and HasCanonicalPcgsWrtFamilyPcgs ],
    0,

function( left, right )
    if FamilyPcgs(left) <> FamilyPcgs(right)  then
        TryNextMethod();
    fi;
    return CanonicalPcgsWrtFamilyPcgs(left)
         = CanonicalPcgsWrtFamilyPcgs(right);
end );


#############################################################################
##
#M  IsSubset( <pcgrp>, <pcsub> )
##
##  This method is better than calling `\in' for all generators,
##  since one has to fetch the pcgs only once.
##
InstallMethod( IsSubset,
    "pcgs computable groups",
    IsIdenticalObj,
    [ IsGroup and HasFamilyPcgs and CanEasilyComputePcgs,
      IsGroup ],
    0,

function( grp, sub )
    local   pcgs,  id,  g;

    pcgs := InducedPcgsWrtFamilyPcgs(grp);
    id   := One(grp);
    for g  in GeneratorsOfGroup(sub)  do
        if SiftedPcElement( pcgs, g ) <> id  then
            return false;
        fi;
    od;
    return true;

end );


#############################################################################
##
#M  SubgroupByPcgs( <G>, <pcgs> )
##
InstallMethod( SubgroupByPcgs, "subgroup with pcgs",
               true, [IsGroup, IsPcgs], 0,
function( G, pcgs )
    local U;
    U := SubgroupNC( G, AsList( pcgs ) );
    SetSize(U,Product(RelativeOrders(pcgs)));
    SetPcgs( U, pcgs );
    SetGroupOfPcgs (pcgs, U);
    # home pcgs will be inherited
    if HasHomePcgs(U) and IsIdenticalObj(HomePcgs(U),ParentPcgs(pcgs)) then
      SetInducedPcgsWrtHomePcgs(U,pcgs);
    fi;
    if HasIsInducedPcgsWrtSpecialPcgs( pcgs ) and
       IsInducedPcgsWrtSpecialPcgs( pcgs ) and
       HasSpecialPcgs( G ) then
        SetInducedPcgsWrtSpecialPcgs( U, pcgs );
    fi;
    return U;
end);

#############################################################################
##
#F  VectorSpaceByPcgsOfElementaryAbelianGroup( <pcgs>, <f> )
##
InstallGlobalFunction( VectorSpaceByPcgsOfElementaryAbelianGroup,
    function( arg )
    local   pcgs,  dim,  field;

    pcgs := arg[1];
    dim  := Length( pcgs );
    if IsBound( arg[2] ) then
        field := arg[2];
    elif dim > 0 then
        field := GF( RelativeOrderOfPcElement( pcgs, pcgs[1] ) );
    else
        Error("trivial vectorspace, need field \n");
    fi;
    return VectorSpace( field, Immutable( IdentityMat( dim, field ) ) );
end );


#############################################################################
##
#F  LinearActionLayer( <G>, <gens>, <pcgs>  )
##
InstallGlobalFunction( LinearActionLayer, function( arg )
local gens, pcgs, field, m,mat,i,j;

    # catch arguments
    if Length( arg ) = 2 then
        if IsGroup( arg[1] ) then
            gens := GeneratorsOfGroup( arg[1] );
        elif IsPcgs( arg[1] ) then
            gens := AsList( arg[1] );
        else
            gens := arg[1];
        fi;
        pcgs := arg[2];
    elif Length( arg ) = 3 then
        gens := arg[2];
        pcgs := arg[3];
    fi;

    # in case the layer is trivial
    if Length( pcgs ) = 0 then
        Error("pcgs is trivial - no field defined ");
    fi;

    # construct matrix rep
    field := GF( RelativeOrderOfPcElement( pcgs, pcgs[1] ) );

# the following code takes too much time, as it has to create obvious pc
# elements again from vectors with 1 nonzero entry.
#    V := Immutable( IdentityMat(Length(pcgs),field) );
#    linear := function( x, g )
#              return ExponentsOfPcElement( pcgs,
#                     PcElementByExponentsNC( pcgs, x )^g ) * One(field);
#              end;
#    return LinearAction( gens, V, linear );

#this is done much quicker by the following direct code:
  m:=[];
  for i in gens do
    mat:=[];
    for j in pcgs do
      Add(mat,ExponentsConjugateLayer(pcgs,j,i)*One(field));
    od;
    mat:=ImmutableMatrix(field,mat,true);
    Add(m,mat);
  od;
  return m;

end );

#############################################################################
##
#F  AffineActionLayer( <G>, <pcgs>, <transl> )
##
InstallGlobalFunction( AffineActionLayer, function( arg )
    local gens, pcgs, transl, V, field, linear;

    # catch arguments
    if Length( arg ) = 3 then
        if IsPcgs( arg[1] ) then
            gens := AsList( arg[1] );
        elif IsGroup( arg[1] ) then
            gens := GeneratorsOfGroup( arg[1] );
        else
            gens := arg[1];
        fi;
        pcgs := arg[2];
        transl := arg[3];
    elif Length( arg ) = 4 then
        gens := arg[2];
        pcgs := arg[3];
        transl := arg[4];
    fi;

    # in the trivial case we cannot do anything
    if Length( pcgs ) = 0 then
        Error("layer is trivial . . . field is not defined \n");
    fi;

    # construct matrix rep
    field := GF( RelativeOrderOfPcElement( pcgs, pcgs[1] ) );
    V:= Immutable( IdentityMat(Length(pcgs),field) );
    linear := function( x, g )
              return ExponentsConjugateLayer(pcgs,
                     PcElementByExponentsNC( pcgs, x ),g ) * One(field);
              end;
    return AffineAction( gens, V, linear, transl );
end );

#############################################################################
##
#M  AffineAction( <gens>, <V>, <linear>, <transl> )
##
InstallMethod( AffineAction,"generators",
    true,
    [ IsList,
      IsMatrix,
      IsFunction,
      IsFunction ],
    0,

function( Ggens, V, linear, transl )
local mats, gens, zero,one, g, mat, i, vec;

    mats := [];
    gens:=V;
    zero:=Zero(V[1][1]);
    one:=One(zero);
    for g  in Ggens do
        mat := List( gens, x -> linear( x, g ) );
        vec := ShallowCopy( transl(g) );
        for i  in [ 1 .. Length(mat) ]  do
            mat[i] := ShallowCopy( mat[i] );
            Add( mat[i], zero );
        od;
        Add( vec, one );
        Add( mat, vec );
        mat:=ImmutableMatrix(Characteristic(one),mat,true);
        Add( mats, mat );
    od;
    return mats;

end );

InstallOtherMethod( AffineAction,"group",
    true,
    [ IsGroup,
      IsMatrix,
      IsFunction,
      IsFunction ],
    0,
function( G, V, linear, transl )
    return AffineAction( GeneratorsOfGroup(G), V, linear, transl );
end );

InstallOtherMethod( AffineAction,"group2",
    true,
    [ IsGroup,
      IsList,
      IsMatrix,
      IsFunction,
      IsFunction ],
    0,
function( G, gens, V, linear, transl )
    return AffineAction( gens, V, linear, transl );
end );

InstallOtherMethod( AffineAction,"pcgs",
    true,
    [ IsPcgs,
      IsMatrix,
      IsFunction,
      IsFunction ],
    0,
function( pcgsG, V, linear, transl )
    return AffineAction( AsList( pcgsG ), V, linear, transl );
end );

#############################################################################
##
#M  ClosureGroup( <U>, <H> )
##
##  use home pcgs
##
InstallMethod( ClosureGroup,
    "groups with home pcgs",
    IsIdenticalObj,
    [ IsGroup and HasHomePcgs,
      IsGroup and HasHomePcgs ],
    0,

function( U, H )
    local   home,  pcgsU,  pcgsH,  new,  N;

    home := HomePcgs( U );
    if home <> HomePcgs( H ) then
        TryNextMethod();
    fi;
    pcgsU := InducedPcgs(home,U);
    pcgsH := InducedPcgs(home,H);
    if Length( pcgsU ) < Length( pcgsH )  then
        new := InducedPcgsByPcSequenceAndGenerators( home, pcgsH,
               GeneratorsOfGroup( U ) );
    else
        new := InducedPcgsByPcSequenceAndGenerators( home, pcgsU,
               GeneratorsOfGroup( H ) );
    fi;
    N := SubgroupByPcgs( GroupOfPcgs( home ), new );
#    SetHomePcgs( N, home );
#    SetInducedPcgsWrtHomePcgs( N, new );
    return N;

end );


#############################################################################
##
#M  ClosureGroup( <U>, <g> )
##
##  use home pcgs
##
InstallMethod( ClosureGroup,
    "groups with home pcgs",
    IsCollsElms,
    [ IsGroup and HasHomePcgs,
      IsMultiplicativeElementWithInverse ],
    0,

function( U, g )
    local   home,  pcgsU,  new,  N;

    home  := HomePcgs( U );
    pcgsU := InducedPcgsWrtHomePcgs( U );
    if not g in GroupOfPcgs( home ) then
        TryNextMethod();
    fi;
    if g in U  then
        return U;
    else
        new := InducedPcgsByPcSequenceAndGenerators( home, pcgsU, [g] );
        N   := SubgroupByPcgs( GroupOfPcgs(home), new );
#        SetHomePcgs( N, home );
#        SetInducedPcgsWrtHomePcgs( N, new );
        return N;
    fi;

end );


#############################################################################
##
#M  CommutatorSubgroup( <U>, <V> )
##
InstallMethod( CommutatorSubgroup,
    "groups with home pcgs",
    true,
    [ IsGroup and HasHomePcgs,
      IsGroup and HasHomePcgs ],
    0,

function( U, V )
    local   pcgsU,  pcgsV,  home,  C,  u,  v;

    # check
    home := HomePcgs(U);
    if home <> HomePcgs( V ) then
        TryNextMethod();
    fi;
    pcgsU := InducedPcgsWrtHomePcgs(U);
    pcgsV := InducedPcgsWrtHomePcgs(V);

    # catch trivial cases
    if Length(pcgsU) = 0 or Length(pcgsV) = 0  then
        return TrivialSubgroup( GroupOfPcgs(home) );
    fi;
    if U = V  then
        return DerivedSubgroup(U);
    fi;

