File: mapping.gi

package info (click to toggle)
gap 4.15.1-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 110,212 kB
  • sloc: ansic: 97,261; xml: 48,343; cpp: 13,946; sh: 4,900; perl: 1,650; javascript: 255; makefile: 252; ruby: 9
file content (1553 lines) | stat: -rw-r--r-- 50,449 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
#############################################################################
##
##  This file is part of GAP, a system for computational discrete algebra.
##  This file's authors include Thomas Breuer, Martin Schönert, Frank Celler.
##
##  Copyright of GAP belongs to its developers, whose names are too numerous
##  to list here. Please refer to the COPYRIGHT file for details.
##
##  SPDX-License-Identifier: GPL-2.0-or-later
##
##  This file contains
##  1. the design of families of general mappings
##     now moved to mapping1.gi since it contain GAP/HPCGAP divergence
##  2. generic methods for general mappings
##  3. generic methods for underlying relations of general mappings
##

#############################################################################
##
##  2. generic methods for general mappings
##


#############################################################################
##
#M  PrintObj( <map> ) . . . . . . . . . . . . . . . . . . for general mapping
##
InstallMethod( PrintObj,
    "for a general mapping",
    true,
    [ IsGeneralMapping ], 0,
    function( map )
    Print( "<general mapping: ", Source( map ), " -> ", Range( map ), " >" );
    end );


#############################################################################
##
#M  PrintObj( <map> ) . . . . . . . . . . . . . . . . . . . . . . for mapping
##
InstallMethod( PrintObj,
    "for a mapping",
    true,
    [ IsMapping ], 0,
    function( map )
    Print( "<mapping: ", Source( map ), " -> ", Range( map ), " >" );
    end );
#T these are `ViewObj' methods. How could real `PrintObj' methods look like?


# #############################################################################
# ##
# #M  IsOne( <map> )  . . . . . . . . . . . . . . . . . . . for general mapping
# ##
# InstallOtherMethod( IsOne,
#     "for general mapping",
#     true,
#     [ IsGeneralMapping ], 0,
#     map ->     Source( map ) = Range( map )
#            and IsBijective( map )
#            and ForAll( Source( map ), elm -> ImageElm( map, elm ) = elm ) );


#############################################################################
##
#M  IsZero( <map> ) . . . . . . . . . . . . . . . . . . . for general mapping
##
InstallOtherMethod( IsZero,
    "for general mapping",
    true,
    [ IsGeneralMapping ], 0,
    map ->     Zero( Range( map ) ) <> fail
           and IsTotal( map )
           and ImagesSource( map ) = [ Zero( Range( map ) ) ] );


#############################################################################
##
#M  IsEndoGeneralMapping( <map> ) . . . . . . . . . . . . for general mapping
##
InstallOtherMethod( IsEndoGeneralMapping,
    "for general mapping",
    true,
    [ IsGeneralMapping ], 0,
    map -> Source( map ) = Range( map ) );


#############################################################################
##
#F  Image( <map> )  . . . .  set of images of the source of a general mapping
#F  Image( <map>, <elm> ) . . . .  unique image of an element under a mapping
#F  Image( <map>, <coll> )  . . set of images of a collection under a mapping
##
InstallGlobalFunction( Image, function ( arg )

    local   map,        # mapping <map>, first argument
            elm;        # element <elm>, second argument

    if Length(arg) > 0 and not IsGeneralMapping( arg[1] ) then
      ErrorNoReturn( "<map> must be a general mapping" );
    fi;

    # image of the source under <map>, which may be multi valued in this case
    if Length( arg ) = 1 then

        return ImagesSource( arg[1] );

    elif Length( arg ) = 2 then

      map := arg[1];
      elm := arg[2];

      # image of a single element <elm> under the mapping <map>
      if     FamSourceEqFamElm( FamilyObj( map ), FamilyObj( elm ) ) then
        if not IsMapping( map ) then
          ErrorNoReturn( "<map> must be single-valued and total" );
        elif not elm in Source( map ) then
          ErrorNoReturn( "<elm> must be an element of Source(<map>)" );
        fi;
        return ImageElm( map, elm );

      # image of a collection of elements <elm> under the mapping <map>
      elif CollFamSourceEqFamElms( FamilyObj( map ), FamilyObj(elm) ) then
        if not IsSubset( Source( map ), elm ) then
          ErrorNoReturn( "the collection <elm> must be contained in ",
                         "Source(<map>)" );
        fi;

        if IsDomain( elm ) or IsSSortedList( elm ) then
          if HasSource(map) and IsIdenticalObj(Source(map),elm) then
            return ImagesSource( map );
          else
            return ImagesSet( map, elm );
          fi;
        elif IsHomogeneousList( elm ) then
          return ImagesSet( map, Set( elm ) );
        fi;

      # image of the empty list
      elif IsList( elm ) and IsEmpty( elm ) then

        return [];

      else
        ErrorNoReturn( "the families of the element or collection <elm> ",
                       "and Source(<map>) don't match, ",
                       "maybe <elm> is not contained in Source(<map>) or ",
                       "is not a homogeneous list or collection" );
      fi;
    fi;
    ErrorNoReturn( "usage: Image(<map>), Image(<map>,<elm>), ",
                   "Image(<map>,<coll>)" );
end );

#############################################################################
##
#M  <map>(<elm>)
#M  <map>(<coll>)
##
##  Method to allow mappings to be used like functions when appropriate

InstallMethod(CallFuncList, [IsGeneralMapping, IsList],
        function(map, lst)
    if Length(lst) <> 1 then
        TryNextMethod();
    fi;
    return Image(map, lst[1]);
end);


#############################################################################
##
#F  Images( <map> ) . . . .  set of images of the source of a general mapping
#F  Images( <map>, <elm> )  . . . set of images of an element under a mapping
#F  Images( <map>, <coll> ) . . set of images of a collection under a mapping
##
InstallGlobalFunction( Images, function ( arg )

    local   map,        # mapping <map>, first argument
            elm;        # element <elm>, second argument

    if Length(arg) > 0 and not IsGeneralMapping( arg[1] ) then
      ErrorNoReturn( "<map> must be a general mapping" );
    fi;

    # image of the source under <map>
    if Length( arg ) = 1  then

        return ImagesSource(  arg[1] );

    elif Length( arg ) = 2 then

        map := arg[1];
        elm := arg[2];

