File: grppccom.gi

package info (click to toggle)
gap 4.15.1-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 110,212 kB
  • sloc: ansic: 97,261; xml: 48,343; cpp: 13,946; sh: 4,900; perl: 1,650; javascript: 255; makefile: 252; ruby: 9
file content (1250 lines) | stat: -rw-r--r-- 39,776 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
#############################################################################
##
##  This file is part of GAP, a system for computational discrete algebra.
##  This file's authors include Frank Celler, Alexander Hulpke.
##
##  Copyright of GAP belongs to its developers, whose names are too numerous
##  to list here. Please refer to the COPYRIGHT file for details.
##
##  SPDX-License-Identifier: GPL-2.0-or-later
##
##  This file contains the methods for complements in pc groups
##

BindGlobal("HomomorphismsSeries",function(G,h)
local r,img,i,gens,img2;
  r:=ShallowCopy(h);
  img:=Image(Last(h),G);
  for i in [Length(h)-1,Length(h)-2..1] do
    gens:=GeneratorsOfGroup(img);
    img2:=Image(h[i],G);
    r[i]:=GroupHomomorphismByImagesNC(img,img2,gens,List(gens,j->
           Image(h[i],PreImagesRepresentative(h[i+1],j))));
    SetKernelOfMultiplicativeGeneralMapping(r[i],
       Image(h[i+1],KernelOfMultiplicativeGeneralMapping(h[i])));
    img:=img2;
  od;
  return r;
end);

# test function for relators
BindGlobal("OCTestRelators",function(ocr)
  if not IsBound(ocr.relators) then return true;fi;
  return ForAll(ocr.relators,i->ExponentsOfPcElement(ocr.generators,
     Product(List([1..Length(i.generators)],
             j->ocr.generators[i.generators[j]]^i.powers[j])))
     =List(ocr.generators,i->0));
end);

#############################################################################
##
#F  COAffineBlocks( <S>,<Sgens>,<mats>,<orbs> )
##
##  Divide the vectorspace  into blocks using  the  affine operations of  <S>
##  described by <mats>.  Return representative  for  these blocks and  their
##  normalizers in <S>.
##  if <orbs> is true orbits are kept.
##
InstallGlobalFunction( COAffineBlocks, function( S, Sgens,mats,orbs )
local   dim, p, nul, one, L, blt, B, O, Q, i, j, v, w, n, z, root,r;

  # The affine operation of <S> is described via <mats> as
  #
  #    ( lll 0 )
  #    ( lll 0 )
  #    ( ttt 1 )
  #
  # where l  describes  the   linear operation and  t  the  translation the
  # dimension  of   the  vectorspace  is of   dimension  one less  than the
  # matrices <mats>.
  #
  dim:=Length(mats[1]) - 1;
  one:=One(mats[1][1][1]);
  nul:=0 * one;
  root:=Z(Characteristic(one));
  p:=Characteristic( mats[1][1][1] );
  Q:=List( [0..dim-1], x -> p ^x );
  L:=[];
  for i  in [1..p-1]  do
    L[LogFFE( one * i,root ) + 1]:=i;
  od;

  # Make a boolean list of length <p> ^ <dim>.
  blt:=BlistList( [1..p ^ dim], [] );
  Info(InfoComplement,3,"COAffineBlocks: ", p^dim, " elements in H^1" );
  i:=1; # was: Position( blt, false );
  B:=[];

  # Run through this boolean list.
  while i <> fail  do
    v:=CoefficientsQadic(i-1,p);
    while Length(v)<dim do
      Add(v,0);
    od;
    v:=v*one;
    w:=ImmutableVector(p,v);
    Add(v, one);
    v:=ImmutableVector(p,v);
    O:=OrbitStabilizer( S,v, Sgens,mats);
    for v  in O.orbit  do
        n:=1;
        for j  in [1..dim]  do
            z:=v[j];
            if z <> nul  then
                n:=n + Q[j] * L[LogFFE( z,root ) + 1];
            fi;
        od;
        blt[n]:=true;
    od;
    Info(InfoComplement,3,"COAffineBlocks: |block| = ", Length(O.orbit));
    r:=rec( vector:=w, stabilizer:=O.stabilizer );
    if orbs=true then r.orbit:=O.orbit;fi;
    Add( B, r);
    i:=Position( blt, false );
  od;
  Info(InfoComplement,3,"COAffineBlocks: ", Length( B ), " blocks found" );
  return B;

end );


#############################################################################
##
#F  CONextCentralizer( <ocr>, <S>, <H> )  . . . . . . . . . . . . . . . local
##
##  Correct the blockstabilizer and return the stabilizer of <H> in <S>
##
InstallGlobalFunction( CONextCentralizer, function( ocr, Spcgs, H )
local   gens,  pnt,  i;

  # Get the generators of <S> and correct them.
  Info(InfoComplement,3,"CONextCentralizer: correcting blockstabilizer" );
  gens:=ShallowCopy( Spcgs );
  pnt :=ocr.complementToCocycle( H );
  for i  in [1..Length( gens )]  do
    gens[i]:=gens[i] *
      OCConjugatingWord( ocr,
                       ocr.complementToCocycle( H ^ gens[i] ),
                 pnt );
  od;
  Info(InfoComplement,3,"CONextCentralizer: blockstabilizer corrected" );
  return ClosureGroup( ocr.centralizer, gens );

end );

#ocr is oc record, acts are elements that act via ^ on group elements, B
#is the result of BaseSteinitzVectors on the 1-cocycles in ocr.
InstallGlobalFunction(COAffineCohomologyAction,function(ocr,relativeGens,acts,B)
local tau, phi, mats;

  # Get  the  matrices describing the affine operations. The linear  part
  # of the  operation  is just conjugation of the entries of cocycle. The
  # translation are  commuators  with the  generators.  So check if <ocr>
  # has a small generating set. Use only these to form the commutators.