    # compute commutators
    C := [];
    for u  in pcgsU  do
        for v  in pcgsV  do
            AddSet( C, Comm( v, u ) );
        od;
    od;
    C := Subgroup( GroupOfPcgs( home ), C );
    C := NormalClosure( ClosureGroup(U,V), C );

    # that's it
    return C;

end );


#############################################################################
##
#M  ConjugateGroup( <U>, <g> )
##
InstallMethod( ConjugateGroup,
    "groups with home pcgs",
    IsCollsElms,
    [ IsGroup and HasHomePcgs,
      IsMultiplicativeElementWithInverse ],
    0,

function( U, g )
    local   home,  pcgs,  id,  pag,  h,  d,  N;

    # <g> must lie in the home
    home := HomePcgs(U);
    if not g in GroupOfPcgs(home)  then
        TryNextMethod();
    fi;

    # shift <g> through <U>
    pcgs := InducedPcgsWrtHomePcgs( U );
    id   := Identity( U );
    g    := SiftedPcElement( pcgs, g );

    # catch trivial case
    if IsEmpty(pcgs) or g = id then
        return U;
    fi;

    # conjugate generators
    pag := [];
    for h  in Reversed( pcgs ) do
        h := h ^ g;
        d := DepthOfPcElement( home, h );
        while h <> id and IsBound( pag[d] )  do
            h := ReducedPcElement( home, h, pag[d] );
            d := DepthOfPcElement( home, h );
        od;
        if h <> id  then
            pag[d] := h;
        fi;
    od;

    # <pag> is an induced system
    pag := Compacted( pag );
    N   := Subgroup( GroupOfPcgs(home), pag );
    SetHomePcgs( N, home );
    pag := InducedPcgsByPcSequenceNC( home, pag );
    SetGroupOfPcgs (pag, N);
    SetInducedPcgsWrtHomePcgs( N, pag );

    # maintain useful information
    UseIsomorphismRelation( U, N );

    return N;

end );


#############################################################################
##
#M  ConjugateSubgroups( <G>, <U> )
##
InstallMethod( ConjugateSubgroups,
    "groups with home pcgs",
    IsIdenticalObj,
    [ IsGroup and HasHomePcgs,
      IsGroup and HasHomePcgs ],
    0,

function( G, U )
    local pcgs, home, f, orb, i, L, res, H,ip;

    # check the home pcgs are compatible
    home := HomePcgs(U);
    if home <> HomePcgs(G) then
        TryNextMethod();
    fi;
    H := GroupOfPcgs( home );

    # get a canonical pcgs for <U>
    pcgs := CanonicalPcgsWrtHomePcgs(U);

    # <G> acts on this <pcgs> via conjugation
    f := function( c, g )
        #was: CanonicalPcgs( HomomorphicInducedPcgs( home, c, g ) );
        return CorrespondingGeneratorsByModuloPcgs(home,List(c,i->i^g));
    end;

    # compute the orbit of <G> on <pcgs>
    orb := Orbit( G, pcgs, f );
    res := List( orb, ReturnFalse );
    for i in [1..Length(orb)] do
        L := Subgroup( H, orb[i] );
        SetHomePcgs( L, home );
        if not(IsPcgs(orb[i])) then
          ip:=InducedPcgsByPcSequenceNC(home,orb[i]);
        else
          ip:=orb[i];
        fi;
        SetInducedPcgsWrtHomePcgs( L, ip );
        SetGroupOfPcgs (ip, L);
        res[i] := L;
    od;
    return res;

end );


#############################################################################
##
#M  Core( <U>, <V> )
##
InstallMethod( CoreOp,
    "pcgs computable groups",
    true,
    [ IsGroup and CanEasilyComputePcgs,
      IsGroup ],
    0,

function( V, U )
    local pcgsV, C, v, N;

    # catch trivial cases
    pcgsV := Pcgs(V);
    if IsSubset( U, V ) or IsTrivial(U) or IsTrivial(V)  then
        return U;
    fi;

    # start with <U>.
    C := U;

    # now  compute  intersection with all conjugate subgroups, conjugate with
    # all generators of V and its powers

    for v  in Reversed(pcgsV)  do
        repeat
            N := ConjugateGroup( C, v );
            if C <> N  then
                C := Intersection( C, N );
            fi;
        until C = N;
        if IsTrivial(C)  then
            return C;
        fi;
    od;
    return C;

end );


#############################################################################
##
#M  EulerianFunction( <G>, <n> )
##
InstallMethod( EulerianFunction,
    "pcgs computable groups using special pcgs",
    true,
    [ IsGroup and CanEasilyComputePcgs,
      IsPosInt ],
    0,

function( G, n )
    local   spec,  first,  weights,  m,  i,  phi,  start,
            next,  p,  d,  j,  pcgsS,  pcgsN,  pcgsL,  mats,
            modu,  max,  series,  comps,  sub,  new,  index,  order;

    spec := SpecialPcgs( G );
    if Length( spec ) = 0 then return 1; fi;
    first := LGFirst( spec );
    weights := LGWeights( spec );
    m := Length( spec );

    # the first head
    i := 1;
    phi := 1;
    while i <= Length(first)-1 and
          weights[first[i]][1] = 1 and weights[first[i]][2] = 1 do
        start := first[i];
        next  := first[i+1];
        p     := weights[start][3];
        d     := next - start;
        for j in [0..d-1] do
            phi := phi * (p^n - p^j);
        od;
        if phi = 0 then return 0; fi;
        i := i + 1;
    od;

    # the rest
    while i <= Length( first ) - 1 do
        start := first[i];
        next  := first[i+1];
        p := weights[start][3];
        d := next - start;
        if weights[start][2] = 1 then
            pcgsS := InducedPcgsByPcSequenceNC( spec, spec{[start..m]} );
            pcgsN := InducedPcgsByPcSequenceNC( spec, spec{[next..m]} );
            pcgsL := pcgsS mod pcgsN;
            mats  := LinearActionLayer( spec, pcgsL );
            modu  := GModuleByMats( mats,  GF(p) );
            max   := MTX.BasesMaximalSubmodules( modu );

            # compute series
            series := [ Immutable( IdentityMat(d, GF(p)) ) ];
            comps  := [];
            sub    := series[1];
            while Length( max ) > 0 do
                sub := SumIntersectionMat( sub, max[1] )[2];
                if Length( sub ) = 0 then
                    new := max;
                else
                    new := Filtered( max, x ->
                                  RankMat( Concatenation( x, sub ) ) < d );
                fi;
                Add( comps, Sum( List( new, x -> p^(d - Length(x)) ) ) );
                Add( series, sub );
                max := Difference( max, new );
            od;

            # run down series
            for j in [1..Length( series )-1] do
                index := Length( series[j] ) - Length( series[j+1] );
                order := p^index;
                phi   := phi * ( order^n - comps[j] );
                if phi = 0 then return phi; fi;
            od;

            # only the radical is missing now
            index := Length( Last(series) );
            order := p^index;
            phi := phi * (order^n);
            if phi = 0 then return 0; fi;
        else
            order := p^d;
            phi := phi * ( order^n );
            if phi = 0 then return 0; fi;
        fi;
        i := i + 1;
    od;
    return phi;

end );

RedispatchOnCondition(EulerianFunction,true,[IsGroup,IsPosInt],
  [IsSolvableGroup,IsPosInt],
  1 # make the priority higher than the default method computing
    # the table of marks
  );

#############################################################################
##
#M  LinearAction( <gens>, <basisvectors>, <linear>  )
##
InstallMethod( LinearAction,
    true,
    [ IsList,
      IsMatrix,
      IsFunction ],
    0,

function( gens, base, linear )
local  i,mats;

    # catch trivial cases
    if Length( gens ) = 0 then
        return [];
    fi;

    # compute matrices
    if Length(base)>0 then
      mats := List( gens, x -> ImmutableMatrix(Characteristic(base),
                                List( base, y -> linear( y, x ) ),true ));
    else
      mats:=List(gens,i->[]);
    fi;
    MakeImmutable(mats);
    return mats;

end );

InstallOtherMethod( LinearAction,
    true,
    [ IsGroup,
      IsMatrix,
      IsFunction ],
    0,

function( G, base, linear )
    return LinearAction( GeneratorsOfGroup( G ), base, linear );
end );

InstallOtherMethod( LinearAction,
    true,
    [ IsPcgs,
      IsMatrix,
      IsFunction ],
    0,

function( pcgs, base, linear )
    return LinearAction( pcgs, base, linear );
end );

InstallOtherMethod( LinearAction,
    true,
    [ IsGroup,
      IsList,
      IsMatrix,
      IsFunction ],
    0,

function( G, gens, base, linear )
    return LinearAction( gens, base, linear );
end );


#############################################################################
##
#M  NormalClosure( <G>, <U> )
##
InstallMethod( NormalClosureOp,
    "groups with home pcgs",
    true,
    [ IsGroup and HasHomePcgs,
      IsGroup and HasHomePcgs ],
    0,

function( G, U )
    local   pcgs,  home,  gens,  subg,  id,  K,  M,  g,  u,  tmp;

    # catch trivial case
    pcgs := InducedPcgsWrtHomePcgs(U);
    if Length(pcgs) = 0 then
        return U;
    fi;
    home := HomePcgs(U);
    if home <> HomePcgs(G) then
        TryNextMethod();
    fi;

    # get operating elements
    gens := GeneratorsOfGroup( G );
    gens := Set( gens, x -> SiftedPcElement( pcgs, x ) );

    subg := GeneratorsOfGroup( U );
    id   := Identity( G );
    K    := ShallowCopy( pcgs );
    repeat
        M := [];
        for g  in gens  do
            for u  in subg  do
                tmp := Comm( g, u );
                if tmp <> id  then
                    AddSet( M, tmp );
                fi;
            od;
        od;
        tmp  := InducedPcgsByPcSequenceAndGenerators( home, K, M );
        tmp  := CanonicalPcgs( tmp );
        subg := Filtered( tmp, x -> not x in K );
        K    := tmp;
    until 0 = Length(subg);

    K := SubgroupByPcgs( GroupOfPcgs(home), tmp );
#    SetHomePcgs( K, home );
#    SetInducedPcgsWrtHomePcgs( K, tmp );
    return K;

end );