        # image of a single element <elm> under the mapping <map>
        if     FamSourceEqFamElm( FamilyObj( map ), FamilyObj( elm ) ) then
          if not elm in Source( map ) then
            ErrorNoReturn( "<elm> must be an element of Source(<map>)" );
          fi;
          return ImagesElm( map, elm );

        # image of a collection of elements <elm> under the mapping <map>
        elif CollFamSourceEqFamElms( FamilyObj( map ), FamilyObj(elm) ) then
          if not IsSubset( Source( map ), elm ) then
            ErrorNoReturn( "the collection <elm> must be contained in ",
                           "Source(<map>)" );
          fi;

          if IsDomain( elm ) or IsSSortedList( elm ) then
            return ImagesSet( map, elm );
          elif IsHomogeneousList( elm ) then
            return ImagesSet( map, Set( elm ) );
          fi;

        # image of the empty list
        elif IsList( elm ) and IsEmpty( elm ) then

          return [];

        else
          ErrorNoReturn( "the families of the element or collection <elm> ",
                         "and Source(<map>) don't match, ",
                         "maybe <elm> is not contained in Source(<map>) or ",
                         "is not a homogeneous list or collection" );
        fi;
    fi;
    ErrorNoReturn( "usage: Images(<map>), Images(<map>,<elm>), ",
                   "Images(<map>,<coll>)" );
end );


#############################################################################
##
#F  PreImage( <map> ) . .  set of preimages of the range of a general mapping
#F  PreImage( <map>, <elm> )  . unique preimage of an elm under a gen.mapping
#F  PreImage(<map>,<coll>)   set of preimages of a coll. under a gen. mapping
##
InstallGlobalFunction( PreImage, function ( arg )

    local   map,        # gen. mapping <map>, first argument
            img;        # element <img>, second argument

    if Length( arg ) > 0 and not IsGeneralMapping( arg[1] ) then
      ErrorNoReturn( "<map> must be a general mapping" );
    fi;

    # preimage of the range under <map>, which may be a general mapping
    if Length( arg ) = 1  then

        return PreImagesRange( arg[1] );

    elif Length( arg ) = 2 then

        map := arg[1];
        img := arg[2];

        # preimage of a single element <img> under <map>
        if     FamRangeEqFamElm( FamilyObj( map ), FamilyObj( img ) ) then
          if not ( IsInjective( map ) and IsSurjective( map ) ) then
            ErrorNoReturn( "<map> must be an injective and surjective ",
                           "mapping" );
          elif not img in Range( map ) then
            ErrorNoReturn( "<elm> must be an element of Range(<map>)" );
          fi;
          return PreImageElm( map, img );

        # preimage of a collection of elements <img> under <map>
        elif CollFamRangeEqFamElms( FamilyObj( map ), FamilyObj( img ) ) then
          if not IsSubset( Range( map ), img ) then
            ErrorNoReturn( "the collection <elm> must be contained in ",
                           "Range(<map>)" );
          fi;

          if IsDomain( img ) or IsSSortedList( img ) then
            return PreImagesSet( map, img );
          elif IsHomogeneousList( img ) then
            return PreImagesSet( map, Set( img ) );
          fi;

        # preimage of the empty list
        elif IsList( img ) and IsEmpty( img ) then

          return [];

        else
          ErrorNoReturn( "the families of the element or collection <elm> ",
                         "and Range(<map>) don't match, ",
                         "maybe <elm> is not contained in Range(<map>) or ",
                         "is not a homogeneous list or collection" );
        fi;
    fi;
    ErrorNoReturn( "usage: PreImage(<map>), PreImage(<map>,<img>), ",
                   "PreImage(<map>,<coll>)" );
end );


#############################################################################
##
#F  PreImages( <map> )  . . . set of preimages of the range of a gen. mapping
#F  PreImages(<map>,<elm>)  . set of preimages of an elm under a gen. mapping
#F  PreImages(<map>,<coll>)  set of preimages of a coll. under a gen. mapping
##
InstallGlobalFunction( PreImages, function ( arg )

    local   map,        # mapping <map>, first argument
            img;        # element <img>, second argument

    # preimage of the range under <map>
    if Length( arg ) = 1  then

        return PreImagesRange( arg[1] );

    elif Length( arg ) = 2 then

        map := arg[1];
        img := arg[2];

        if not IsGeneralMapping( map ) then
          ErrorNoReturn( "<map> must be a general mapping" );
        fi;

        # preimage of a single element <img> under <map>
        if     FamRangeEqFamElm( FamilyObj( map ), FamilyObj( img ) ) then
            if not img in Range( map ) then
                ErrorNoReturn( "<elm> must be an element of Range(<map>)" );
            fi;
            return PreImagesElm( map, img );

        # preimage of a collection of elements <img> under <map>
        elif CollFamRangeEqFamElms( FamilyObj( map ), FamilyObj( img ) ) then
          if not IsSubset( Range( map ), img ) then
            ErrorNoReturn( "the collection <elm> must be contained in ",
                           "Range(<map>)" );
          fi;

          if IsDomain( img ) or IsSSortedList( img ) then
            return PreImagesSet( map, img );
          elif IsHomogeneousList( img ) then
            return PreImagesSet( map, Set( img ) );
          fi;

        # preimage of the empty list
        elif IsList( img ) and IsEmpty( img ) then

          return [];

        else
          ErrorNoReturn( "the families of the element or collection <elm> ",
                         "and Range(<map>) don't match, ",
                         "maybe <elm> is not contained in Range(<map>) or ",
                         "is not a homogeneous list or collection" );
        fi;
    fi;
    ErrorNoReturn( "usage: PreImages(<map>), PreImages(<map>,<img>), ",
                   "PreImages(<map>,<coll>)" );
end );


#############################################################################
##
#F  CompositionMapping(<map1>,<map2>, ... ) . . . . . composition of mappings
##
InstallGlobalFunction( CompositionMapping, function ( arg )
    local   com,        # composition of the arguments, result
            nxt,        # next general mapping in the composition
            new,        # intermediate composition
            i;          # loop variable