  # Translation: (.. h ..) -> (.. [h,c] ..)
  if IsBound( ocr.smallGeneratingSet )  then

    Error("not yet implemented");
    tau:=function( c )
    local   l,  i,  j,  z,  v;
      l:=[];
      for i  in ocr.smallGeneratingSet  do
        Add( l, Comm( ocr.generators[i], c ) );
      od;
      l:=ocr.listToCocycle( l );
      v:=ShallowCopy( B.factorzero );
      for i  in [1..Length(l)]  do
        if l[i] <> ocr.zero  then
          z:=l[i];
          j:=B.heads[i];
          if j > 0  then
            l:=l - z * B.factorspace[j];
            v[j]:=z;
          else
            l:=l - z * B.subspace[-j];
          fi;
        fi;
      od;
      IsRowVector( v );
      return v;
    end;

  else

    tau:=function( c )
    local   l,  i,  j,  z,  v;
      l:=[];
      for i  in relativeGens  do
        #Add( l, LeftQuotient(i,i^c));
        Add( l, Comm(i,c));
      od;
      l:=ocr.listToCocycle( l );
      v:=ListWithIdenticalEntries(Length(B.factorspace),ocr.zero);
      for i  in [1..Length(l)]  do
        if l[i] <> ocr.zero  then
          z:=l[i];
          j:=B.heads[i];
          if j > 0  then
            l:=l - z * B.factorspace[j];
            v[j]:=z;
          else
            l:=l - z * B.subspace[-j];
          fi;
        fi;
      od;
      IsRowVector( v );
      return v;
    end;
  fi;

  # Linear Operation: (.. hm ..) -> (.. (hm)^c ..)
  phi:=function( z, c )
  local   l,  i,  j,  v;
    l:=ocr.listToCocycle( List( ocr.cocycleToList(z), x -> x ^ c ) );
    v:=ListWithIdenticalEntries(Length(B.factorspace),ocr.zero);
    for i  in [1..Length( l )]  do
      if l[i] <> ocr.zero  then
        z:=l[i];
        j:=B.heads[i];
        if j > 0  then
          l:=l - z * B.factorspace[j];
          v[j]:=z;
        else
          l:=l - z * B.subspace[-j];
        fi;
      fi;
    od;
    IsRowVector( v );
    return v;
  end;

  # Construct the affine operations and blocks under them.
  mats:=AffineAction( acts,B.factorspace, phi, tau );
  Assert(2,ForAll(mats,i->ForAll(i,j->Length(i)=Length(j))));
  return mats;
end);


#############################################################################
##
#F  CONextCocycles( <cor>, <ocr>, <S> )    . . . . . . . . . . . . . . . . local
##
##  Get the next conjugacy classes of  complements  under  operation  of  <S>
##  using affine operation on the onecohomologygroup of <K>  and  <N>,  where
##  <ocr>:=rec( group:=<K>, module:=<N> ).
##
##  <ocr>  is a  record  as  described  in 'OCOneCocycles'.  The classes  are
##  returned as list of records rec( complement, centralizer ).
##
InstallGlobalFunction( CONextCocycles, function( cor, ocr, S )
local K, N, Z, SN, B, L, LL, SNpcgs, mats, i;

  # Try to split <K> over <M>, if it does not split return.
  Info(InfoComplement,3,"CONextCocycles: computing cocycles" );
  K:=ocr.group;
  N:=ocr.module;
  Z:=OCOneCocycles( ocr, true );
  if IsBool( Z )  then
      if IsBound( ocr.normalIn )  then
        Info(InfoComplement,3,"CONextCocycles: no normal complements" );
      else
        Info(InfoComplement,3,"CONextCocycles: no split extension" );
    fi;
    return [];
  fi;

  ocr.generators:=CanonicalPcgs(InducedPcgs(ocr.pcgs,ocr.complement));
  Assert(2,OCTestRelators(ocr));

  # If there is only one complement this is normal.
  if Dimension( Z ) = 0  then
      Info(InfoComplement,3,"CONextCocycles: group of cocycles is trivial" );
      K:=ocr.complement;
      if IsBound(cor.condition) and not cor.condition(cor, K)  then
        return [];
      else
       return [rec( complement:=K, centralizer:=S )];
      fi;
  fi;

  # If  the  one  cohomology  group  is trivial, there is only one class of
  # complements.  Correct  the  blockstabilizer and return. If we only want
  # normal complements, this case cannot happen, as cobounds are trivial.
  SN:=SubgroupNC( S, Filtered(GeneratorsOfGroup(S),i-> not i in N));
  if Dimension(ocr.oneCoboundaries)=Dimension(ocr.oneCocycles)  then
      Info(InfoComplement,3,"CONextCocycles: H^1 is trivial" );
      K:=ocr.complement;
      if IsBound(cor.condition) and not cor.condition(cor, K)  then
        return [];
      fi;
      S:=CONextCentralizer( ocr,
          InducedPcgs(cor.pcgs,SN),
          ocr.complement);
    return [rec( complement:=K, centralizer:=S )];
  fi;

  # If <S> = <N>, there are  no new blocks  under the operation  of <S>, so
  # get  all elements of  the one cohomology  group and return. If  we only
  # want normal complements,  there also are no  blocks under the operation
  # of <S>.
  B:=BaseSteinitzVectors(BasisVectors(Basis(ocr.oneCocycles)),
                         BasisVectors(Basis(ocr.oneCoboundaries)));
  if Size(SN) = 1 or IsBound(ocr.normalIn)  then
    L:=VectorSpace(ocr.field,B.factorspace, B.factorzero);
    Info(InfoComplement,3,"CONextCocycles: ",Size(L)," complements found");
    if IsBound(ocr.normalIn)  then
      Info(InfoComplement,3,"CONextCocycles: normal complements, using H^1");
      LL:=[];
      if IsBound(cor.condition)  then
        for i  in L  do
          K:=ocr.cocycleToComplement(i);
          if cor.condition(cor, K)  then
            Add(LL, rec(complement:=K, centralizer:=S));
          fi;
        od;
      else
        for i  in L  do
          K:=ocr.cocycleToComplement(i);
          Add(LL, rec(complement:=K, centralizer:=S));
        od;
      fi;
      return LL;
    else
      Info(InfoComplement,3,"CONextCocycles: S meets N, using H^1");
      LL:=[];
      if IsBound(cor.condition)  then
        for i  in L  do
          K:=ocr.cocycleToComplement(i);
          if cor.condition(cor, K)  then
            S:=ocr.centralizer;
            Add(LL, rec(complement:=K, centralizer:=S));
          fi;
        od;
      else
        for i  in L  do
          K:=ocr.cocycleToComplement(i);
          S:=ocr.centralizer;
          Add(LL, rec(complement:=K, centralizer:=S));
        od;
      fi;
      return LL;
    fi;
  fi;