#############################################################################
##
#M  Random( <pcgrp> )
##
InstallMethodWithRandomSource( Random,
    "for a random source and a pcgs computable groups",
    [ IsRandomSource, IsGroup and CanEasilyComputePcgs and IsFinite ],
function(rs, grp)
    local   p;

    p := Pcgs(grp);
    if Length( p ) = 0 then
        return One( grp );
    else
        return Product( p, x -> x^Random(rs, 1, RelativeOrderOfPcElement(p,x)) );
    fi;
end );

BindGlobal( "CentralizerSolvableGroup", function(H,U,elm)
local  G,  home,  # the supergroup (of <H> and <U>), the home pcgs
       Hp,    # a pcgs for <H>
       inequal, # G<>H flag
       eas,     # elementary abelian series in <G> through <U>
       step,    # counter looping over <eas>
       L,       # members of <eas>
       Kp,Lp, # induced and modulo pcgs's
       KcapH,LcapH, # pcgs's of intersections with <H>
       N,   cent,   # elementary abelian factor, for affine action
       cls,     # classes in range/source of homomorphism
       opr,     # (elm^opr)=cls.representative
       nexpo,indstep,Ldep,allcent;

  # Treat the case of a trivial group.
  if IsTrivial( U )  then
    return H;
  fi;

  if IsSubgroup(H,U) then
    G:=H;
    inequal:=false;
  else
    G:=ClosureGroup( H, U );
    inequal:=true;
  fi;

  home:=HomePcgs(G);
  if not HasIndicesEANormalSteps(home) then
    home:=PcgsElementaryAbelianSeries(G);
  fi;
  # Calculate a (central)  elementary abelian series  with all pcgs induced
  # w.r.t. <home>.

  if IsPGroup( G )  then
    home:=PcgsCentralSeries(G);
    eas:=CentralNormalSeriesByPcgs(home);
    cent:=ReturnTrue;
  else
    home:=PcgsElementaryAbelianSeries(G);
    eas:=EANormalSeriesByPcgs(home);
    cent:=PcClassFactorCentralityTest;

  fi;
  indstep:=IndicesEANormalSteps(home);

  Hp:=InducedPcgs(home,H);

  # Initialize the algorithm for the trivial group.
  step:=1;
  while IsSubset( eas[ step + 1 ], U )  do
    step:=step + 1;
  od;
  L :=eas[ step ];
  Ldep:=indstep[step];
  Lp:=InducedPcgs(home,L);
  if inequal then
    LcapH:=NormalIntersectionPcgs( home, Hp, Lp );
  fi;

  cls:=[rec( representative:=elm,centralizer:=H,
             centralizerpcgs:=InducedPcgs(home,H) )];
  opr:=One( U );

  # Now go back through the factors by all groups in the elementary abelian
  # series.
  for step  in [ step + 1 .. Length( eas ) ]  do

    # We apply the homomorphism principle to the homomorphism G/L -> G/K.
    # The  actual   computations  are all  done   in <G>,   factors are
    # represented by modulo pcgs.
    Kp:=Lp;
    L :=eas[ step ];
    Ldep:=indstep[step];
    Lp:=InducedPcgs(home,L );
    N :=Kp mod Lp;  # modulo pcgs representing the kernel
    allcent:=cent(home,home,N,Ldep);
    if allcent=false then
      nexpo:=LinearActionLayer(home{[1..indstep[step-1]-1]},N);
    fi;

#    #T What is this? Obviously it is needed somewhere, but it is
#    #T certainly not good programming style. AH
#    SetFilterObj( N, IsPcgs );

    if inequal then
      KcapH  :=LcapH;
      LcapH  :=NormalIntersectionPcgs( home, Hp, Lp );
      N!.capH:=KcapH mod LcapH;
      #T See above
#      SetFilterObj( N!.capH, IsPcgs );
    else
      N!.capH:=N;
    fi;

    cls[ 1 ].candidates:=cls[ 1 ].representative;
    if allcent
       or cent(home, cls[ 1 ].centralizerpcgs, N, Ldep )  then
      cls:=CentralStepClEANS( home,H, U, N, cls[ 1 ],false );
    else
      cls:=GeneralStepClEANS( home,H, U, N, nexpo,cls[ 1 ],false );
    fi;
    opr:=opr * cls[ 1 ].operator;
    if IsModuloPcgs(cls[1].cengen) then
      cls[1].centralizerpcgs:=cls[1].cengen;
    else
      cls[1].centralizerpcgs:=InducedPcgsByPcSequenceNC(home,cls[1].cengen);
    fi;

  od;

  if not IsBound(cls[1].centralizer) then
    cls[1].centralizer:=SubgroupByPcgs(G,cls[1].centralizerpcgs);
  fi;
  cls:=ConjugateSubgroup( cls[ 1 ].centralizer, opr ^ -1 );
  return cls;

end );


#############################################################################
##
#M  Centralizer( <G>, <g> ) . . . . . . . . . . . . . .  using affine methods
##
InstallMethod( CentralizerOp,
    "pcgs computable group and element",
    IsCollsElms,
    [ IsGroup and CanEasilyComputePcgs and IsFinite,
      IsMultiplicativeElementWithInverse ],
    0,  # in solvable permutation groups, backtrack seems preferable

function( G, g )
    return CentralizerSolvableGroup( G, GroupByGenerators( [ g ] ), g );
end );

InstallMethod( CentralizerOp,
    "pcgs computable groups",
    IsIdenticalObj,
    [ IsGroup and CanEasilyComputePcgs and IsFinite,
      IsGroup and CanEasilyComputePcgs and IsFinite ],
    0,  # in solvable permutation groups, backtrack seems preferable

function( G, H )
local   h,P;

  P:=Parent(G);
  for h  in MinimalGeneratingSet( H )  do
      G := CentralizerSolvableGroup( G,H, h );
  od;
  G:=AsSubgroup(P,G);
  Assert(2,ForAll(GeneratorsOfGroup(G),i->ForAll(GeneratorsOfGroup(H),
                                                j->Comm(i,j)=One(G))));
  return G;
end );

#############################################################################
##
#M  RepresentativeAction( <G>, <d>, <e>, OnPoints )   using affine methods
##
InstallOtherMethod( RepresentativeActionOp,
    "element conjugacy in pcgs computable groups", IsCollsElmsElmsX,
    [ IsGroup and CanEasilyComputePcgs and IsFinite,
      IsMultiplicativeElementWithInverse,
      IsMultiplicativeElementWithInverse,
      IsFunction ],
    0,

function( G, d, e, opr )
    if opr <> OnPoints or not (IsPcGroup(G) or (d in G and e in G)) or
       not (d in G and e in G) then
        TryNextMethod();
    fi;
    return ClassesSolvableGroup( G, 4,rec(candidates:= [ d, e ] ));
end );

#############################################################################
##
#M  CentralizerModulo(<H>,<N>,<elm>)   full preimage of C_(H/N)(elm.N)
##
InstallMethod(CentralizerModulo,"pcgs computable groups, for elm",
  IsCollsCollsElms,[IsGroup and CanEasilyComputePcgs, IsGroup and
  CanEasilyComputePcgs, IsMultiplicativeElementWithInverse],0,
function(H,NT,elm)
local G,           # common parent
      home,Hp,     # the home pcgs, induced pcgs
      eas, step,   # elementary abelian series in <G> through <U>
      ea2,         # used for factor series
      L,           # members of <eas>
      Kp,Lp,       # induced and modulo pcgs's
      KcapH,LcapH, # pcgs's of intersections with <H>
      N,   cent,   # elementary abelian factor, for affine action
      tra,         # transversal for candidates
      nexpo,indstep,Ldep,allcent,
      cl,  i;  # loop variables

    # Treat trivial cases.
    if Index(H,NT)=1 or (HasAbelianFactorGroup(H,NT) and elm in H)
     or elm in NT then
      return H;
    fi;

    if elm in H then
      G:=H;
    else
      G:=ClosureGroup(H,elm);
      # is the subgroup still normal
      if not IsNormal(G,NT) then
        Error("subgroup not normal!");
      fi;
    fi;

    home := HomePcgs( G );
    if not HasIndicesEANormalSteps(home) then
      home:=PcgsElementaryAbelianSeries(G);
    fi;

    # Calculate a (central) elementary abelian series.

    eas:=fail;
    if IsPGroup( G ) then
        home:=PcgsPCentralSeriesPGroup(G);
        eas:=PCentralNormalSeriesByPcgsPGroup(home);
        if NT in eas then
          cent := ReturnTrue;
        else
          eas:=fail; # useless
        fi;
    fi;

    if eas=fail then
        home:=PcgsElementaryAbelianSeries([G,NT]);
        eas:=EANormalSeriesByPcgs(home);
        cent:=PcClassFactorCentralityTest;
    fi;
    indstep:=IndicesEANormalSteps(home);

    # series to NT
    ea2:=List(eas,i->ClosureGroup(NT,i));
    eas:=[];
    for i in ea2 do
      if not i in eas then
        Add(eas,i);
      fi;
    od;
    for i in eas do
      if not HasHomePcgs(i) then
        SetHomePcgs(i,ParentPcgs(home));
      fi;
    od;

    Hp:=InducedPcgs(home,H);

    # Initialize the algorithm for the trivial group.
    step := 1;
    while IsSubset( eas[ step + 1 ], H )  do
        step := step + 1;
    od;
    L  := eas[ step ];
    Lp := InducedPcgs(home, L );
    if not IsIdenticalObj( G, H )  then
        LcapH := NormalIntersectionPcgs( home, Hp, Lp );
    fi;

    cl := rec( representative := elm,
                  centralizer := H,
                  centralizerpcgs := InducedPcgs(home,H ));
    tra := One( H );