    # check the arguments
    if Length( arg ) = 0  then
        Error("usage: CompositionMapping(<map1>..)");
    fi;

    # unravel the argument list
    if Length( arg ) = 1  and IsList( arg[1] )  then
        arg := arg[1];
    fi;

    # compute the composition
    com := Last( arg );
    if not IsGeneralMapping( com ) then
      Error( "<com> must be (general) mapping" );
    fi;
    for i  in Reversed( [1..Length( arg )-1] )  do

        nxt:= arg[i];

        # Check that the composition can be formed.
        if not IsGeneralMapping( nxt ) then
          Error( "<i>-th argument must be (general) mapping" );
        elif not FamSource2EqFamRange1( FamilyObj( com ),
                                        FamilyObj( nxt ) ) then
            Error( "the range of <com> and the source of <nxt> ",
                   "must be contained in the same family" );
        fi;

        # Compute the composition.
        new := CompositionMapping2( nxt, com );

        # Maintain properties
        # (Do only *cheap* tests, otherwise one could attempt to check
        # `IsSubset( Source( nxt ), ImagesSource( com ) )' in the case
        # of `IsTotal', and to check in the case of `IsSurjective' whether
        # `IsSubset( Range( com ), PreImagesRange( nxt ) )' holds.)
        if     HasIsSingleValued( com ) and IsSingleValued( com )
           and HasIsSingleValued( nxt ) and IsSingleValued( nxt ) then
          SetIsSingleValued( new, true );
        fi;
        if     HasIsInjective( com ) and IsInjective( com )
           and HasIsInjective( nxt ) and IsInjective( nxt ) then
          SetIsInjective( new, true );
        fi;

        if     HasIsTotal( com ) and IsTotal( com )
           and HasIsTotal( nxt ) and IsTotal( nxt )
           and ((HasImagesSource(com) and
           CanComputeIsSubset(Source(nxt),ImagesSource(com)) and
           IsSubset(Source(nxt),ImagesSource(com)))
           or (HasRange(com) and
           CanComputeIsSubset(Source(nxt),Range(com)) and
           IsSubset(Source(nxt),Range(com))) ) then
          SetIsTotal( new, true );
        fi;

        if  HasRange(com) and  IsIdenticalObj(Source(nxt),Range(com)) then
          if     HasIsTotal( com ) and IsTotal( com )
             and HasIsTotal( nxt ) and IsTotal( nxt ) then
            SetIsTotal( new, true );
          fi;
          if     HasIsSurjective( com ) and IsSurjective( com )
             and HasIsSurjective( nxt ) and IsSurjective( nxt ) then
            SetIsSurjective( new, true );
          fi;
        fi;

        # Maintain respectings.
        if     HasRespectsAddition( com )
           and HasRespectsAddition( nxt )
           and RespectsAddition( com )
           and RespectsAddition( nxt ) then
          SetRespectsAddition( new, true );
        fi;
        if     HasRespectsAdditiveInverses( com )
           and HasRespectsAdditiveInverses( nxt )
           and RespectsAdditiveInverses( com )
           and RespectsAdditiveInverses( nxt ) then
          SetRespectsAdditiveInverses( new, true );
        elif   HasRespectsZero( com )
           and HasRespectsZero( nxt )
           and RespectsZero( com )
           and RespectsZero( nxt ) then
          SetRespectsZero( new, true );
        fi;

        if     HasRespectsMultiplication( com )
           and HasRespectsMultiplication( nxt )
           and RespectsMultiplication( com )
           and RespectsMultiplication( nxt ) then
          SetRespectsMultiplication( new, true );
        fi;
        if     HasRespectsInverses( com )
           and HasRespectsInverses( nxt )
           and RespectsInverses( com )
           and RespectsInverses( nxt ) then
          SetRespectsInverses( new, true );
        elif   HasRespectsOne( com )
           and HasRespectsOne( nxt )
           and RespectsOne( com )
           and RespectsOne( nxt ) then
          SetRespectsOne( new, true );
        fi;

        if     IsIdenticalObj( Source( nxt ), Range( com ) )
           and HasRespectsScalarMultiplication( com )
           and HasRespectsScalarMultiplication( nxt )
           and RespectsScalarMultiplication( com )
           and RespectsScalarMultiplication( nxt ) then

          # Note that equality of the two relevant domains
          # does in general not suffice to get linearity,
          # since their left acting domains must fit, too.
          SetRespectsScalarMultiplication( new, true );

        fi;

        com:= new;

    od;

    if IsIdenticalObj( Source( com ), Range( com ) ) then
      SetIsEndoGeneralMapping( com, true );
    fi;

    # Return the composition.
    return com;
end );


# Temporarily disabled -- See #569
# Currently some group homomrophisms construct inverse maps that are really
# restricted inverses (i.e. defined only on the image). Together with these
# immediate methods this can cause wrong indications of IsSurjective etc.
# for these maps. While this needs to be fixed in the future properly, the
# immediate methods are temporarily disabled to avoid this error having
# further effects.
# #############################################################################
# ##
# #M  IsInjective( <map> )  . . . . . for gen. mapp. with known inv. gen. mapp.
# #M  IsSingleValued( <map> ) . . . . for gen. mapp. with known inv. gen. mapp.
# #M  IsSurjective( <map> ) . . . . . for gen. mapp. with known inv. gen. mapp.
# #M  IsTotal( <map> )  . . . . . . . for gen. mapp. with known inv. gen. mapp.
# ##
# InstallImmediateMethod( IsInjective,
#     IsGeneralMapping and HasInverseGeneralMapping, 0,
#     function( map )
#     map:= InverseGeneralMapping( map );
#     if HasIsSingleValued( map ) then
#       return IsSingleValued( map );
#     else
#       TryNextMethod();
#     fi;
#     end );
#
# InstallImmediateMethod( IsSingleValued,
#     IsGeneralMapping and HasInverseGeneralMapping, 0,
#     function( map )
#     map:= InverseGeneralMapping( map );
#     if HasIsInjective( map ) then
#       return IsInjective( map );
#     else
#       TryNextMethod();
#     fi;
#     end );
#
# InstallImmediateMethod( IsSurjective,
#     IsGeneralMapping and HasInverseGeneralMapping, 0,
#     function( map )
#     map:= InverseGeneralMapping( map );
#     if HasIsTotal( map ) then
#       return IsTotal( map );
#     else
#       TryNextMethod();
#     fi;
#     end );
#
# InstallImmediateMethod( IsTotal,
#     IsGeneralMapping and HasInverseGeneralMapping, 0,
#     function( map )
#     map:= InverseGeneralMapping( map );
#     if HasIsSurjective( map ) then
#       return IsSurjective( map );
#     else
#       TryNextMethod();
#     fi;
#     end );