  # The situation is as follows.
  #
  #  S           As <N>  does act trivial  on  the  onecohomology
  #   \   K        group,  compute first blocks of this group under
  #    \ / \       the operation of  <S>/<N>. But  as <S>/<N>  acts
  #     N   ?      affine,  this can be done using affine operation
  #      \ /       (given as matrices).
  #       1

  SNpcgs:=InducedPcgs(cor.pcgs,SN);
  mats:=COAffineCohomologyAction(ocr,ocr.generators,SNpcgs,B);

  L :=COAffineBlocks( SN, SNpcgs,mats,false );
  Info(InfoComplement,3,"CONextCocycles:", Length( L ), " complements found" );

  # choose a representative from each block and correct the blockstab
  LL:=[];
  for i  in L  do
    K:=ocr.cocycleToComplement(i.vector*B.factorspace);
      if not IsBound(cor.condition) or cor.condition(cor, K)  then
      if Z = []  then
        S:=ClosureGroup( ocr.centralizer, i.stabilizer );
      else
        S:=CONextCentralizer(ocr,
             InducedPcgs(cor.pcgs,
                         i.stabilizer), K);
      fi;
      Add(LL, rec(complement:=K, centralizer:=S));
      fi;
  od;
  return LL;

end );


#############################################################################
##
#F  CONextCentral( <cor>, <ocr>, <S> )     . . . . . . . . . . . . . . . . local
##
##  Get the conjugacy classes of complements in case <ocr.module> is central.
##
InstallGlobalFunction( CONextCentral, function( cor, ocr, S )
local   z,K,N,zett,SN,B,L,tau,gens,imgs,A,T,heads,dim,s,v,j,i,root;

  # Try to split <ocr.group>
  K:=ocr.group;
  N:=ocr.module;

  # If  <K>  is no split extension of <N> return the trivial list, as there
  # are  no  complements.  We  compute  the cocycles only if the extension
  # splits.
  zett:=OCOneCocycles( ocr, true );
  if IsBool( zett )  then
      if IsBound( ocr.normalIn )  then
        Info(InfoComplement,3,"CONextCentral: no normal complements" );
      else
        Info(InfoComplement,3,"CONextCentral: no split extension" );
    fi;
    return [];
  fi;

  ocr.generators:=CanonicalPcgs(InducedPcgs(ocr.pcgs,ocr.complement));
  Assert(2,OCTestRelators(ocr));

  # if there is only one complement it must be normal
  if Dimension(zett) = 0  then
      Info(InfoComplement,3,"CONextCentral: Z^1 is trivial");
      K:=ocr.complement;
      if IsBound(cor.condition) and not cor.condition(cor, K)  then
        return [];
      else
      return [rec(complement:=K, centralizer:=S)];
      fi;
  fi;

  # If  the  one  cohomology  group  is trivial, there is only one class of
  # complements.  Correct  the  blockstabilizer and return. If we only want
  # normal complements, this cannot happen, as the cobounds are trivial.
  SN:=SubgroupNC( S, Filtered(GeneratorsOfGroup(S),i-> not i in N));
  if Dimension(ocr.oneCoboundaries)=Dimension(ocr.oneCocycles)  then
      Info(InfoComplement,3,"CONextCocycles: H^1 is trivial" );
      K:=ocr.complement;
      if IsBound(cor.condition) and not cor.condition(cor, K)  then
        return [];
      else
        S:=CONextCentralizer( ocr,
         InducedPcgs(cor.pcgs,SN),ocr.complement);
      return [rec(complement:=K, centralizer:=S)];
      fi;
  fi;

  # If  <S>  =  <N>, there are no new blocks under the operation of <S>, so
  # get  all elements of the onecohomologygroup and return. If we only want
  # normal  complements,  there  also  are no blocks under the operation of
  # <S>.
  B:=BaseSteinitzVectors(BasisVectors(Basis(ocr.oneCocycles)),
                         BasisVectors(Basis(ocr.oneCoboundaries)));
  if Size(SN)=1 or IsBound( ocr.normalIn )  then
      if IsBound( ocr.normalIn )  then
        Info(InfoComplement,3,"CONextCocycles: normal complements, using H^1");
      else
        Info(InfoComplement,3,"CONextCocycles: S meets N, using H^1" );
        S:=ocr.centralizer;
    fi;
      L:=VectorSpace(ocr.field,B.factorspace, B.factorzero);
      T:=[];
      for i  in L  do
        K:=ocr.cocycleToComplement(i);
        if not IsBound(cor.condition) or cor.condition(cor, K)  then
            Add(T, rec(complement:=K,  centralizer:=S));
      fi;
      od;
      Info(InfoComplement,3,"CONextCocycles: ",Length(T)," complements found" );
      return T;
  fi;

  # The  conjugacy  classes  of  complements  are cosets of the cocycles of
  # 0^S. If 'smallGeneratingSet' is given, do not use this gens.