#    cls := List( candidates, c -> cl );
#    tra := List( candidates, c -> One( H ) );
    tra:=One(H);

    # Now go back through the factors by all groups in the elementary abelian
    # series.
    for step  in [ step + 1 .. Length( eas ) ]  do
        Kp := Lp;
        L  := eas[ step ];
        Ldep:=indstep[step];
        Lp := InducedPcgs(home, L );
        N  := Kp mod Lp;
        #SetFilterObj( N, IsPcgs );
        allcent:=cent(home,home,N,Ldep);
        if allcent=false then
          nexpo:=LinearActionLayer(home{[1..indstep[step-1]-1]},N);
        fi;
        if not IsIdenticalObj( G, H )  then
          KcapH   := LcapH;
          LcapH   := NormalIntersectionPcgs( home, Hp, Lp );
          N!.capH := KcapH mod LcapH;
        else
          N!.capH := N;
        fi;

        cl.candidates := cl.representative;
        if allcent
           or cent(home,cl.centralizerpcgs, N, Ldep)  then
            cl := CentralStepClEANS( home,G, H, N, cl,true )[1];
        else
            cl := GeneralStepClEANS( home,G, H, N,nexpo, cl,true )[1];
        fi;
        tra := tra * cl.operator;
        if IsModuloPcgs(cl.cengen) then
          cl.centralizerpcgs:=cl.cengen;
        else
          cl.centralizerpcgs:=InducedPcgsByPcSequenceNC(home,cl.cengen);
        fi;

    od;

    if not IsBound(cl.centralizer) then
      cl.centralizer:=SubgroupByPcgs(G,cl.centralizerpcgs);
    fi;
    cl:=ConjugateSubgroup( cl.centralizer, tra ^ -1 );
    Assert(2,ForAll(GeneratorsOfGroup(cl),i->Comm(elm,i) in NT));
    Assert(2,IsSubset(G,cl));
    return cl;

end);

InstallMethod(CentralizerModulo,"group centralizer via generators",
  IsFamFamFam,[IsGroup and CanEasilyComputePcgs, IsGroup and
  CanEasilyComputePcgs, IsGroup],0,
function(G,NT,U)
local i,P;
  P:=Parent(G);
  for i in GeneratorsOfGroup(U) do
    G:=CentralizerModulo(G,NT,i);
  od;
  G:=AsSubgroup(P,G);
  return G;
end);

# enforce solvability check.
RedispatchOnCondition(CentralizerModulo,true,[IsGroup,IsGroup,IsObject],
  [IsGroup and IsSolvableGroup,IsGroup and IsSolvableGroup,IsObject],0);

#############################################################################
##
#F  ElementaryAbelianSeries( <list> )
##
InstallOtherMethod( ElementaryAbelianSeries,"list of pcgs computable groups",
  true,[IsList and IsFinite],
  1, # there is a generic groups function with value 0
function( S )
local   home,i,  N,  O,  I,  E,  L;

  if Length(S)=0 or not CanEasilyComputePcgs(S[1]) then
    TryNextMethod();
  fi;

  # typecheck arguments
  if 1 < Size(Last(S))  then
      S := ShallowCopy( S );
      Add( S, TrivialSubgroup(S[1]) );
  fi;

  # start with the elementary series of the first group of <S>
  L := ElementaryAbelianSeries( S[ 1 ] );
  # enforce the same parent for 'HomePcgs' purposes.
  home:=HomePcgs(S[1]);

  N := [ S[ 1 ] ];
  for i  in [ 2 .. Length( S ) - 1 ]  do
    O := L;
    L := [ S[ i ] ];
    for E  in O  do
      I := IntersectionSumPcgs(home, InducedPcgs(home,E),
        InducedPcgs(home,S[ i ]) );
      I.sum:=SubgroupByPcgs(S[1],I.sum);
      I.intersection:=SubgroupByPcgs(S[1],I.intersection);
      if not I.sum in N  then
          Add( N, I.sum );
      fi;
      if not I.intersection in L  then
          Add( L, I.intersection );
      fi;
    od;
  od;
  for E  in L  do
      if not E in N  then
          Add( N, E );
      fi;
  od;
  return N;
end);


#############################################################################
##
#M  \<(G,H) . . . . . . . . . . . . . . . . .  comparison of pc groups by CGS
##
InstallMethod(\<,"cgs comparison",IsIdenticalObj,[IsPcGroup,IsPcGroup],0,
function( G, H )
  return Reversed( CanonicalPcgsWrtFamilyPcgs(G) )
       < Reversed( CanonicalPcgsWrtFamilyPcgs(H) );
end);

#############################################################################
##
#F  GapInputPcGroup( <U>, <name> )  . . . . . . . . . . . .  gap input string
##
##  Compute  the  pc-presentation for a finite polycyclic group as gap input.
##  Return  this  input  as  string.  The group  will  be  named  <name>,the
##  generators "g<i>".
##
InstallGlobalFunction( GapInputPcGroup, function(U,name)

    local   gens,
            wordString,
            newLines,
            lines,
            ne,
            i,j;


    # <lines>  will  hold  the  various  lines of the input for gap,they are
    # concatenated later.
    lines:=[];

    # Get the generators for the group <U>.
    gens:=InducedPcgsWrtHomePcgs(U);

    # Initialize the group and the generators.
    Add(lines,name);
    Add(lines,":=function()\nlocal ");
    for i in [1 .. Length(gens)]  do
        Add(lines,"g");
        Add(lines,String(i));
        Add(lines,",");
    od;
    Add(lines,"r,f,g,rws,x;\n");
    Add(lines,"f:=FreeGroup(IsSyllableWordsFamily,");
    Add(lines,String(Length(gens)));
    Add(lines,");\ng:=GeneratorsOfGroup(f);\n");

    for i  in [1 .. Length(gens)]  do
        Add(lines,"g"          );
        Add(lines,String(i)  );
        Add(lines,":=g[");
        Add(lines,String(i)  );
        Add(lines,"];\n"    );
    od;

    Add(lines,"rws:=SingleCollector(f,");
    Add(lines,String(List(gens,i->RelativeOrderOfPcElement(gens,i))));
    Add(lines,");\n");

    Add(lines,"r:=[\n");
    # A function will yield the string for a word.
    wordString:=function(a)
        local k,l,list,str,count;
        list:=ExponentsOfPcElement(gens,a);
        k:=1;
        while k <= Length(list) and list[k] = 0  do k:=k + 1;  od;
        if k > Length(list)  then return "IdWord";  fi;
        if list[k] <> 1  then
            str:=Concatenation("g",String(k),"^",
                String(list[k]));
        else
            str:=Concatenation("g",String(k));
        fi;
        count:=Length(str) + 15;
        for l  in [k + 1 .. Length(list)]  do
            if count > 60  then
                str  :=Concatenation(str,"\n    ");
                count:=4;
            fi;
            count:=count - Length(str);
            if list[l] > 1  then
                str:=Concatenation(str,"*g",String(l),"^",
                    String(list[l]));
            elif list[l] = 1  then
                str:=Concatenation(str,"*g",String(l));
            fi;
            count:=count + Length(str);
        od;
        return str;
    end;

    # Add the power presentation part.
    for i  in [1 .. Length(gens)]  do
      ne:=gens[i]^RelativeOrderOfPcElement(gens,gens[i]);
      if ne<>One(U) then
        Add(lines,Concatenation("[",String(i),",",
            wordString(ne),"]"));
        if i<Length(gens) then
          Add(lines,",\n");
        else
          Add(lines,"\n");
        fi;
      fi;
    od;
    Add(lines,"];\nfor x in r do SetPower(rws,x[1],x[2]);od;\n");

    Add(lines,"r:=[\n");

    # Add the commutator presentation part.
    for i  in [1 .. Length(gens) - 1]  do
        for j  in [i + 1 .. Length(gens)]  do
          ne:=Comm(gens[j],gens[i]);
          if ne<>One(U) then
            if i <> Length(gens) - 1 or j <> i + 1  then
                Add(lines,Concatenation("[",String(j),",",String(i),",",
                    wordString(ne),"],\n"));
            else
                Add(lines,Concatenation("[",String(j),",",String(i),",",
                    wordString(ne),"]\n"));
            fi;
         fi;
       od;
    od;
    Add(lines,"];\nfor x in r do SetCommutator(rws,x[1],x[2],x[3]);od;\n");
    Add(lines,"return GroupByRwsNC(rws);\n");
    Add(lines,"end;\n");
    Add(lines,name);
    Add(lines,":=");
    Add(lines,name);
    Add(lines,"();\n");
    Add(lines,"Print(\"#I A group of order \",Size(");
    Add(lines,name);
    Add(lines,"),\" has been defined.\\n\");\n");
    Add(lines,"Print(\"#I It is called ");
    Add(lines,name);
    Add(lines,"\\n\");\n");

    # Concatenate all lines and return.
    while Length(lines) > 1  do
        if Length(lines) mod 2 = 1  then
            Add(lines,"");
        fi;
        newLines:=[];
        for i  in [1 .. Length(lines) / 2]  do
            newLines[i]:=Concatenation(lines[2*i-1],lines[2*i]);
        od;
        lines:=newLines;
    od;
    IsString(lines[1]);
    return lines[1];

end );

#############################################################################
##
#F  PrintPcPresentation( <grp>, <commBool> )
##
##  Display the pc relations of a pc group.
##  If <commBool> is true, then the commutator presentation is printed,
##  otherwise the power presentation.
##  Trivial commutators / powers are not printed.
##  The generators are named "g<i>".
##  The returned boolean indicates if there are commuting generators.
##
InstallGlobalFunction( PrintPcPresentation, function(G, commBool)
    local pcgs, n, F, gens, i, pis, exp, t, h, commPower, j, trivialCommutators;

    pcgs:=Pcgs(G);
    n:=Length(pcgs);
    F    := FreeGroup( n, "g" );
    gens := GeneratorsOfGroup( F );
    pis  := RelativeOrders( pcgs );

    # compute the orders of the pc-generators
    for i in [1..n] do
        exp := ExponentsOfRelativePower( pcgs, i ){[i+1..n]};
        t   := One( F );
        for h in [i+1..n] do
            t := t * gens[h]^exp[h-i];
        od;
        if IsOne( t ) then
            t := "id";
        fi;
        Print(gens[i], "^", pis[i], " = ", t, "\n");
    od;

    # compute the commutators / conjugation
    # of all pairs of pc-generators
    trivialCommutators := false;
    for i in [1..n] do
        for j in [i+1..n] do
            if pcgs[j] * pcgs[i] = pcgs[i] * pcgs[j] then
                trivialCommutators := true;
                continue;
            fi;
            if commBool then
                commPower := Comm( pcgs[j], pcgs[i] );
            else
                commPower := pcgs[j]^pcgs[i];
            fi;
            exp := ExponentsOfPcElement( pcgs, commPower ){[i+1..n]};
            t   := One( F );
            for h in [i+1..n] do
                t := t * gens[h]^exp[h-i];
            od;
            if commBool then
                Print("[", gens[j], ",", gens[i] , "]");
            else
                Print(gens[j], "^", gens[i]);
            fi;
            Print(" = ", t, "\n");
        od;
    od;

    return trivialCommutators;
end );