#############################################################################
##
#M  IsTotal( <map> )  . . . . . . . . . . . . . . . . . . for general mapping
##
InstallMethod( IsTotal, "for a general mapping", true,
    [ IsGeneralMapping ], 0,
    function( map )

    # For a total and injective general mapping,
    # the range cannot be smaller than the source.

    if     HasIsInjective( map ) and IsInjective( map )
       and CanComputeSize(Range(map)) and CanComputeSize(Source(map))
       and Size( Range( map ) ) < Size( Source( map ) ) then
      return false;
    else
      return IsSubset( PreImagesRange( map ), Source( map ) );
    fi;
    end );


#############################################################################
##
#M  IsSurjective( <map> ) . . . . . . . . . . . . . . . . for general mapping
##
InstallMethod( IsSurjective, "for a general mapping", true,
    [ IsGeneralMapping ], 0,
    function( map )

    # For a single-valued and surjective general mapping,
    # the source cannot be smaller than the range.

    if     HasIsSingleValued( map ) and IsSingleValued( map )
       and CanComputeSize(Range(map)) and CanComputeSize(Source(map))
       and Size( Source( map ) ) < Size( Range( map ) ) then
      return false;
    else
      return IsSubset( ImagesSource( map ), Range( map ) );
    fi;
    end );


#############################################################################
##
#M  IsSingleValued( <map> ) . . . . . . . . . . . . . . for a general mapping
##
InstallMethod( IsSingleValued, "for a general mapping", true,
    [ IsGeneralMapping ], 0,
    function( map )

    if HasIsSurjective( map ) and IsSurjective( map )
       and CanComputeSize(Range(map)) and CanComputeSize(Source(map)) then

      # For a single-valued and surjective general mapping,
      # the range cannot be larger than the source.
      if Size( Source( map ) ) < Size( Range( map ) ) then
        return false;
      fi;

    fi;

    if IsFinite( Source( map ) )  then

      # test that each element of the source has at most one image
      return ForAll( Source( map ),
                     elm -> Size( ImagesElm( map, elm ) ) <= 1 );

    else

      # give up if <map> has an infinite source
      TryNextMethod();

    fi;
    end );


#############################################################################
##
#M  IsInjective( <map> )  . . . . . . . . . . . . . . . for a general mapping
##
InstallMethod( IsInjective, "for a general mapping", true,
    [ IsGeneralMapping ], 0,
    function( map )

    local enum,    # enumerator for the source
          imgs,    # list of images for the elements of the source
          elm,     # loop over `enum'
          img;     # one set of images

    if HasIsTotal( map ) and IsTotal( map ) then

      # For a total and injective general mapping,
      # the source cannot be larger than the range.
      if Size( Range( map ) ) < Size( Source( map ) )
       and CanComputeSize(Range(map)) and CanComputeSize(Source(map)) then
        return false;
      fi;

    fi;

    if IsFinite( Source( map ) ) then

      # Check that the images of different elements are disjoint.
      enum:= Enumerator( Source( map ) );
      imgs:= [];
      for elm in enum do
        img:= ImagesElm( map, elm );
        if ForAny( imgs, im -> Size( Intersection2( im, img ) ) <> 0 ) then
          return false;
        fi;
        Add( imgs, img );
      od;
      return true;

    else

      # give up if <map> has an infinite source
      TryNextMethod();

    fi;
    end );


#############################################################################
##
#M  IsInjective( <map> )  . . . . . . . . . . . . . . . . . . . for a mapping
##
InstallMethod( IsInjective, "for a mapping", true,
    [ IsGeneralMapping and IsTotal and IsSingleValued ], 0,
    function( map )

    # For a total and injective general mapping,
    # the source cannot be larger than the range.
    if Size( Range( map ) ) < Size( Source( map ) )
       and CanComputeSize(Range(map)) and CanComputeSize(Source(map)) then
      return false;

    # compare the size of the source with the size of the image
    elif IsFinite( Source( map ) )  then
      return Size( Source( map ) ) = Size( ImagesSource( map ) );

    # give up if <map> has an infinite source
    else
      TryNextMethod();
    fi;
    end );


#############################################################################
##
#M  \=( <map1>, <map2> )  . . . . . . . . . . . . .  for two general mappings
##
InstallMethod( \=,
    "for two general mappings",
    IsIdenticalObj,
    [ IsGeneralMapping, IsGeneralMapping ], 0,
    function( map1, map2 )

    # Maybe the properties we already know determine the result.
    if ( HasIsTotal( map1 ) and HasIsTotal( map2 )
       and IsTotal( map1 ) <> IsTotal( map2 ) )
    or ( HasIsSingleValued( map1 ) and HasIsSingleValued( map2 )
       and IsSingleValued( map1 ) <> IsSingleValued( map2 ) )
    or ( HasIsInjective( map1 ) and HasIsInjective( map2 )
       and IsInjective( map1 ) <> IsInjective( map2 ) )
    or ( HasIsSurjective( map1 ) and HasIsSurjective( map2 )
       and IsSurjective( map1 ) <> IsSurjective( map2 ) )
    then
      return false;
    fi;

    # Otherwise we must really test the equality.
    return     Source( map1 )             = Source( map2 )
           and Range( map1 )              = Range( map2 )
           and UnderlyingRelation( map1 ) = UnderlyingRelation( map2 );
    end );


#############################################################################
##
#M  \<( <map1>, <map2> )  . . . . . . . . . . . . .  for two general mappings
##
##  Compare the sources, the ranges, the underlying relation.
##
InstallMethod( \<,
    "for two general mappings",
    IsIdenticalObj,
    [ IsGeneralMapping, IsGeneralMapping ], 0,
    function( map1, map2 )
    if Source( map1 ) <> Source( map2 ) then
      return Source( map1 ) < Source( map2 );
    elif Range( map1 ) <> Range( map2 ) then
      return Range( map1 ) < Range( map2 );
    else
      return UnderlyingRelation( map1 ) < UnderlyingRelation( map2 );
    fi;
    end );