  # Translation: (.. h ..) -> (.. [h,c] ..)
  if IsBound( ocr.smallGeneratingSet )  then
      tau:=function( c )
        local   l;
        l:=[];
        for i  in ocr.smallGeneratingSet  do
            Add( l, Comm( ocr.generators[i], c ) );
        od;
        return ocr.listToCocycle( l );
    end;
  else
      tau:=function( c )
        local   l;
        l:=[];
        for i  in ocr.generators  do
            Add( l, Comm( i, c ) );
        od;
        return ocr.listToCocycle( l );
    end;
  fi;
  gens:=InducedPcgs(cor.pcgs,SN);
  imgs:=List( gens, tau );

  # Now get a base for the subspace 0^S. For those zero  images which are
  # not part of a base a generators of the stabilizer can be generated.
  #   B   holds the base,
  #   A   holds the correcting elements for the base vectors,
  #   T   holds the stabilizer generators.
  dim:=Length( imgs[1] );
  A:=[];
  B:=[];
  T:=[];
  heads:=ListWithIdenticalEntries(dim,0);

  root:=Z(ocr.char);
  # Get the base starting with the last one and go up.
  for i  in Reversed( [1..Length(imgs)] )  do
    s:=gens[i];
    v:=imgs[i];
    j:=1;
    # was:while j <= dim and IntFFE(v[j]) = 0  do
    while j <= dim and v[j] = ocr.zero  do
      j:=j + 1;
    od;
    while j <= dim and heads[j] <> 0  do
      z:=v[j] / B[heads[j]][j];
      if z <> 0*z  then
        s:=s / A[heads[j]] ^ ocr.logTable[LogFFE(z,root)+1];
      fi;
      v:=v - v[j] / B[heads[j]][j] * B[heads[j]];
      # was: while j <= dim and IntFFE(v[j]) = 0  do
      while j <= dim and v[j] = ocr.zero  do
        j:=j + 1;
      od;
    od;
    if j > dim  then
      Add( T, s );
    else
      Add( B, v );
      Add( A, s );
      heads[j]:=Length( B );
    fi;
  od;

  # So  <T>  now  holds a reversed list of generators for a stabilizer. <B>
  # is  a  base for 0^<S> and <cocycles>/0^<S> are the conjugacy classes of
  # complements.
  S:=ClosureGroup(N,T);
  if B = []  then
    B:=zett;
  else
    B:=BaseSteinitzVectors(BasisVectors(Basis(zett)),B);
    B:=VectorSpace(ocr.field,B.factorspace, B.factorzero);
  fi;
  L:=[];
  for i  in B  do
      K:=ocr.cocycleToComplement(i);
      if not IsBound(cor.condition) or cor.condition(cor, K)  then
        Add(L, rec(complement:=K, centralizer:=S));
      fi;
  od;
  Info(InfoComplement,3,"CONextCentral: ", Length(L), " complements found");
  return L;

end );


#############################################################################
##
#F  CONextComplements( <cor>, <S>, <K>, <M> ) . . . . . . . . . . . . . local
##  S: fuser, K: Complements in, M: Complements to
##
InstallGlobalFunction( CONextComplements, function( cor, S, K, M )
local   p, ocr;

  Assert(1,IsSubgroup(K,M));

  if IsTrivial(M)  then
    if IsBound(cor.condition) and not cor.condition(cor, K)  then
      return [];
    else
    return [rec( complement:=K, centralizer:=S )];
    fi;
  elif GcdInt(Size(M), Index(K,M)) = 1 then

    # If <K> and <M> are coprime, <K> splits.
    Info(InfoComplement,3,"CONextComplements: coprime case, <K> splits" );
    ocr:=rec( group:=K, module:=M,
        modulePcgs:=InducedPcgs(cor.pcgs,M),
                pcgs:=cor.pcgs, inPcComplement:=true);

    if IsBound( cor.generators )  then
      ocr.generators:=cor.generators;
      Assert(2,OCTestRelators(ocr));
      Assert(1,IsModuloPcgs(ocr.generators));
    fi;
    if IsBound( cor.smallGeneratingSet )  then
      ocr.smallGeneratingSet:=cor.smallGeneratingSet;
      ocr.generatorsInSmall :=cor.generatorsInSmall;
    elif IsBound( cor.primes )  then
      p:=Factors(Size( M.generators))[1];
      if p in cor.primes  then
        ocr.pPrimeSet:=cor.pPrimeSets[Position( cor.primes, p )];
      fi;
    fi;
    if IsBound( cor.relators )  then
      ocr.relators:=cor.relators;
      Assert(2,OCTestRelators(ocr));
    fi;

    #was: ocr.complement:=CoprimeComplement( K, M );
    OCOneCocycles( ocr, true );

    OCOneCoboundaries( ocr );
    if   IsBound( cor.normalComplements )
         and cor.normalComplements
         and Dimension( ocr.oneCoboundaries ) <> 0 then
      return [];
    else
      K:=ocr.complement;
      if IsBound(cor.condition) and not cor.condition(cor, K)  then
        return [];
      fi;
      S:=SubgroupNC( S, Filtered(GeneratorsOfGroup(S),i->not i in M));
      S:=CONextCentralizer( ocr,
        InducedPcgs(cor.pcgs,S), K );
      return [rec( complement:=K, centralizer:=S )];
    fi;
  else

    # In the non-coprime case, we must construct cocycles.
    ocr:=rec( group:=K, module:=M,
      modulePcgs:=InducedPcgs(cor.pcgs,M),
                pcgs:=cor.pcgs, inPcComplement:=true);

    if IsBound( cor.generators )  then
      ocr.generators:=cor.generators;
      Assert(2,OCTestRelators(ocr));
      Assert(1,IsModuloPcgs(ocr.generators));
    fi;
    if IsBound( cor.normalComplement ) and cor.normalComplements  then
      ocr.normalIn:=S;
    fi;