#############################################################################
##
#M  Display( <grp> )
##
InstallMethod( Display,
    "for a pc group",
    [ IsPcGroup ],
    function( G )
        local n, trivialCommutators;
        if IsTrivial(G) then
            Print("trivial pc-group\n");
            return;
        fi;
        n := Size(Pcgs(G));
        if IsOne(n) then
            Print("cyclic pc-group with 1 pc-generator and the relation:\n");
        else
            Print("pc-group with ", Size(Pcgs(G)), " pc-generators and relations:\n");
        fi;
        trivialCommutators := PrintPcPresentation( G, false );
        if IsAbelian(G) then
          Print("all generators commute, the groups is abelian\n");
        elif trivialCommutators then
          Print("all other pairs of generators commute\n");
        fi;
    end );

#############################################################################
##
#M  Enumerator( <G> ) . . . . . . . . . . . . . . . . . .  enumerator by pcgs
##
InstallMethod( Enumerator,"finite pc computable groups",true,
        [ IsGroup and CanEasilyComputePcgs and IsFinite ], 0,
    G -> EnumeratorByPcgs( Pcgs( G ) ) );


#############################################################################
##
#M  KnowsHowToDecompose( <G>, <gens> )
##
InstallMethod( KnowsHowToDecompose,
    "pc group and generators: always true",
    IsIdenticalObj,
    [ IsPcGroup, IsList ], 0,
    ReturnTrue);


#############################################################################
##
#F  CanonicalSubgroupRepresentativePcGroup( <G>, <U> )
##
InstallGlobalFunction( CanonicalSubgroupRepresentativePcGroup,
    function(G,U)
local e,        # EAS
      pcgs,     # himself
      iso,      # isomorphism to EAS group
      start,    # index of largest abelian quotient
      i,        # loop
      m,        # e[i+1]
      pcgsm,    # pcgs(m)
      mpcgs,    # pcgs mod pcgsm
      V,        # canon. rep
      fv,       # <V,m>
      fvgens,   # gens(fv)
      no,       # its normalizer
      orb,      # orbit
      o,        # orb index
      nno,      # growing normalizer
      min,
      minrep,   # minimum indicator
  #   p,        # orbit pos.
      one,      # 1
      abc,      # abelian case indicator
      nopcgs,   #pcgs(no)
      te,       # transversal exponents
      opfun,    # operation function
      ce;       # conj. elm

  if not IsSubgroup(G,U) then
    Error("#W  CSR Closure\n");
    G:=Subgroup(Parent(G),Concatenation(GeneratorsOfGroup(G),
                                        GeneratorsOfGroup(U)));
  fi;

  # compute a pcgs fitting the EAS
  pcgs:=PcgsChiefSeries(G);
  e:=ChiefNormalSeriesByPcgs(pcgs);

  if not IsBound(G!.chiefSeriesPcgsIsFamilyInduced) then
    # test whether pcgs is family induced
    m:=List(pcgs,i->ExponentsOfPcElement(FamilyPcgs(G),i));
    G!.chiefSeriesPcgsIsFamilyInduced:=
      ForAll(m,i->Number(i,j->j<>0)=1) and ForAll(m,i->Number(i,j->j=1)=1)
                                       and m=Reversed(Set(m));
    if not G!.chiefSeriesPcgsIsFamilyInduced then
      # compute isom. &c.
      V:=PcGroupWithPcgs(pcgs);
      iso:=GroupHomomorphismByImagesNC(G,V,pcgs,FamilyPcgs(V));
      G!.isomorphismChiefSeries:=iso;
      G!.isomorphismChiefSeriesPcgs:=FamilyPcgs(Image(iso));
      G!.isomorphismChiefSeriesPcgsSeries:=List(e,i->Image(iso,i));
    fi;
  fi;

  if not G!.chiefSeriesPcgsIsFamilyInduced then
    iso:=G!.isomorphismChiefSeries;
    pcgs:=G!.isomorphismChiefSeriesPcgs;
    e:=G!.isomorphismChiefSeriesPcgsSeries;
    U:=Image(iso,U);
    G:=Image(iso);
  else
    iso:=false;
  fi;

  #pcgs:=Concatenation(List([1..Length(e)-1],i->
  #  InducedPcgs(home,e[i]) mod InducedPcgs(home,e[i+1])));
  #pcgs:=PcgsByPcSequence(ElementsFamily(FamilyObj(G)),pcgs);
  ##AH evtl. noch neue Gruppe

  # find the largest abelian quotient
  start:=2;
  while start<Length(e) and HasAbelianFactorGroup(G,e[start+1]) do
    start:=start+1;
  od;

  #initialize
  V:=U;
  one:=One(G);
  ce:=One(G);
  no:=G;

  for i in [start..Length(e)-1] do
    # lift from G/e[i] to G/e[i+1]
    m:=e[i+1];
    pcgsm:=InducedPcgs(pcgs,m);
    mpcgs:=pcgs mod pcgsm;

    # map v,no
    #fv:=ClosureGroup(m,V);
    #img:=CanonicalPcgs(InducedPcgsByGenerators(pcgs,GeneratorsOfGroup(fv)));

#    if true then

    nopcgs:=InducedPcgs(pcgs,no);

    fvgens:=GeneratorsOfGroup(V);
    if true then
      min:=CorrespondingGeneratorsByModuloPcgs(mpcgs,fvgens);
#UU:=ShallowCopy(min);
#      NORMALIZE_IGS(mpcgs,min);
#if UU<>min then
#  Error("hier1");
#fi;
      # trim m-part
      min:=List(min,i->CanonicalPcElement(pcgsm,i));

      # operation function: operate on the cgs modulo m
      opfun:=function(u,e)
        u:=CorrespondingGeneratorsByModuloPcgs(mpcgs,List(u,j->j^e));
#UU:=ShallowCopy(u);
#        NORMALIZE_IGS(mpcgs,u);
#if UU<>u then
#  Error("hier2");
#fi;

        # trim m-part
        u:=List(u,i->CanonicalPcElement(pcgsm,i));
        return u;
      end;
    else
      min:=fv;
      opfun:=OnPoints;
    fi;

    # this function computes the orbit in a well-defined order that permits
    # to find a transversal cheaply
    orb:=Pcgs_OrbitStabilizer(nopcgs,false,min,nopcgs,opfun);

    nno:=orb.stabpcgs;
    abc:=orb.lengths;
    orb:=orb.orbit;
#if Length(orb)<>Index(no,Normalizer(no,fv)) then
#  Error("len!");
#fi;

    # determine minimal conjugate
    minrep:=one;
    for o in [2..Length(orb)] do
      if orb[o]<min then
        min:=orb[o];
        minrep:=o;
      fi;
    od;

    # compute representative
    if IsInt(minrep) then
      te:=ListWithIdenticalEntries(Length(nopcgs),0);
      o:=2;
      while minrep<>1 do
        while abc[o]>=minrep do
          o:=o+1;
        od;
        te[o-1]:=-QuoInt(minrep-1,abc[o]);
        minrep:=(minrep-1) mod abc[o]+1;
      od;
      te:=LinearCombinationPcgs(nopcgs,te)^-1;
      if opfun(orb[1],te)<>min then
        Error("wrong repres!");
      fi;
      minrep:=te;
    fi;

#
#
#     nno:=Normalizer(no,fv);
#
#    rep:=RightTransversal(no,nno);
#    #orb:=List(rep,i->CanonicalPcgs(InducedPcgs(pcgs,fv^i)));
#
#    # try to cope with action on vector space (long orbit)
##    abc:=false;
##    if Index(fv,m)>1 and HasElementaryAbelianFactorGroup(fv,m) then
##      nocl:=NormalClosure(no,fv);
##      if HasElementaryAbelianFactorGroup(nocl,m) then
###        abc:=true; # try el. ab. case
##      fi;;
##    fi;
#
#    if abc then
#      nocl:=InducedPcgs(pcgs,nocl) mod pcgsm;
#      nopcgs:=InducedPcgs(pcgs,no) mod pcgsm;
#      lop:=LinearActionLayer(Group(nopcgs),nocl); #matrices for action
#      fvgens:=List(fvgens,i->ShallowCopy(
#                   ExponentsOfPcElement(nocl,i)*Z(RelativeOrders(nocl)[1])^0));
#      TriangulizeMat(fvgens); # canonize
#      min:=fvgens;
#      minrep:=one;
#      for o in rep do
#        if o<>one then
#          # matrix image of rep
#          orb:=ExponentsOfPcElement(nopcgs,o);
#          orb:=Product([1..Length(orb)],i->lop[i]^orb[i]);
#          orb:=List(fvgens*orb,ShallowCopy);
#          TriangulizeMat(orb);
#          if orb<min then
#            min:=orb;
#            minrep:=o;
#          fi;
#        fi;
#      od;
#
#    else
#      min:=CorrespondingGeneratorsByModuloPcgs(mpcgs,fvgens);
#      NORMALIZE_IGS(mpcgs,min);
#      minrep:=one;
#      for o in rep do
#        if o<>one then
#          if Length(fvgens)=1 then
#            orb:=fvgens[1]^o;
#            orb:=orb^(1/LeadingExponentOfPcElement(mpcgs,orb)
#                      mod RelativeOrderOfPcElement(mpcgs,orb));
#            orb:=[orb];
#          else
#            orb:=CorrespondingGeneratorsByModuloPcgs(mpcgs,List(fvgens,j->j^o));
#            NORMALIZE_IGS(mpcgs,orb);
#          fi;
#          if orb<min then
#            min:=orb;
#            minrep:=o;
#          fi;
#        fi;
#      od;
#    fi;

    # conjugate normalizer to new minimal one
    no:=ClosureGroup(m,List(nno,i->i^minrep));
    ce:=ce*minrep;
    V:=V^minrep;
  od;

  if iso<>false then
    V:=PreImage(iso,V);
    no:=PreImage(iso,no);
    ce:=PreImagesRepresentative(iso,ce);
  fi;
  return [V,no,ce];
end );