#############################################################################
##
#M  \+( <map>, <zero> ) . . . . . . . .  for general mapping and zero mapping
##
InstallOtherMethod( \+,
    "for general mapping and zero mapping",
    IsIdenticalObj,
    [ IsGeneralMapping, IsGeneralMapping and IsZero ], 0,
    ReturnFirst );


#############################################################################
##
#M  \+( <zero>, <map> ) . . . . . . . .  for zero mapping and general mapping
##
InstallOtherMethod( \+,
    "for zero mapping and general mapping",
    IsIdenticalObj,
    [ IsGeneralMapping and IsZero, IsGeneralMapping ], 0,
    function( zero, map )
    return map;
    end );


#############################################################################
##
#M  \*( <map1>, <map2> )  . . . . . . . . . . . . .  for two general mappings
##
InstallMethod( \*, "for two general mappings", FamSource2EqFamRange1,
    [ IsGeneralMapping, IsGeneralMapping ], 0,
function( map1, map2 )
  return CompositionMapping( map2, map1 );
end );


#############################################################################
##
#M  \^( <map1>, <map2> )  . . . . . . . . conjugation of two general mappings
##
InstallMethod( \^,
#T or shall this involve the usual inverse?
#T (then <map2> must be a bijection from its source to its source)
    "for two general mappings",
    FamSourceRgtEqFamsLft,
    [ IsGeneralMapping, IsGeneralMapping ], 0,
    function( lft, rgt )
    return InverseGeneralMapping( rgt ) * lft * rgt;
    end );


#############################################################################
##
#M  \^( <elm>, <map> )
#T what about <coll> \^ <map> ?
##
InstallOtherMethod( \^,
    "for element in the source, and general mapping",
    FamElmEqFamSource,
    [ IsObject, IsGeneralMapping ], 0,
    function( elm, map )
    return ImageElm( map, elm );
    end );


#############################################################################
##
#M  OneOp( <map> )  . . . . . . . . . . . . . . . . . . . .  identity mapping
##
InstallOtherMethod( OneOp,
    "for a general mapping",
    true,
    [ IsGeneralMapping ], 0,
    function( map )
    if IsEndoGeneralMapping( map ) then
      return IdentityMapping( Source( map ) );
    else
      return fail;
    fi;
    end );


#############################################################################
##
#M  ZeroOp( <map> ) . . . . . . . . . . . . . . . . . . . . . .  zero mapping
##
InstallOtherMethod( ZeroOp,
    "for a general mapping",
    true,
    [ IsGeneralMapping ], 0,
    map -> ZeroMapping( Source( map ), Range( map ) ) );


#############################################################################
##
#M  InverseOp( <map> )  . . . . . . . . . delegate to `InverseGeneralMapping'
##
InstallMethod( InverseOp,
    "for a general mapping",
    true,
    [ IsGeneralMapping ], 0,
    function( map )
    local inv;
    if IsEndoGeneralMapping( map ) and IsBijective( map ) then
      inv := InverseGeneralMapping( map );
      SetIsEndoGeneralMapping( inv, true );
      SetIsBijective (inv, true); # this may seem superfluous, but
           # IsInjective may create an InverseGeneralMapping which does not
           # know that it is bijective
      return inv;
    else
      Info(InfoWarning,1,
        "The mapping must be bijective and have source=range\n",
        "#I  You might want to use `InverseGeneralMapping'");
      return fail;
    fi;
    end );


#############################################################################
##
#M  \*( <zero>, <map> ) . . . . . . . . .  for zero and total general mapping
##
InstallMethod( \*,
    "for zero and total general mapping",
    FamElmEqFamRange,
    [ IsRingElement and IsZero, IsGeneralMapping and IsTotal ], 0,
    function( zero, map )
    if IsGeneralMapping( zero ) then
      TryNextMethod();
    else
      return ZeroMapping( Source( map ), Range( map ) );
    fi;
    end );


#############################################################################
##
#M  <elm> / <map> . . . . . . . . . . . . . . . . . . . . preimage of element
##
InstallOtherMethod( \/,
    "for element, and inj. & surj. general mapping",
    FamElmEqFamRange,
    [ IsObject, IsGeneralMapping and IsInjective and IsSurjective ], 0,
    function( elm, map )
    return PreImageElm( map, elm );
    end );


#############################################################################
##
#M  ImageElm( <map>, <elm> )  . . . . . . . . . . . . for mapping and element
##
InstallOtherMethod( ImageElm,
    "for general mapping, and element",
    FamSourceEqFamElm,
    [ IsGeneralMapping, IsObject ], 0,
    function( map, elm )
    if not ( IsSingleValued( map ) and IsTotal( map ) ) then
      Error( "<map> must be single-valued and total" );
    fi;
    return ImageElm( map, elm );
    end );


InstallMethod( ImageElm,
    "for mapping, and element",
    FamSourceEqFamElm,
    [ IsGeneralMapping and IsTotal and IsSingleValued, IsObject ], 0,
    ImagesRepresentative );


#############################################################################
##
#M  ImagesElm( <map>, <elm> ) . . .  for non s.p. general mapping and element
##
InstallMethod( ImagesElm,
    "for non s.p. general mapping, and element",
    FamSourceEqFamElm,
    [ IsNonSPGeneralMapping, IsObject ], 0,
    function( map, elm )
    Error( "no default function to compute images of <elm> under <map>" );
    end );


#############################################################################
##
#M  ImagesElm( <map>, <elm> ) . .  for const. time access gen. map., and elm.
##
InstallMethod( ImagesElm,
    "for constant time access general mapping, and element",
    FamSourceEqFamElm,
    [ IsGeneralMapping and IsConstantTimeAccessGeneralMapping, IsObject ], 0,
    function( map, elm )
    local imgs, pair;
    imgs:= [];
    for pair in GeneratorsOfDomain( UnderlyingRelation( map ) ) do
      if pair[1] = elm then
        AddSet( imgs, pair[2] );
      fi;
    od;
    return imgs;
    end );