#    if IsBound( cor.normalSubgroup )  then
#      L:=cor.normalSubgroup( S, K, M );
#      if IsTrivial(L) = []  then
#        return CONextCocycles(cor, ocr, S);
#      else
#        return CONextNormal(cor, ocr, S, L);
#      fi;
#    else

    if IsBound( cor.smallGeneratingSet )  then
           ocr.smallGeneratingSet:=cor.smallGeneratingSet;
      ocr.generatorsInSmall :=cor.generatorsInSmall;
    elif IsBound( cor.primes )  then
      p:=Factors(Size( M.generators))[1];
      if p in cor.primes  then
        ocr.pPrimeSet:=cor.pPrimeSets[Position(cor.primes,p)];
      fi;
    fi;
    if IsBound( cor.relators )  then
      ocr.relators:=cor.relators;
      Assert(2,OCTestRelators(ocr));
    fi;
    if  ( cor.useCentral and IsCentral( Parent(M), M ) )
     or ( cor.useCentralSK and IsCentral(S,M) and IsCentral(K,M) ) then
      return CONextCentral(cor, ocr, S);
    else
      return CONextCocycles(cor, ocr, S);
    fi;

  fi;

end );


#############################################################################
##
#F  COComplements( <cor>, <G>, <N>, <all> ) . . . . . . . . . . . . . . local
##
##  Compute the complements in <G> of the normal subgroup N[1]. N is a list
##  of normal subgroups of G s.t. N[i]/N[i+1] is elementary abelian.
##  If  <all>  is  true, find all (conjugacy classes of) complements.
##  Otherwise   try  to find  just  one complement.
##
InstallGlobalFunction( COComplements, function( cor, G, E, all )
local r,a,a0,FG,nextStep,C,found,i,time,hpcgs,ipcgs;

  # give some information and start timing
  Info(InfoComplement,3,"Complements: initialize factorgroups" );
  time:=Runtime();

  # we only need the series beginning from position <n>
  r:=Length(E);

  # Construct the homomorphisms <a>[i] = <G>/<E>[i+1] -> <G>/<E>[i].


  a0:=[];
  for i in [1..Length(E)-1] do
    # to get compatibility we must build the natural homomorphisms
    # ourselves.
    ipcgs:=InducedPcgs(cor.home,E[i]);
    hpcgs:=cor.home mod ipcgs;
    FG:=PcGroupWithPcgs(hpcgs);
    a:=GroupHomomorphismByImagesNC(G,FG,cor.home,
      Concatenation(FamilyPcgs(FG),List(ipcgs,i->One(FG))));
    SetKernelOfMultiplicativeGeneralMapping( a, E[i] );
    Add(a0,a);
  od;

  # hope that NHBNS deals with the trivial subgroup sensibly
#  a0:=List(E{[1..Length(E)-1]},i->NaturalHomomorphismByNormalSubgroup(G,i));

  hpcgs:=List([1..Length(E)-1],
           i->PcgsByPcSequenceNC(FamilyObj(One(Image(a0[i]))),
              List(cor.home mod InducedPcgs(cor.home,E[i]),
                   j->Image(a0[i],j))));
  Add(hpcgs,cor.home);
  cor.hpcgs:=hpcgs;
  a :=HomomorphismsSeries( G, a0 );
  a0:=a0[1];

  # <FG> contains the factorgroups <G>/<E>[1], ..., <G>/<E>[<r>].
  FG:=List( a, Range );
  Add( FG, G );

  # As all entries in <cor> are optional, initialize them if they are not
  # present in <cor> with the following defaults.
  #
  #   'generators'        : standard generators
  #   'relators'        : pc-relators
  #   'useCentral'        : false
  #   'useCentralSK'      : false
  #   'normalComplements'     : false
  #
  if not IsBound( cor.useCentral )  then
    cor.useCentral:=false;
  fi;
  if not IsBound( cor.useCentralSK )  then
    cor.useCentralSK:=false;
  fi;
  if not IsBound( cor.normalComplements )  then
    cor.normalComplements:=false;
  fi;
  if IsBound( cor.generators )  then
    cor.generators:=
      InducedPcgsByGeneratorsNC(cor.hpcgs[1],
                                List(cor.generators,x->Image(a0,x)));
  else
    cor.generators:=CanonicalPcgs( InducedPcgs(cor.hpcgs[1],FG[1] ));
  fi;
  cor.gele:=Length(cor.generators);
  Assert(1,cor.generators[1] in FG[1]);

  #if not IsBound( cor.normalSubgroup )  then
  cor.group :=FG[1];
  cor.module:=TrivialSubgroup( FG[1] );
  cor.modulePcgs:=InducedPcgs(cor.hpcgs[1],cor.module);
  OCAddRelations(cor,cor.generators);
  #fi;
  Assert(2,OCTestRelators(cor));

  # The  following  function will be called recursively in order to descend
  # the tree and reach a complement.  <nr> is the current level.
  # it lifts the complement K over the nr-th step and fuses under the action
  # of (the full preimage of) S
  nextStep:=function( S, K, nr )
  local   M,  NC,  X;

    # give information about the level reached
    Info(InfoComplement,2,"Complements: reached level ", nr, " of ", r);

    # if this is the last level we have a complement, add it to <C>
    if nr = r  then
      Add( C, rec( complement:=K, centralizer:=S ) );
        Info(InfoComplement,3,"Complements: next class found, ",
             "total ", Length(C), " complement(s), ",
                 "time=", Runtime() - time);
      found:=true;

      # otherwise try to split <K> over <M> = <FE>[<nr>+1]
    else
      S:=PreImage( a[nr], S );
      M:=KernelOfMultiplicativeGeneralMapping(a[nr]);
      cor.module:=M;
      cor.pcgs:=cor.hpcgs[nr+1];
      cor.modulePcgs:=InducedPcgs(cor.pcgs,M);

      # we cannot take the 'PreImage' as this changes the gens

cor.oldK:=K;
cor.oldgens:=cor.generators;