#############################################################################
##
#M  ConjugacyClassSubgroups(<G>,<g>) . . . . . . .  constructor for pc groups
##  This method installs 'CanonicalSubgroupRepresentativePcGroup' as
##  CanonicalRepresentativeDeterminator
##
InstallMethod(ConjugacyClassSubgroups,IsIdenticalObj,[IsPcGroup,IsPcGroup],0,
function(G,U)
local cl;

    cl:=Objectify(NewType(CollectionsFamily(FamilyObj(G)),
      IsConjugacyClassSubgroupsByStabilizerRep),rec());
    SetActingDomain(cl,G);
    SetRepresentative(cl,U);
    SetFunctionAction(cl,OnPoints);
    SetCanonicalRepresentativeDeterminatorOfExternalSet(cl,
        CanonicalSubgroupRepresentativePcGroup);
    return cl;
end);

InstallOtherMethod(RepresentativeActionOp,"pc group on subgroups",true,
  [IsPcGroup,IsPcGroup,IsPcGroup,IsFunction],0,
function(G,U,V,f)
local c1,c2;
  if f<>OnPoints or not (IsSubset(G,U) and IsSubset(G,V)) then
    TryNextMethod();
  fi;
  if Size(U)<>Size(V) then
    return fail;
  fi;
  c1:=CanonicalSubgroupRepresentativePcGroup(G,U);
  c2:=CanonicalSubgroupRepresentativePcGroup(G,V);
  if c1[1]<>c2[1] then
    return fail;
  fi;
  return c1[3]/c2[3];
end);

#############################################################################
##
#F  ChiefSeriesUnderAction( <U>, <G> )
##
InstallMethod( ChiefSeriesUnderAction,
    "method for a pcgs computable group",
    IsIdenticalObj,
    [ IsGroup, IsGroup and CanEasilyComputePcgs ], 0,
function( U, G )
local home,e,ser,i,j,k,pcgs,mpcgs,op,m,cs,n;
  home:=HomePcgs(G);
  e:=ElementaryAbelianSeriesLargeSteps(G);

  # make the series U-invariant
  ser:=ShallowCopy(e);
  e:=[G];
  n:=G;
  for i in [2..Length(ser)] do
    # check whether we actually stepped down (or did the intersection
    # already do it?
    if Size(ser[i])<Size(n) then
      if not IsNormal(U,ser[i]) then
        # assuming the last was normal we intersect the conjugates and get a
        # new normal with still ea. factor
        ser[i]:=Core(U,ser[i]);
        # intersect the rest of the series.
        for j in [i+1..Length(ser)-1] do
          ser[j]:=Intersection(ser[i],ser[j]);
        od;
      fi;
      Add(e,ser[i]);
      n:=ser[i];
    fi;
  od;

  ser:=[G];
  for i in [2..Length(e)] do
    Info(InfoPcGroup,1,"Step ",i,": ",Index(e[i-1],e[i]));
    if IsPrimeInt(Index(e[i-1],e[i])) then
      Add(ser,e[i]);
    else
      pcgs:=InducedPcgs(home,e[i-1]);
      mpcgs:=pcgs mod InducedPcgs(home,e[i]);
      op:=LinearActionLayer(U,GeneratorsOfGroup(U),mpcgs);
      if ForAll(op,IsOne) then
        m:=op[1]; # identity
        cs:=List([0..Length(m)],x->m{[Length(m)+1-x..Length(m)]});
      else
        m:=GModuleByMats(op,GF(RelativeOrderOfPcElement(mpcgs,mpcgs[1])));
        cs:=MTX.BasesCompositionSeries(m);
      fi;
      Sort(cs,function(a,b) return Length(a)>Length(b);end);
      cs:=cs{[2..Length(cs)]};
      Info(InfoPcGroup,2,Length(cs)-1," compositionFactors");
      for j in cs do
        n:=e[i];
        for k in j do
          n:=ClosureGroup(n,PcElementByExponentsNC(mpcgs,List(k,IntFFE)));
        od;
        Add(ser,n);
      od;
    fi;
  od;
  return ser;
end);

InstallMethod(IsSimpleGroup,"for solvable groups",true,
  [IsSolvableGroup],
  # this is also better for permutation groups, so we increase the value to
  # be above the value for `IsPermGroup'.
  {} -> Maximum(RankFilter(IsSolvableGroup),
          RankFilter(IsPermGroup)+1)
    -RankFilter(IsSolvableGroup),
function(G)
  return IsInt(Size(G)) and IsPrimeInt(Size(G));
end);

#############################################################################
##
#M  ViewObj(<G>)
##
InstallMethod(ViewObj,"pc group",true,[IsPcGroup],0,
function(G)
local nrgens;
  nrgens := Length(GeneratorsOfGroup(G));
  if (not HasParent(G)) or
   nrgens*Length(GeneratorsOfGroup(Parent(G)))
     / GAPInfo.ViewLength > 50 then
    Print("<pc group");
    if HasSize(G) then
      Print(" of size ",Size(G));
    fi;
    Print(" with ", Pluralize(nrgens, "generator"), ">");
  else
    Print("Group(");
    ViewObj(GeneratorsOfGroup(G));
    Print(")");
  fi;
end);

#############################################################################
##
#M  CanEasilyComputePcgs( <pcgrp> ) . . . . . . . . . . . . . . . .  pc group
##

InstallTrueMethod( CanEasilyComputePcgs, IsPcGroup );

# InstallTrueMethod( CanEasilyComputePcgs, HasPcgs );
# we cannot guarantee that computations with any pcgs is efficient

InstallTrueMethod( CanEasilyComputePcgs, IsGroup and HasFamilyPcgs );


#############################################################################
##
#M  CanEasilyTestMembership
##

# InstallTrueMethod(CanEasilyTestMembership,CanEasilyComputePcgs);
# we cannot test membership using a pcgs

# InstallTrueMethod(CanComputeSize, CanEasilyComputePcgs); #unnecessary

#############################################################################
##
#M  IsSolvableGroup
##
InstallTrueMethod(IsSolvableGroup, CanEasilyComputePcgs);


#############################################################################
##
#M  CanComputeSizeAnySubgroup
##
InstallTrueMethod( CanComputeSizeAnySubgroup, CanEasilyComputePcgs );

#############################################################################
##
#M  CanEasilyComputePcgs( <grp> ) . . . . . . . . . subset or factor relation
##
##  Since factor groups might be in a different representation,
##  they should *not* inherit `CanEasilyComputePcgs' automatically.
##
#InstallSubsetMaintenance( CanEasilyComputePcgs,
#     IsGroup and CanEasilyComputePcgs, IsGroup );


#############################################################################
##
#M  IsConjugatorIsomorphism( <hom> )
##
InstallMethod( IsConjugatorIsomorphism,
    "for a pc group general mapping",
    true,
    [ IsGroupGeneralMapping ], 1,
    # There is no filter to test whether source and range of a homomorphism
    # are pc groups.
    # So we have to test explicitly and make this method
    # higher ranking than the default one in `ghom.gi'.
    function( hom )

    local s, r, G, genss, rep;

    s:= Source( hom );
    if not IsPcGroup( s ) then
      TryNextMethod();
    elif not ( IsGroupHomomorphism( hom ) and IsBijective( hom ) ) then
      return false;
    elif IsEndoGeneralMapping( hom ) and IsInnerAutomorphism( hom ) then
      return true;
    fi;
    r:= Range( hom );

    # Check whether source and range are in the same family.
    if FamilyObj( s ) <> FamilyObj( r ) then
      return false;
    fi;

    # Compute a conjugator in the full pc group.
    G:= GroupOfPcgs( FamilyPcgs( s ) );
    genss:= GeneratorsOfGroup( s );
    rep:= RepresentativeAction( G, genss, List( genss,
                    i -> ImagesRepresentative( hom, i ) ), OnTuples );

    # Return the result.
    if rep <> fail then
      Assert( 1, ForAll( genss, i -> Image( hom, i ) = i^rep ) );
      SetConjugatorOfConjugatorIsomorphism( hom, rep );
      return true;
    else
      return false;
    fi;
    end );

#############################################################################
##
#M  CanEasilyComputeWithIndependentGensAbelianGroup( <pcgrp> )
##
InstallTrueMethod(CanEasilyComputeWithIndependentGensAbelianGroup,
    IsGroup and CanEasilyComputePcgs and IsAbelian);

#############################################################################
##
#M  IndependentGeneratorsOfAbelianGroup( <A> )
##
InstallMethod(IndependentGeneratorsOfAbelianGroup,
  "Use Pcgs and NormalFormIntMat to find the independent generators",
        [IsGroup and CanEasilyComputePcgs and IsAbelian],0,
function(G)
local matrix, snf, base, ord, cti, row, g, o, cf, j, i;

  if IsTrivial(G) then return []; fi;

  matrix:=List([1..Size(Pcgs(G))],g->List(ExponentsOfRelativePower(Pcgs(G),g)));
  for i in [1..Size(Pcgs(G))] do
    matrix[i][i]:=-RelativeOrders(Pcgs(G))[i];
  od;
  snf:=NormalFormIntMat(matrix,1+8+16);

  base:=[];
  ord:=[];
  cti:=snf.coltrans^-1;
  for i in [1..Length(cti)] do
    row:=cti[i];
    g:=LinearCombinationPcgs(Pcgs(G),row,One(G));
    if not IsOne(g) then
      # get the involved prime factors
      o:=snf.normal[i][i];
      cf:=Collected(Factors(o));
      if Length(cf)>1 then
        for j in cf do
          j:=j[1]^j[2];
          Add(ord,j);
          Add(base,g^(o/j));
        od;
      else
        Add(base,g);
        Add(ord,o);
      fi;
    fi;
  od;
  SortParallel(ord,base);
  return base;
end);


#############################################################################
##
#M  MinimalGeneratingSet( <A> )
##
InstallMethod(MinimalGeneratingSet,
    "compute via Smith normal form",
        [IsGroup and CanEasilyComputePcgs and IsAbelian], {} -> RankFilter(IsPcGroup),
    function(G)

        local pcgs, matrix, snf, gens, cti, row, g, i;

        if IsTrivial (G) then
            return [];
        fi;

        pcgs := Pcgs (G);
        matrix:=List([1..Length(pcgs)],i->List(ExponentsOfRelativePower(pcgs,i)));
        for i in [1..Length(pcgs)] do
            matrix[i][i]:=-RelativeOrders(pcgs)[i];
        od;
        snf:=NormalFormIntMat(matrix,1+8+16);

        gens:=[];
        cti:=snf.coltrans^-1;
        for i in [1..Length(cti)] do
            row:=cti[i];
            g:=Product( List([1..Length(row)],j->pcgs[j]^row[j]));
            if not IsOne(g) then
                Add(gens,g);
            fi;
        od;

        return gens;
    end);