#############################################################################
##
#M  ImagesSet( <map>, <elms> )  . . for generel mapping and finite collection
##
InstallMethod( ImagesSet,
    "for general mapping, and finite collection",
    CollFamSourceEqFamElms,
    [ IsGeneralMapping, IsCollection ], 0,
    function( map, elms )
    local imgs, elm;
    if not IsFinite( elms ) then
      TryNextMethod();
    fi;
    imgs:= [];
    for elm in Enumerator( elms ) do
      UniteSet( imgs, AsList( ImagesElm( map, elm ) ) );
    od;
    return imgs;
    end );

InstallMethod( ImagesSet,
    "for general mapping, and empty list",
    true,
    [ IsGeneralMapping, IsList and IsEmpty ], 0,
    function( map, elms )
    return [];
    end );


#############################################################################
##
#M  ImagesSource( <map> ) . . . . . . . . . . . . . . . . for general mapping
##
InstallMethod( ImagesSource,
    "for general mapping",
    true,
    [ IsGeneralMapping ], 0,
    map -> ImagesSet( map, Source( map ) ) );


#############################################################################
##
#M  ImagesSource( <map> ) . . . . . . . . . .  for surjective general mapping
##
InstallMethod( ImagesSource,
    "for surjective general mapping (delegate to `Range')",
    true,
    [ IsGeneralMapping and IsSurjective ],
    SUM_FLAGS, # immediately delegate, don;'t try anything else
    Range );


#############################################################################
##
#M  ImagesRepresentative( <map>, <elm> )  . . . for s.p. gen. mapping and elm
##
InstallMethod( ImagesRepresentative,
    "for s.p. general mapping, and element",
    FamSourceEqFamElm,
    [ IsSPGeneralMapping, IsObject ], 0,
    function( map, elm )
    Error( "no default method for s.p. general mapping" );
    end );


#############################################################################
##
#M  ImagesRepresentative( <map>, <elm> )  . for non s.p. gen. mapping and elm
##
InstallMethod( ImagesRepresentative,
    "for non s.p. general mapping, and element",
    FamSourceEqFamElm,
    [ IsNonSPGeneralMapping, IsObject ], 0,
    function( map, elm )
    local
            imgs;       # all images of <elm> under <map>

    # get all images of <elm> under <map>
    imgs:= ImagesElm( map, elm );

    # check that <elm> has at least one image under <map>
    if IsEmpty( imgs ) then
      return fail;
    fi;

    # pick one image, and return it
    return Representative( imgs );
    end );


#############################################################################
##
#M  PreImageElm( <map>, <elm> )
##
InstallOtherMethod( PreImageElm,
    "for general mapping, and element",
    FamRangeEqFamElm,
    [ IsGeneralMapping, IsObject ], 0,
    function( map, elm )
    if not ( IsInjective( map ) and IsSurjective( map ) ) then
      Error( "<map> must be injective and surjective" );
    fi;
    return PreImageElm( map, elm );
    end );

InstallMethod( PreImageElm,
    "for inj. & surj. general mapping, and element",
    FamRangeEqFamElm,
    [ IsGeneralMapping and IsInjective and IsSurjective, IsObject ], 0,
    PreImagesRepresentative );


#############################################################################
##
#M  PreImagesElm( <map>, <elm> )  . . . . . . for general mapping and element
##
##  more or less delegate to `ImagesElm'
##
InstallMethod( PreImagesElm,
    "for general mapping with finite source, and element",
    FamRangeEqFamElm,
    [ IsGeneralMapping, IsObject ], 0,
    function ( map, elm )

    # for a finite source simply run over the elements of the source
    if IsFinite( Source( map ) )  then
        return Filtered( Source( map ),
                         pre -> elm in ImagesElm( map, pre ) );

    # give up if <map> has an infinite source
    else
      TryNextMethod();
    fi;
    end );


#############################################################################
##
#M  PreImagesElm( <map>, <elm> )   for const. time access gen. map., and elm.
##
InstallMethod( PreImagesElm,
    "for constant time access general mapping, and element",
    FamRangeEqFamElm,
    [ IsGeneralMapping and IsConstantTimeAccessGeneralMapping, IsObject ], 0,
    function( map, elm )
    local preimgs, pair;
    preimgs:= [];
    for pair in GeneratorsOfDomain( UnderlyingRelation( map ) ) do
      if pair[2] = elm then
        AddSet( preimgs, pair[1] );
      fi;
    od;
    return preimgs;
    end );


#############################################################################
##
#M  PreImagesSet( <map>, <elms> ) . for general mapping and finite collection
##
InstallMethod( PreImagesSet,
    "for general mapping, and finite collection",
    CollFamRangeEqFamElms,
    [ IsGeneralMapping, IsCollection ], 0,
    function( map, elms )
    local primgs, elm;
    if not IsFinite( elms ) then
      TryNextMethod();
    fi;
    primgs:= [];
    for elm in Enumerator( elms ) do
      UniteSet( primgs, AsList( PreImagesElm( map, elm ) ) );
    od;
    return primgs;
    end );

InstallMethod( PreImagesSet,
    "for general mapping, and empty list",
    true,
    [ IsGeneralMapping, IsList and IsEmpty ], 0,
    function( map, elms )
    return [];
    end );


#############################################################################
##
#M  PreImagesRange( <map> ) . . . . . . . . . . . . . . . for general mapping
##
InstallMethod( PreImagesRange,
    "for general mapping",
    true,
    [ IsGeneralMapping ], 0,
    map -> PreImagesSet( map, Range( map ) ) );


#############################################################################
##
#M  PreImagesRange( <map> ) . . . . . . . . . . . . for total general mapping
##
InstallMethod( PreImagesRange,
    "for total general mapping (delegate to `Source')",
    true,
    [ IsGeneralMapping and IsTotal ],
    SUM_FLAGS, # immediately delegate, don't try anything else
    Source );


#############################################################################
##
#M  PreImagesRepresentative( <map>, <elm> )  . .  for s.p. gen. mapping & elm
##
InstallMethod( PreImagesRepresentative,
    "for s.p. general mapping, and element",
    FamRangeEqFamElm,
    [ IsSPGeneralMapping, IsObject ], 0,
    function( map, elm )
    Error( "no default method for s.p. general mapping" );
    end );


#############################################################################
##
#M  PreImagesRepresentative( <map>, <elm> )
##
InstallMethod( PreImagesRepresentative,
    "for total non-s.p. general mapping, and element",
    FamRangeEqFamElm,
    [ IsNonSPGeneralMapping, IsObject ], 0,
    function ( map, elm )
    local   pres;       # all preimages of <elm> under <map>