      K:=PreImage(a[nr],K);
      cor.generators:=CanonicalPcgs(InducedPcgs(cor.pcgs,K));
      cor.generators:=cor.generators mod InducedPcgs(cor.pcgs,cor.module);
      Assert(1,Length(cor.generators)=cor.gele);
      Assert(2,OCTestRelators(cor));

      # now 'CONextComplements' will try to find the complements
      NC:=CONextComplements( cor, S, K, M );
Assert(1,cor.pcgs=cor.hpcgs[nr+1]);

      # try to step down as fast as possible
      for X  in NC  do
        Assert(2,OCTestRelators(rec(
           generators:=CanonicalPcgs(InducedPcgs(cor.hpcgs[nr+1],X.complement)),
           relators:=cor.relators)));
        nextStep( X.centralizer, X.complement, nr+1 );
        if found and not all  then
          return;
        fi;
      od;
    fi;
  end;

  # in <C> we will collect the complements at the last step
  C:=[];

  # ok, start 'nextStep'  with trivial module
  Info(InfoComplement,2,"  starting search, time=",Runtime()-time);
  found:=false;
  nextStep( TrivialSubgroup( FG[1] ),
            SubgroupNC( FG[1], cor.generators ), 1 );

  # some timings
  Info(InfoComplement,2,"Complements: ",Length(C)," complement(s) found, ",
           "time=", Runtime()-time );

  # add the normalizer
  Info(InfoComplement,3,"Complements: adding normalizers" );
  for i  in [1..Length(C)]  do
    C[i].normalizer:=ClosureGroup( C[i].centralizer,
                        C[i].complement );
  od;
  return C;

end );


#############################################################################
##
#M  COComplementsMain( <G>, <N>, <all>, <fun> )  . . . . . . . . . . . . . local
##
##  Prepare arguments for 'ComplementCO'.
##
InstallGlobalFunction( COComplementsMain, function( G, N, all, fun )
local   H, E,  cor,  a,  i,  fun2,pcgs,home;

  home:=HomePcgs(G);
  pcgs:=home;
  # Get the elementary abelian series through <N>.
  E:=ElementaryAbelianSeriesLargeSteps( [G,N,TrivialSubgroup(G)] );
  E:=Filtered(E,i->IsSubset(N,i));

  # we require that the subgroups of E are subgroups of the Pcgs-Series

  if Length(InducedPcgs(home,G))<Length(home) # G is not the top group
     # nt not in series
     or ForAny(E,i->Size(i)>1 and
       not i=SubgroupNC(G,home{[DepthOfPcElement(home,
                                    InducedPcgs(home,i)[1])..Length(home)]}))
     then

    Info(InfoComplement,3,"Computing better pcgs" );
    # create a better pcgs

    pcgs:=InducedPcgs(home,G) mod InducedPcgs(home,N);
    for i in [2..Length(E)] do
      pcgs:=Concatenation(pcgs,
         InducedPcgs(home,E[i-1]) mod InducedPcgs(home,E[i]));
    od;

    if not IsPcGroup(G) then
      # for non-pc groups arbitrary pcgs may become unfeasibly slow, so
      # convert to a pc group in this case
      pcgs:=PcgsByPcSequenceCons(IsPcgsDefaultRep,
        IsPcgs and IsPrimeOrdersPcgs,FamilyObj(One(G)),pcgs,[]);

      H:=PcGroupWithPcgs(pcgs);
      home:=pcgs; # this is our new home pcgs
      a:=GroupHomomorphismByImagesNC(G,H,pcgs,GeneratorsOfGroup(H));
      E:=List(E,i->Image(a,i));
      if IsFunction(fun) then
        fun2:=function(x)
                return fun(PreImage(a,x));
              end;
      else
        pcgs:=home;
        fun2:=fun;
      fi;
      Info(InfoComplement,3,"transfer back" );
      return List( COComplementsMain( H, Image(a,N), all, fun2 ), x -> rec(
            complement :=PreImage( a, x.complement ),
              centralizer:=PreImage( a, x.centralizer ) ) );
    else
      pcgs:=PcgsByPcSequenceNC(FamilyObj(home[1]),pcgs);
      IsPrimeOrdersPcgs(pcgs); # enforce setting
      H:= GroupByGenerators( pcgs );
      home:=pcgs;
    fi;

  fi;

  # if <G> and <N> are coprime <G> splits over <N>
  if false and GcdInt(Size(N), Index(G,N)) = 1  then
      Info(InfoComplement,3,"Complements: coprime case, <G> splits" );
      cor:=rec();

  # otherwise we compute a hall system for <G>/<N>
  else
    #AH
    #Info(InfoComplement,2,"Complements: computing p prime sets" );
    #a  :=NaturalHomomorphism( G, G / N );
    #cor:=PPrimeSetsOC( Image( a ) );
    #cor.generators:=List( cor.generators, x ->
    #                    PreImagesRepresentative( a, x ) );
    cor:=rec(home:=home,generators:=pcgs mod InducedPcgs(pcgs,N));
    cor.useCentralSK:=true;
  fi;

  # if a condition was given use it
  if IsFunction(fun)  then cor.condition:=fun;  fi;

  # 'COComplements' will do most of the work
  return COComplements( cor, G, E, all );

end );


InstallMethod( ComplementClassesRepresentativesSolvableNC, "pc groups",
  IsIdenticalObj, [CanEasilyComputePcgs,CanEasilyComputePcgs], 0,
function(G,N)
  return List( COComplementsMain(G, N, true, false), G -> G.complement );
end);


# Solvable factor group case
# find complements to (N\cap H)M/M in H/M where H=N_G(M), assuming factor is
# solvable
InstallGlobalFunction(COSolvableFactor,function(arg)
local G,N,M,keep,H,K,f,primes,p,A,S,L,hom,c,cn,nc,ncn,lnc,lncn,q,qs,qn,ser,
      pos,i,pcgs,z,qk,j,ocr,bas,mark,k,orb,shom,shomgens,subbas,elm,
      acterlist,free,nz,gp,actfun,mat,cond,pos2;