#############################################################################
##
#M  ExponentOfPGroupAndElm( <G>, <bound> )
##

# Return exponent and probably also an element of high order. If exponent is
# found to be larger than bound, just return the result found so far.
#
# JS: A result of Higman detailed on p564 of C. Sims Computation with
# F. P. Groups shows that an element of maximal order in a p-group
# exists where its weight with respect to a special pcgs is at most
# the p-class of the group.  Furthermore we need only check normed
# row vectors as exponent vectors since every cyclic subgroup has a
# generator with a normed row vector for exponents.
#
# This function just checks all such vectors using a simple backtrack
# method.  It handles the case of the trivial group and a regular
# p-group specially.
#
# Assumed: G is a p-group, of max size p^30 or so.
BindGlobal("ExponentOfPGroupAndElm",
function(G,bound)
        local all,pcgs,monic,weights,pclass,p;
        monic := function(w,p,f)
                local a,ldim,c,M,M1;
                M := [0,0];
                c := Maximum(w);
                for ldim in [1..Size(w)] do
                        a := ListWithIdenticalEntries(Size(w),0);
                        a[ldim] := 1;
                        M1 := all(ldim,a,w,p,c-w[ldim],f);
                        if M1[1] > M[1] then M:=M1; if M[1] > bound then return M; fi; fi;
                od;
                return M;
        end;
        all := function(ldim,a,w,p,c,f)
                local M,M1;
                if ldim = Size(a) then return [f(a),PcElementByExponents(pcgs,a)]; fi;
                M := [0,0];
                a{[ldim+2..Size(a)]} := ListWithIdenticalEntries(Size(a)-ldim-1,0);
                a[ldim+1] := Minimum( p-1, Int(c/w[ldim+1]) );
                while a[ldim+1] >= 0 do
                        M1 := all(ldim+1,a,w,p,c-a[ldim+1]*w[ldim+1],f);
                        if M1[1] > M[1] then M:=M1; if M[1] > bound then return M; fi; fi;
                        a[ldim+1] := a[ldim+1]-1;
                od;
                return M;
        end;
        p := PrimePGroup(G);
        if p = fail then return [1,One(G)]; fi; # handle trivial p-group of size 1
        pcgs := SpecialPcgs(G);
        weights := LGLayers(pcgs);
        pclass := Maximum(weights);
        if pclass < p then # Easily recognized regular p-group
                pclass := Maximum(List(pcgs,Order));
                return [pclass,First(pcgs,g->Order(g)=pclass)];
        fi;
        bound := Minimum(p^(pclass-1),bound);
        return monic(LGLayers(pcgs),PrimePGroup(G),a->Order(PcElementByExponents(pcgs,a)));
end);

InstallMethod( Exponent,"finite solvable group",
  true,[IsGroup and IsSolvableGroup and IsFinite],0,
function(G)
  if IsPGroup(G) then
    return ExponentOfPGroupAndElm(G,Size(G))[1];
  fi;
  TryNextMethod();
end);


#############################################################################
##
#M  AgemoOp( <G> )
##
InstallMethod( AgemoOp, "PGroups",true,[ IsPGroup, IsPosInt, IsPosInt ],0,
function( G, p, n )
local q, pcgs, sub, hom, f, ex, C;

  q := p ^ n;
  # if <G> is abelian,  raise the generators to the q.th power
  if IsAbelian(G)  then
      return SubgroupNC( G,Filtered( List( GeneratorsOfGroup( G ), x ->
      x^q ),i->not IsOne(i)) );
  fi;

  # based on Code by Jack Schmidt
  pcgs:=Pcgs(G);
  ex:=One(G);
  sub:=NormalClosure(G,SubgroupNC(G,Filtered(List(pcgs,i->i^q),x->x<>ex)));
  hom:=NaturalHomomorphismByNormalSubgroup(G,sub);
  f:=Range(hom);
  ex:=ExponentOfPGroupAndElm(f,q);
  while ex[1]>q do
    # take the element of highest order in f and take power of its preimage
    ex:=PreImagesRepresentative(hom,ex[2]^q);
    sub:=NormalClosure(G,ClosureSubgroupNC(sub,ex));
    hom:=NaturalHomomorphismByNormalSubgroup(G,sub);
    f:=Range(hom);
    ex:=ExponentOfPGroupAndElm(f,q);
  od;
  return sub;

  # otherwise compute the conjugacy classes of elements
  C := Set( ConjugacyClasses(G), x -> Representative(x)^q );
  return NormalClosure( G, SubgroupNC( G, C ) );
end );


InstallMethod(Socle,"for p-groups",true,[IsPGroup],0,
function(G)
  if IsTrivial(G) then return G; fi;
  return Omega(Center(G),PrimePGroup(G),1);
end);


#############################################################################
##
#M  OmegaOp( <G>, <p>, <n> )  . . . . . . . . . . . . for p-groups
##
##  The following method is due to Jack Schmidt
##  Omega(G,p,e) is defined to be <g in G: g^(p^e)=1>

# Omega_LowerBound returns a subgroup of Omega(G,p,e)
# Assumed: G is a p-group, e is a positive integer
BindGlobal("Omega_LowerBound_RANDOM",100); # number of random elements to test
BindGlobal("Omega_LowerBound",
function(G,p,e)
local H,fix_order;
  fix_order:=function(g) while not IsOne(g^(p^e)) do g:=g^p; od; return g; end;
  H:=Subgroup(G,List(Pcgs(G),fix_order));
  H:=ClosureGroup(H,List([1..Omega_LowerBound_RANDOM],i->fix_order(Random(G))));
  return H;
end);

# Omega_Search is a brute force search for Omega.
# One can search by coset if Omega(G) = { g in G : g^(p^e) = 1 }
# This is the case in regular p groups.
# Assumed: G is a p-group, e is a positive integer
BindGlobal("Omega_Search",
function(G,p,e)
local g,H,fix_order,T;
  H:=Omega_LowerBound(G,p,e);
  fix_order:=function(g) while not IsOne(g^(p^e)) do g:=g^p; od; return g; end;
  if NilpotencyClassOfGroup(G) < p
  then T:=RightTransversal(G,H);
  else T:=G;
  fi;
  for g in T do
    g:=fix_order(g);
    if(g in H) then continue; fi;
    H:=ClosureSubgroup(H,g);
    if(H=G) then return G; fi;
  od;
  return H;
end);


# Omega_UpperBoundAbelianQuotient(G,p,e) returns a subgroup K<=G
# such that Omega(G,p,e) <= K. Then Omega(K,p,e)=Omega(G,p,e)
# allowing other methods to work on a smaller group.
#
# It is not guaranteed that K is a proper subgroup of G.
#
# In detail: Omega(G/[G,G],p,e) = K/[G,G] and K is returned.
#
# Assumed: G is a p-group, e is a positive integer

BindGlobal("Omega_UpperBoundAbelianQuotient",
function(G,p,e)
local f;
  f:=MaximalAbelianQuotient(G);
  IsAbelian(Image(f));
  return SubgroupByPcgs(G,Pcgs(PreImagesSet(f,Omega(Image(f),p,e))));
end);

# Efficiency notes:
#
# (1) "PreImagesSet" is used to find the preimage of Omega in G/[G,G].
# there may very well be faster ways of doing this.
#
# (2) "SubgroupByPcgs(G,Pcgs(...))" is used to give the returned subgroup
# with natural standard generators. There may be better ways of doing this,
# and this may not be needed at all.


# Omega_UpperBoundCentralQuotient(G,p,e) returns
# a subgroup K with Omega(G,p,e) <= K <= G. The
# algorithm is (moderately) randomized.
#
# The algorithm is NOT fast.
#
# In detail a random central element, z, of order p is
# selected and K is returned where K/<z> = Omega(G/<z>,p,e).
#
# Assumed: G is a p-group, e is a positive integer


BindGlobal("Omega_UpperBoundCentralQuotient",
function(G,p,e)
local z,f;

  z:=One(G); while(IsOne(z)) do z:=Random(Socle(G)); od;

  f:=NaturalHomomorphismByNormalSubgroup(G,Subgroup(G,[z]));
  IsAbelian(Image(f)); # Probably is not, but quick to check
  return SubgroupByPcgs(G,Pcgs(PreImagesSet(f,Omega(Image(f),p,e))));
end);

# Efficiency Points:
#
# (1) "Omega" is used to compute Omega(G/<z>,p,e). |G/<z>| = |G|/p.
# This is a very tiny reduction AND it is very possible for
# Omega(G/<z>)=G/<z> for every nontrivial element z of the socle without
# Omega(G)=G. Hence the calculation of Omega(G/<z>) may take a very
# long time AND may prove worthless.
#
# (2) "PreImagesSet" is used to calculate the preimage of Omega(G/<z>)
# there may be more efficient methods to do this. I have noticed a very
# wide spread of times for the various PreImage functions.