    # get all preimages of <elm> under <map>
    pres := PreImagesElm( map, elm );

    # check that <elm> has at least one preimage under <map>
    if IsEmpty( pres ) then
      return fail;
    fi;

    # pick one preimage, and return it.
    return Representative( pres );
    end );


#############################################################################
##
#F  GeneralMappingByElements( <S>, <R>, <elms> )
##
InstallGlobalFunction( GeneralMappingByElements, function( S, R, elms )
    local map, tupfam, rel;

    # Check the arguments.
    if   not ( IsDomain( S ) and IsDomain( R ) ) then

      Error( "<S> and <R> must be domains" );

    elif IsDirectProductElementCollection( elms ) then

      tupfam:= ElementsFamily( FamilyObj( elms ) );
      if not (  IsIdenticalObj( ElementsFamily( FamilyObj( S ) ),
                          ComponentsOfDirectProductElementsFamily( tupfam )[1] )
         and IsIdenticalObj( ElementsFamily( FamilyObj( R ) ),
                          ComponentsOfDirectProductElementsFamily( tupfam )[2] ) ) then
        Error( "families of arguments do not match" );
      fi;

    elif IsEmpty( elms ) then

      tupfam:= DirectProductElementsFamily( [ ElementsFamily( FamilyObj( S ) ),
                               ElementsFamily( FamilyObj( R ) ) ] );

    else
      Error( "<elms> must be a collection of direct product elements or empty" );
    fi;

    # Construct the general mapping.
    map:= Objectify( TypeOfDefaultGeneralMapping( S, R,
                             IsNonSPGeneralMapping
                         and IsAttributeStoringRep ),
                     rec() );

    # Construct the underlying relation.
    rel:= DomainByGenerators( tupfam, elms );
    SetUnderlyingRelation( map, rel );
    SetUnderlyingGeneralMapping( rel, map );

    # Return the general mapping.
    return map;
end );


#############################################################################
##
#M  UnderlyingRelation( <map> ) . . . . . . . . . . . . for a general mapping
##
InstallMethod( UnderlyingRelation,
    "for a general mapping",
    true,
    [ IsGeneralMapping ], 0,
    function( map )
    local type, rel;
    type:= NewType( DirectProductFamily( [ FamilyObj( Source( map ) ),
                                           FamilyObj( Range( map ) ) ] ),
                    IsDomain and IsAttributeStoringRep );
    rel:= Objectify( type, rec() );
    SetUnderlyingGeneralMapping( rel, map );
    return rel;
    end );


#############################################################################
##
#M  SetUnderlyingGeneralMapping( <rel>, <map> )
##
##  Make sure that <map> gets the flag `IsConstantTimeAccessGeneralMapping'
##  if <rel> knows its `AsList'.
##  (Note that if `AsList( <rel> )' is known at the time when <rel> is
##  constructed, we cannot use the setter method of `AsList' for domains
##  with known `UnderlyingGeneralMapping'.)
##
InstallMethod( SetUnderlyingGeneralMapping,
    "for an underlying relation and a general mapping",
    true,
    [ IsDomain and IsDirectProductElementCollection and HasAsList
      and IsAttributeStoringRep,
      IsGeneralMapping ], 0,
    function( rel, map )
    SetIsConstantTimeAccessGeneralMapping( map, true );
    TryNextMethod();
    end );

InstallMethod( SetUnderlyingGeneralMapping,
    "for an underlying relation and a general mapping",
    true,
    [ IsDomain and IsDirectProductElementCollection and HasGeneratorsOfDomain
      and IsAttributeStoringRep,
      IsGeneralMapping ], 0,
    function( rel, map )
    SetIsConstantTimeAccessGeneralMapping( map, true );
    TryNextMethod();
    end );


#############################################################################
##
#M  SetAsList( <rel>, <dpelms> )
#M  SetGeneratorsOfDomain( <rel>, <dpelms> )
##
##  Make sure that <map> gets the flag `IsConstantTimeAccessGeneralMapping'
##  if <rel> knows its `AsList' or `GeneratorsOfDomain' value,
##  where <map> is the underlying general mapping of <rel>.
##
InstallMethod( SetAsList,
    "for an underlying relation and a list of direct product elements",
    IsIdenticalObj,
    [ IsDomain and IsDirectProductElementCollection and HasUnderlyingGeneralMapping
      and IsAttributeStoringRep,
      IsDirectProductElementCollection ],
    function( rel, dpelms )
    SetIsConstantTimeAccessGeneralMapping( UnderlyingGeneralMapping( rel ),
        true );
    TryNextMethod();
    end );

InstallMethod( SetGeneratorsOfDomain,
    "for an underlying relation and a list of direct product elements",
    IsIdenticalObj,
    [ IsDomain and IsDirectProductElementCollection and HasUnderlyingGeneralMapping
      and IsAttributeStoringRep,
      IsDirectProductElementCollection ],
    function( rel, dpelms )
    SetIsConstantTimeAccessGeneralMapping( UnderlyingGeneralMapping( rel ),
        true );
    TryNextMethod();
    end );


#############################################################################
##
##  3. generic methods for underlying relations of general mappings
##
##  If the underlying relation $Rel$ of a general mapping $F$ stores $F$
##  as value of `UnderlyingGeneralMapping' then $Rel$ may delegate questions
##  to the mapping operations for $F$.
##


#############################################################################
##
#M  \=( <rel1>, <rel2> )  .  for underlying relations of two general mappings
##
InstallMethod( \=,
    "for two underlying relations of general mappings",
    IsIdenticalObj,
    [ IsDomain and IsDirectProductElementCollection and HasUnderlyingGeneralMapping,
      IsDomain and IsDirectProductElementCollection and HasUnderlyingGeneralMapping ], 0,
    function( rel1, rel2 )
    local map1, map2;
    map1:= UnderlyingGeneralMapping( rel1 );
    map2:= UnderlyingGeneralMapping( rel2 );

    # Check that the sets of first resp. second components agree.
    if    PreImagesRange( map1 ) <> PreImagesRange( map2 )
       or ImagesSource( map1 ) <> ImagesSource( map2 ) then
      return false;
    fi;