  G:=arg[1];
  N:=arg[2];
  M:=arg[3];
  if Length(arg)>3 then
    keep:=arg[4];
  else
    keep:=false;;
  fi;
  H:=Normalizer(G,M);
  Info(InfoComplement,2,"Call COSolvableFactor ",Index(G,N)," ",
       Size(N)," ",Size(M)," ",Size(H));
  if Size(ClosureGroup(N,H))<Size(G) then
    #Print("discard\n");
    return [];
  fi;

  K:=ClosureGroup(M,Intersection(H,N));
  f:=Size(H)/Size(K);

  # find prime that gives normal characteristic subgroup
  primes:=PrimeDivisors(f);
  if Length(primes)=1 then
    p:=primes[1];
    A:=H;
  else
    while Length(primes)>0 do
      p:=primes[1];
      A:=ClosureGroup(K,SylowSubgroup(H,p));
  #Print(Index(A,K)," in ",Index(H,K),"\n");
      A:=Core(H,A);
      if Size(A)>Size(K) then
        # found one. Doesn't need to be elementary abelian
        if not IsPrimePowerInt(Size(A)/Size(K)) then
          Error("multiple primes");
        else
          primes:=[];
        fi;
      else
        primes:=primes{[2..Length(primes)]}; # next one
      fi;
    od;
  fi;

  #if HasAbelianFactorGroup(A,K) then
  #  pcgs:=ModuloPcgs(A,K);
  #  S:=LinearActionLayer(H,pcgs);
  #  S:=GModuleByMats(S,GF(p));
  #  L:=MTX.BasesMinimalSubmodules(S);
  #  if Length(L)>0 then
  #    SortBy(L,Length);
  #    L:=List(L[1],x->PcElementByExponents(pcgs,x));
  #    A:=ClosureGroup(K,L);
  ##  fi;
  #else
  #  Print("IDX",Index(A,K),"\n");
  #fi;

  S:=ClosureGroup(M,SylowSubgroup(A,p));
  L:=Normalizer(H,S);

  # determine complements up to L-conjugacy. Currently brute-force
  hom:=NaturalHomomorphismByNormalSubgroup(L,M);

  q:=Image(hom);
  if IsSolvableGroup(q) and not IsPcGroup(q) then
    hom:=hom*IsomorphismSpecialPcGroup(q);
    q:=Image(hom);
  fi;
  #q:=Group(SmallGeneratingSet(q),One(q));
  qs:=Image(hom,S);
  qn:=Image(hom,Intersection(L,K));
  qk:=Image(hom,Intersection(S,K));
  shom:=NaturalHomomorphismByNormalSubgroup(qs,qk);
  ser:=ElementaryAbelianSeries([q,qs,qk]);
  pos:=Position(ser,qk);
  Info(InfoComplement,2,"Series ",List(ser,Size),pos);
  c:=[qs];
  cn:=[q];
  for i in [pos+1..Length(ser)] do
    pcgs:=ModuloPcgs(ser[i-1],ser[i]);
    nc:=[];
    ncn:=[];
    for j in [1..Length(c)] do
      ocr:=OneCocycles(c[j],pcgs);
      shomgens:=List(ocr.generators,x->Image(shom,x));
      if ocr.isSplitExtension then
        subbas:=Basis(ocr.oneCoboundaries);

        bas:=BaseSteinitzVectors(BasisVectors(Basis(ocr.oneCocycles)),
                                 BasisVectors(subbas));
        lnc:=[];
        lncn:=[];
        Info(InfoComplement,2,"Step ",i,",",j,": ",
          p^Length(bas.factorspace)," Complements");
        elm:=VectorSpace(GF(p),bas.factorspace,Zero(ocr.oneCocycles));
        if Length(bas.factorspace)=0 then
          elm:=AsSSortedList(elm);
        else
          elm:=Enumerator(elm);
        fi;
        mark:=BlistList([1..Length(elm)],[]);

        # we act on cocycles, not cocycles modulo coboundaries. This is
        # because orbits are short, and we otherwise would have to do a
        # double stabilizer calculation to obtain the normalizer.
        acterlist:=[];
        free:=FreeGroup(Length(ocr.generators));
        #cn[j]:=Group(SmallGeneratingSet(cn[j]));
        for z in GeneratorsOfGroup(cn[j]) do
          nz:=[z];
          gp:=List(ocr.generators,x->Image(shom,x^z));
          if gp=shomgens then
            # no action on qs/qk -- action on cohomology is affine

            # linear part
            mat:=[];
            for k in BasisVectors(Basis(GF(p)^Length(Zero(ocr.oneCocycles)))) do
              k:=ocr.listToCocycle(List(ocr.cocycleToList(k),x->x^z));
              Add(mat,k);
            od;
            mat:=ImmutableMatrix(GF(p),mat);
            Add(nz,mat);

            # affine part
            mat:=ocr.listToCocycle(List(ocr.complementGens,x->Comm(x,z)));
            ConvertToVectorRep(mat,GF(p));
            MakeImmutable(mat);
            Add(nz,mat);

            if IsOne(nz[2]) and IsZero(nz[3]) then
              nz[4]:=fail; # indicate that element does not act
            fi;

          else
            gp:=GroupWithGenerators(gp);
            SetEpimorphismFromFreeGroup(gp,GroupHomomorphismByImages(free,
              gp,GeneratorsOfGroup(free),GeneratorsOfGroup(gp)));
            Add(nz,List(shomgens,x->Factorization(gp,x)));
          fi;