# Omega(G,p,e) is a normal, characteristic, fully invariant subgroup that
# behaves nicely under group homomorphisms. In particular
# if Omega(G/N)=K/N then Omega(G) <= K. If Omega(G) <= K,
# then Omega(G)=Omega(K).
#
# Hence the general strategy is to find good upper bounds K for
# Omega(G), and then compute Omega(K) instead. It is difficult
# to tell when one's upper bound is actually equal to Omega(G),
# so we attempt to terminate early by finding good lower bounds
# H as well.
#
# Assumed: G is a p-group, e is a positive integer
BindGlobal("Omega_Sims_CENTRAL",100);
BindGlobal("Omega_Sims_RUNTIME",5000);


#Choose a central element z of order p.  Suppose that by induction
#we know H = Omega(G/<z>).  Then Omega(G) is contained in the inverse
#image K of H in G.  Compute K/K'.  If that quotient has elements of
#order p^2, then we can cut K down a bit.  Thus we may assume that we
#know a normal subgroup K of G that contains Omega(G), K maps into
#H, and K/K' has exponent p.  One would hope that K is small enough
#that random methods combined with deterministic computations would
#make it possible to compute Omega(K) = Omega(G).
#-Charles Sims
BindGlobal("Omega_Sims",
function(G,p,e)
local H,K,Knew,fails,r, timerFunc;

  timerFunc := GET_TIMER_FROM_ReproducibleBehaviour();

  if(IsTrivial(G)) then return G; fi;

  K:=G;
  H:=Omega_LowerBound(K,p,e);
  if(H=K) then return K; fi;

  # Step 1, reduce until K/K' = Omega(K/K') then Omega(G)=Omega(K)
  while (true) do # there is a `break' below
    Knew:=Omega_UpperBoundAbelianQuotient(K,p,e);
    if(Knew=K) then break; fi;
    K:=Knew;
  od;

  if (H=K) then
    return K;
  fi;

  # Step 2, reduce until we have fail lots of times in a row
  # or waste a lot of time.
  r:=timerFunc();
  fails:=0;
  while(fails<Omega_Sims_CENTRAL and timerFunc()-r<Omega_Sims_RUNTIME) do
    Knew:=Omega_UpperBoundCentralQuotient(K,p,e);
    if(K=Knew) then fails:=fails+1; continue; fi;
    fails:=0;
    K:=Knew;
    if(H=K) then return H; fi;
  od;

  # Step 3: Repeat step 1
  while(true) do
    Knew:=Omega_UpperBoundAbelianQuotient(K,p,e);
    if(Knew=K) then break; fi;
    K:=Knew;
  od;
  if(H=K) then return K; fi;

  # Step 4: If K<G, then we have reduced the problem, so just ask for Omega(K,p,e) directly.
  if(K<>G) then return Omega(K,p,e); fi;

    # Otherwise we try to search.
    if(Size(G)<2^24) then return Omega_Search(G,p,e); fi;

    # If the group is too big to search, just let the user know. If he wants
    # to continue we can try and return a lower bound, but this is too small
    # quite often.
    Error("Inductive method failed. You may 'return;' if you wish to use a\n",
      "(possible incorrect) lower bound ",H," for Omega.");
    return H;
end);

InstallMethod( OmegaOp, "for p groups", true,
        [ IsGroup, IsPosInt, IsPosInt ], 0,
function( G, p, n )
local   gens,  q,  gen,  ord,  o;

  # trivial cases
  if n=0 then return TrivialSubgroup(G);fi;

  if IsAbelian( G )  then
    q := p^n;
    gens := [  ];
    for gen  in IndependentGeneratorsOfAbelianGroup( G )  do
        ord := Order( gen );
        o := GcdInt( ord, q );
        if o <> 1  then
            Add( gens, gen ^ ( ord / o ) );
        fi;
    od;
    return SubgroupNC( G, gens );
  fi;

  if not PrimePGroup(G)=p then
    TryNextMethod();
  fi;

  if ForAll(Pcgs(G),g->IsOne(g^(p^n))) then
    return G;
  elif(Size(G)<2^15) then
    return Omega_Search(G,p,n);
  else
    return Omega_Sims(G,p,n);
  fi;
end);


############################################################################
##
#M  HallSubgroupOp (<grp>, <pi>)
##
InstallMethod (HallSubgroupOp, "via IsomoprhismPcGroup", true,
    [IsGroup and IsSolvableGroup and IsFinite, IsList], 0,
    function (grp, pi)
        local iso;
        iso := IsomorphismPcGroup (grp);
        return PreImagesSet (iso, HallSubgroup (ImagesSource (iso), pi));
    end);


############################################################################
##
#M  HallSubgroupOp (<grp>, <pi>)
##
RedispatchOnCondition(HallSubgroupOp,true,[IsGroup,IsList],
  [IsSolvableGroup and IsFinite,],1);


############################################################################
##
#M  SylowComplementOp (<grp>, <p>)
##
InstallMethod (SylowComplementOp, "via IsomoprhismPcGroup", true,
    [IsGroup and IsSolvableGroup and IsFinite, IsPosInt], 0,
    function (grp, p)
        local iso;
        iso := IsomorphismPcGroup (grp);
        return PreImagesSet (iso, SylowComplement (ImagesSource (iso), p));
    end);


############################################################################
##
#M  SylowComplementOp (<grp>, <p>)
##
RedispatchOnCondition(SylowComplementOp,true,[IsGroup,IsPosInt],
  [IsSolvableGroup and IsFinite,
  IsPosInt ],1);

InstallMethod( FittingFreeLiftSetup, "pc group", true, [ IsPcGroup ],0,
function( G )
local   pcgs;

  pcgs:=PcgsElementaryAbelianSeries(G);
  return rec(pcgs:=pcgs,
             depths:=IndicesEANormalSteps(pcgs),
             radical:=G,
             pcisom:=IdentityMapping(G),
             factorhom:=NaturalHomomorphismByNormalSubgroupNC(G,G));

end );

#############################################################################
##
#M  IsomorphismPermGroup( <G> ) . . . . . . . . .  for solvable group
##
InstallMethod( IsomorphismPermGroup,
    "solvable groups, e.g. Hall action",
    [ IsGroup and IsFinite and IsSolvableGroup and CanEasilyComputePcgs ],
function ( G )
local d,i,j,a,iso,ims,s,p,abovent;
  if IsAbelian(G) then
    # force redispatch on abelian group
    return IsomorphismAbelianGroupViaIndependentGenerators(IsPermGroup,G);
  elif Size(G)<=100 and Size(G)<>64 then
    # for these orders the optimal degree is fast enough
    iso:=MinimalFaithfulPermutationRepresentation(G);
    Info(InfoPcGroup,1,"Use optimal degree ",
      Size(G),":",NrMovedPoints(Range(iso)));
    return iso;
  fi;

  # can be subdirect?
  d:=MinimalNormalSubgroups(G);
  if Length(d)>1 then
    # it can -- find a nice decomposition in two

    # take two largest
    d:=ShallowCopy(d);
    SortBy(d,x->-Size(x));
    abovent:=function(a,b)
    local hom,n;
      hom:=NaturalHomomorphismByNormalSubgroupNC(G,a);
      b:=Image(hom,b);
      n:=NormalSubgroups(Image(hom,a));
      n:=Filtered(n,x->not IsSubset(x,b));
      SortBy(n,x->-Size(x)); # descending order
      return List(n,x->PreImage(hom,x));
    end;

    d:=[abovent(d[1],d[2]),abovent(d[2],d[1])];
    if Size(d[2][1])>Size(d[1][1]) then d:=Reversed(d);fi;
    d:=[d[1][1],First(d[2],x->Size(Intersection(x,d[1][1]))=1)];
    Info(InfoPcGroup,1,"Subdirect ",List(d,x->Size(G)/Size(x)));
    iso:=List(d,x->NaturalHomomorphismByNormalSubgroupNC(G,x));
    d:=List(iso,x->IsomorphismPermGroup(Image(x,G)));
    ims:=List([1,2],x->List(GeneratorsOfGroup(G),
      y->ImagesRepresentative(d[x],ImagesRepresentative(iso[x],y))));
    ims:=SubdirectDiagonalPerms(ims[1],ims[2]);
    d:=Group(ims);
    UseIsomorphismRelation(G,d);
    s:=SmallerDegreePermutationRepresentation(d:cheap);
    if NrMovedPoints(Range(s))<NrMovedPoints(d) then
      ims:=List(ims,x->ImagesRepresentative(s,x));
      d:=Image(s);
      UseIsomorphismRelation(G,d);
    fi;
    iso:=GroupHomomorphismByImagesNC(G,d,GeneratorsOfGroup(G),ims);
    Assert(1,IsBijective(iso));
    SetIsBijective(iso,true);
    return iso;
  fi;

  p:=Collected(Factors(Size(G)));
  if Length(p)>1 then
    d:=Combinations(p);
    SortBy(d,x->-Product(x,y->y[1]^y[2]));
    for i in d do
      s:=HallSubgroup(G,List(i,x->x[1]));
      if Size(Core(G,s))=1 then
        Info(InfoPcGroup,1,"Hall ",List(i,x->x[1]));

        # try normalizer quotient
        d:=Normalizer(G,s);
        if Size(Core(G,d))=1 then
          s:=d;
        else
          d:=ShallowCopy(IntermediateSubgroups(d,s).subgroups);
          SortBy(d,x->-Size(x));
          a:=First(d,x->Size(Core(G,x))=1);
          if a<>fail then s:=a;fi;
        fi;

        iso:=FactorCosetAction(G,s);
        Assert(1,IsBijective(iso));
        SetIsBijective(iso,true);
        d:=Image(iso);
        UseIsomorphismRelation(G,d);
        return iso;
      fi;
    od;

  else
    # p-group, one minimal: try to go from factor permrep
    d:=MinimalNormalSubgroups(G)[1];
    ims:=NaturalHomomorphismByNormalSubgroupNC(G,d);
    iso:=IsomorphismPermGroup(Image(ims,G));
    ims:=ims*iso;
    a:=Image(ims,G);
    Info(InfoPcGroup,1,"Factor ",List(Orbits(a,MovedPoints(a)),Length));
    s:=List(Orbits(a,MovedPoints(a)),x->Stabilizer(a,x[1]));
    s:=List(s,x->PreImage(ims,x));
    SortBy(s,x->-Size(x));
    for j in [1..Length(Factors(Size(s[1])))] do
      for i in [1..Length(s)] do
        p:=LowLayerSubgroups(s[i],j);
        p:=Filtered(p,x->not IsSubset(x,d));
        if Length(p)>0 then
          d:=Maximum(List(p,Size));
          iso:=FactorCosetAction(G,First(p,x->Size(x)=d));
          ims:=[List(GeneratorsOfGroup(G),x->ImagesRepresentative(iso,x)),
            List(GeneratorsOfGroup(G),x->ImagesRepresentative(ims,x))];
          ims:=SubdirectDiagonalPerms(ims[1],ims[2]);
          d:=Group(ims);
          UseIsomorphismRelation(G,d);
          s:=SmallerDegreePermutationRepresentation(d:cheap);
          if NrMovedPoints(Range(s))<NrMovedPoints(d) then
            ims:=List(ims,x->ImagesRepresentative(s,x));
            d:=Image(s);
            UseIsomorphismRelation(G,d);
          fi;
          iso:=GroupHomomorphismByImagesNC(G,d,GeneratorsOfGroup(G),ims);
          Assert(1,IsBijective(iso));
          SetIsBijective(iso,true);
          return iso;
        fi;
      od;
    od;

    Error("should never happen");
  fi;
end);