    # Really test the equality.
    if   IsFinite( PreImagesRange( map1 ) ) then
      return ForAll( PreImagesRange( map1 ),
                   elm -> ImagesElm( map1, elm ) = ImagesElm( map2, elm ) );
    elif IsFinite( PreImagesRange( map2 ) ) then
      return ForAll( PreImagesRange( map2 ),
                   elm -> ImagesElm( map1, elm ) = ImagesElm( map2, elm ) );
    else
      TryNextMethod();
    fi;
    end );


#############################################################################
##
#M  \<( <rel1>, <rel> )  .  for underlying relations of two general mappings
##
InstallMethod( \<,
    "for two underlying relations of general mappings",
    IsIdenticalObj,
    [ IsDomain and IsDirectProductElementCollection and HasUnderlyingGeneralMapping,
      IsDomain and IsDirectProductElementCollection and HasUnderlyingGeneralMapping ], 0,
    function( rel1, rel2 )
    local map1,       # first general mapping,
          map2,       # second general mapping,
          elms,       # elements of the source of <map1> and <map2>
          i;          # loop variable

    map1:= UnderlyingGeneralMapping( rel1 );
    map2:= UnderlyingGeneralMapping( rel2 );

    # find the first element where the images differ
    elms := EnumeratorSorted( Union(PreImagesRange(map1),PreImagesRange(map2)));
    i := 1;
    while i <= Length( elms )
          and ImagesElm( map1, elms[i] ) = ImagesElm( map2, elms[i] )  do
      i := i + 1;
    od;

    # compare the image sets
    return     i <= Length( elms )
           and   EnumeratorSorted( ImagesElm( map1, elms[i] ) )
               < EnumeratorSorted( ImagesElm( map2, elms[i] ) );
#T note that we do not have a generic `\<' method for domains !
    end );



#############################################################################
##
#M  IsFinite( <rel> ) . . . . .  for underlying relation of a general mapping
##
InstallMethod( IsFinite,
    "for an underlying relation of a general mapping",
    true,
    [ IsDomain and IsDirectProductElementCollection and HasUnderlyingGeneralMapping ], 0,
    function( rel )
    local map;
    map:= UnderlyingGeneralMapping( rel );
    if IsFinite( Source( map ) ) and IsFinite( Range( map ) ) then
      return true;
    else
      TryNextMethod();
    fi;
    end );


#############################################################################
##
#M  Enumerator( <rel> ) . . . .  for underlying relation of a general mapping
##
InstallMethod( Enumerator,
    "for an underlying relation of a general mapping",
    true,
    [ IsDomain and IsDirectProductElementCollection and HasUnderlyingGeneralMapping ], 0,
    function( rel )
    local map, enum, S, R, elm, imgs;
    map:= UnderlyingGeneralMapping( rel );
    enum:= [];
    S:= Source( map );
    R:= Range( map );
    if   IsFinite( S ) then
      for elm in Enumerator( S ) do
        imgs:= ImagesElm( map, elm );
        if IsFinite( imgs ) then
          UniteSet( enum, List( imgs, im -> DirectProductElement( [ elm, im ] ) ) );
        else
          TryNextMethod();
        fi;
      od;
      return enum;
    elif IsFinite( R ) then
      for elm in Enumerator( R ) do
        imgs:= PreImagesElm( map, elm );
        if IsFinite( imgs ) then
          UniteSet( enum, List( imgs, im -> DirectProductElement( [ im, elm ] ) ) );
        else
          TryNextMethod();
        fi;
      od;
      return enum;
    else
      TryNextMethod();
    fi;
    end );


#############################################################################
##
#M  \in( <dpelm>, <map> ) . . . . . . for elm and underl. rel. of a gen. map.
##
InstallMethod( \in,
    "for an element and an underlying relation of a general mapping",
    IsElmsColls,
    [ IsDirectProductElement,
      IsDomain and IsDirectProductElementCollection and HasUnderlyingGeneralMapping ], 0,
    function( elm, rel )
    return elm[2] in ImagesElm( UnderlyingGeneralMapping( rel ), elm[1] );
    end );


#############################################################################
##
#M  Size( <rel> ) . . . . . . .  for underlying relation of a general mapping
##
InstallMethod( Size,
    "for an underlying relation of a general mapping",
    [ IsDomain and IsDirectProductElementCollection and HasUnderlyingGeneralMapping ],
    function( rel )
    local map;
    map:= UnderlyingGeneralMapping( rel );
    if     HasIsTotal( map ) and HasIsSingleValued( map )
       and IsTotal( map ) and IsSingleValued( map ) then
      return Size( Source( map ) );
    elif   HasIsInjective( map ) and HasIsSurjective( map )
       and IsInjective( map ) and IsSurjective( map ) then
      return Size( Range( map ) );
    else
      TryNextMethod();
    fi;
    end );


#############################################################################
##
#M  IsGeneratorsOfMagmaWithInverses( <mappinglist> )
##
##  All members of the collection have same source, all have same range.
##  Check that all are invertible.
##
InstallMethod( IsGeneratorsOfMagmaWithInverses,
    "for a collection of general mappings",
    true,
    [ IsGeneralMappingCollection ], 0,
    mappinglist -> ForAll( mappinglist, map ->
    (HasIsBijective(map) and IsBijective(map)) or Inverse( map ) <> fail ) );

#############################################################################
##
#M  CopyMappingAttributes(<from>,<to>)
##
InstallGlobalFunction(CopyMappingAttributes,
function(f,t)
  if HasIsTotal(f) and not HasIsTotal(t) then
    SetIsTotal(t,IsTotal(f));
  fi;
  if HasIsSingleValued(f) and not HasIsSingleValued(t) then
    SetIsSingleValued(t,IsSingleValued(f));
  fi;
  if HasIsInjective(f) and not HasIsInjective(t) then
    SetIsInjective(t,IsInjective(f));
  fi;
  if HasIsSurjective(f) and not HasIsSurjective(t) then
    SetIsSurjective(t,IsSurjective(f));
  fi;
  if HasSource(f) and not HasSource(t) then
    SetSource(t,Source(f));
  fi;
  if HasImagesSource(f) and not HasImagesSource(t) then
    SetImagesSource(t,ImagesSource(f));
  fi;
  if HasRange(f) and not HasRange(t) then
    SetRange(t,Range(f));
  fi;
end);