          Add(acterlist,nz);
        od;
        actfun:=function(cy,a)
        local genpos,l;
          genpos:=PositionProperty(acterlist,x->a=x[1]);
          if genpos=fail then
            if IsOne(a) then
              # the action test always does the identity, so its worth
              # catching this as we have many short orbits
              return cy;
            else
              return ocr.complementToCocycle(ocr.cocycleToComplement(cy)^a);
            fi;
          elif Length(acterlist[genpos])=4 then
            # no action
            return cy;
          elif Length(acterlist[genpos])=3 then
            # affine case
            l:=cy*acterlist[genpos][2]+acterlist[genpos][3];
          else
            l:=ocr.cocycleToList(cy);
            l:=List([1..Length(l)],x->(ocr.complementGens[x]*l[x])^a);
            if acterlist[genpos][2]<>fail then
              l:=List(acterlist[genpos][2],
                        x->MappedWord(x,GeneratorsOfGroup(free),l));
            fi;
            l:=List([1..Length(l)],x->LeftQuotient(ocr.complementGens[x],l[x]));
            l:=ocr.listToCocycle(l);
          fi;

  #if l<>ocr.complementToCocycle(ocr.cocycleToComplement(cy)^a) then Error("ACT");fi;
          return l;
        end;
        pos:=1;
        repeat
          #z:=ClosureGroup(ser[i],ocr.cocycleToComplement(elm[pos]));

          orb:=OrbitStabilizer(cn[j],elm[pos],actfun);
          mark[pos]:=true;
          #cnt:=1;
          for k in [2..Length(orb.orbit)] do
            pos2:=Position(elm,SiftedVector(subbas,orb.orbit[k]));
            #if mark[pos2]=false then cnt:=cnt+1;fi;
            mark[pos2]:=true; # mark orbit off
          od;
          #Print(cnt,"/",Length(orb.orbit),"\n");
          if IsSubset(orb.stabilizer,qn) then
            cond:=Size(orb.stabilizer)=Size(q);
          else
            cond:=Size(ClosureGroup(qn,orb.stabilizer))=Size(q);
          fi;
          if cond then
            # normalizer is still large enough to keep the complement
            Add(lnc,ClosureGroup(ser[i],ocr.cocycleToComplement(elm[pos])));
            Add(lncn,orb.stabilizer);
          fi;

          pos:=Position(mark,false);
        until pos=fail;
        Info(InfoComplement,2,Length(lnc)," good normalizer orbits");

        Append(nc,lnc);
        Append(ncn,lncn);
      fi;
    od;
    c:=nc;
    cn:=ncn;
  od;

  c:=List(c,x->PreImage(hom,x));
  #c:=SubgroupsOrbitsAndNormalizers(K,c,false);
  #c:=List(c,x->x.representative);

  # only if not cyclic
  if Length(c)>1 and not IsCyclic(c[1]) then
    nc:=PermPreConjtestGroups(K,c);
  else
    nc:=[[K,c]];
  fi;

  Info(InfoComplement,2,Length(c)," Preimages in ",Length(nc)," clusters ");
  c:=[];
  for i in nc do
    cn:=SubgroupsOrbitsAndNormalizers(i[1],i[2],false);
    Add(c,List(cn,x->x.representative));
  od;

  Info(InfoComplement,1,"Overall ",Sum(c,Length)," Complements ",
    Size(qs)/Size(qk));

  if keep then
    return c;
  else
    c:=Concatenation(c);
  fi;
  if Size(A)<Size(H) then
    # recursively do the next step up
    cn:=List(c,x->COSolvableFactor(G,N,x));
    nc:=Concatenation(cn);
    c:=nc;
  fi;
  return c;
end);



#############################################################################
##
#M  ComplementClassesRepresentatives( <G>, <N> ) . . . .  find all complement
##
InstallMethod( ComplementClassesRepresentatives,
  "solvable normal subgroup or factor group",
  IsIdenticalObj, [IsGroup,IsGroup],0,
function( G, N )
  local   C;

  # if <G> and <N> are equal the only complement is trivial
  if G = N  then
      C:=[TrivialSubgroup(G)];

  # if <N> is trivial the only complement is <G>
  elif Size(N) = 1 then
      C:=[G];

  elif not IsNormal(G,N) then
    Error("N must be normal in G");
  elif IsSolvableGroup(N) then
    # otherwise we have to work
    C:=ComplementClassesRepresentativesSolvableNC(G,N);
  elif HasSolvableFactorGroup(G,N) then
    C:=COSolvableFactor(G,N,TrivialSubgroup(G));
  else
    TryNextMethod();
  fi;

  # return what we have found
  return C;

end);


#############################################################################
##
#M  ComplementcClassesRepresentatives( <G>, <N> )
##
InstallMethod( ComplementClassesRepresentatives,
  "tell that the normal subgroup or factor must be solvable", IsIdenticalObj,
  [ IsGroup, IsGroup ], {} -> -2*RankFilter(IsGroup),
function( G, N )
  if IsSolvableGroup(N) or HasSolvableFactorGroup(G, N) then
    TryNextMethod();
  fi;
  Error("cannot compute complements if both N and G/N are nonsolvable");
end);


#############################################################################
##
#M  ComplementcClassesRepresentatives( <G>, <N> ) . from conj. cl. subgroups
##
InstallMethod( ComplementClassesRepresentatives,
  "using conjugacy classes of subgroups", IsIdenticalObj,
  [ IsGroup and HasConjugacyClassesSubgroups, IsGroup ], 0,

function( G, N )

  local C, Hc, H;

  # if <N> is trivial the only complement is <G>
  if IsTrivial(N) then
      C := [ G ];
  # if <G> and <N> are equal the only complement is trivial
  elif G = N  then
      C := [ TrivialSubgroup(G) ];
  elif not IsNormal(G, N) then
    Error("N must be normal in G");
  else
    C := [ ];
    for Hc in ConjugacyClassesSubgroups(G) do
      H := Representative(Hc);
      if (( CanComputeSize(G) and CanComputeSize(N) and CanComputeSize(H) and
          Size(G) = Size(N)*Size(H) ) or G = ClosureGroup(N, H) )
          and IsTrivial(Intersection(N, H)) then
        Add(C, H);
      fi;
    od;
  fi;
  return C;
end);