File: matobj2.gd

package info (click to toggle)
gap 4.15.1-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 110,212 kB
  • sloc: ansic: 97,261; xml: 48,343; cpp: 13,946; sh: 4,900; perl: 1,650; javascript: 255; makefile: 252; ruby: 9
file content (2054 lines) | stat: -rw-r--r-- 77,159 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
#############################################################################
##
##  This file is part of GAP, a system for computational discrete algebra.
##
##  SPDX-License-Identifier: GPL-2.0-or-later
##
##  Copyright of GAP belongs to its developers, whose names are too numerous
##  to list here. Please refer to the COPYRIGHT file for details.
##


#############################################################################
##
##  This file together with 'matobj1.gd' formally define the interface to
##  those vector and matrix objects in GAP that are not represented
##  by plain lists.
##  In this file all the operations and attributes are defined.
##  It is read later in the GAP library reading process.
##


#############################################################################
##
##  <#GAPDoc Label="MatObj_Overview">
##
##  Traditionally, vectors and matrices in &GAP; have been represented by
##  (lists of) lists, see the chapters
##  <Ref Chap="Row Vectors"/> and <Ref Chap="Matrices"/>.
##  More precisely, the term <Q>vector</Q>
##  (corresponding to the filter <Ref Filt="IsVector"/>)
##  is used in the abstract sense of an <Q>element of a vector space</Q>,
##  the term <Q>row vector</Q> (corresponding to <Ref Filt="IsRowVector"/>)
##  is used to denote a <Q>coordinate vector</Q> which is represented by
##  a &GAP; list (see <Ref Filt="IsList"/>),
##  and the term <Q>matrix</Q> is used to denote a list of lists, with
##  additional properties (see <Ref Filt="IsMatrix"/>).
##  <P/>
##  Unfortunately, such lists (objects in <Ref Filt="IsPlistRep"/>)
##  cannot store their type,
##  and so it is impossible to use the advantages of &GAP;'s method selection
##  on them.
##  This situation is unsustainable in the long run
##  since more special representations (compressed, sparse, etc.)
##  have already been and even more will be implemented.
##  Here we describe a programming interface to vectors and matrices,
##  which solves this problem,
##  <P/>
##  The idea of this interface is that &GAP; should be able to
##  represent vectors and matrices by objects that store their type,
##  in order to benefit from method selection.
##  These objects are created by <Ref Func="Objectify"/>,
##  we therefore refer to the them as <Q>vector objects</Q> and
##  <Q>matrix objects</Q> respectively.
##  <P/>
##  (Of course the terminology is somewhat confusing:
##  An <Q>abstract matrix</Q> in &GAP; can be represented either by a list of
##  lists or by a matrix object.
##  It can be detected from the filter <Ref Filt="IsMatrixOrMatrixObj"/>;
##  this is the union of the filters <Ref Filt="IsMatrix"/>
##  &ndash;which denotes those matrices that are represented by lists of
##  lists&ndash;
##  and the filter <Ref Filt="IsMatrixObj"/>
##  &ndash;which defines <Q>proper</Q> matrix objects in the above sense.
##  In particular, we do <E>not</E> regard the objects in
##  <Ref Filt="IsMatrix"/> as special cases of objects in
##  <Ref Filt="IsMatrixObj"/>, or vice versa.
##  Thus one can install specific methods for all three situations:
##  just for <Q>proper</Q> matrix objects, just for matrices represented
##  by lists of lists, or for both kinds of matrices.
##  For example, a &GAP; package may decide to accept only <Q>proper</Q>
##  matrix objects as arguments of its functions, or it may try to support
##  also objects in <Ref Filt="IsMatrix"/> as far as this is possible.)
##  <P/>
##  We want to be able to write (efficient) code that is independent of the
##  actual representation (in the sense of &GAP;'s representation filters,
##  see Section <Ref Sect="Representation"/>)
##  and preserves it.
##  <P/>
##  This latter requirement makes it necessary to distinguish between
##  different representations of matrices:
##  <Q>Row list</Q> matrices (see <Ref Filt="IsRowListMatrix"/>
##  behave basically like lists of rows,
##  in particular the rows are individual &GAP; objects that can
##  be shared between different matrix objects.
##  One can think of other representations of matrices,
##  such as matrices whose subobjects represent columns,
##  or <Q>flat</Q> matrices which do not have subobjects like rows or
##  columns at all.
##  The different kinds of matrices have to be distinguished
##  already with respect to the definition of the operations for them.
##  <P/>
##  In particular vector and matrix objects know their base domain
##  (see <Ref Attr="BaseDomain" Label="for a vector object"/>)
##  and their dimensions.
##  The basic condition is that the entries of vector and matrix objects
##  must either lie in the base domain or naturally embed in the sense that
##  addition and multiplication automatically work with elements of the
##  base domain;
##  for example, a matrix object over a polynomial ring may also contain
##  entries from the coefficient ring.
##  <P/>
##  Vector and matrix objects may be mutable or immutable.
##  Of course all operations changing an object are only allowed/implemented
##  for mutable variants.
##  <P/>
##  Vector objects are equal with respect to <Ref Oper="\="/>
##  if they have the same length and the same entries.
##  It is not necessary that they have the same base domain.
##  Matrices are equal with respect to <Ref Oper="\="/>
##  if they have the same dimensions and the same entries.
##  <P/>
##  For a row list matrix object, it is not guaranteed that all its rows
##  have the same vector type.
##  It is for example thinkable that a matrix object stores some of its rows
##  in a sparse representation and some in a dense one.
##  However, it is guaranteed that the rows of two matrices in the same
##  representation are compatible in the sense that all vector operations
##  defined in this interface can be applied to them and that new matrices
##  in the same representation as the original matrix can be formed out of
##  them.
##  <P/>
##  Note that there is neither a default mapping from the set of
##  matrix object representations to the set of vector representations
##  nor one in the reverse direction.
##  There is in general no <Q>associated</Q> vector object representation
##  to a matrix object representation or vice versa.
##  (However,
##  <Ref Attr="CompatibleVectorFilter" Label="for a matrix object"/>
##  may describe a vector object representation that is compatible with a
##  given matrix object.)
##  <P/>
##  The recommended way to write code that preserves the representation
##  basically works by using constructing operations that take template
##  objects to decide about the intended representation for the new object.
##  <P/>
##  Vector and matrix objects do not have to be &GAP; lists in the sense of
##  <Ref Filt="IsList"/>.
##  Note that objects not in the filter <Ref Filt="IsList"/> need not
##  support all list operations, and their behaviour is not prescribed by the
##  rules for lists, e.g., behaviour w.r.t. arithmetic operations.
##  However, row list matrices behave nearly like lists of row vectors
##  that insist on being dense and containing only vectors of the same
##  length and with the same base domain.
##  <P/>
##  Vector and matrix objects are not likely to benefit from &GAP;'s
##  immediate methods (see section <Ref Sect="Immediate Methods"/>).
##  Therefore it may be useful to set the filter
##  <Ref Filt="IsNoImmediateMethodsObject"/> in the definition of new kinds
##  of vector and matrix objects.
##  <P/>
##  For information on how to implement new <Ref Filt="IsMatrixObj"/> and
##  <Ref Filt="IsVectorObj"/> representations see Section
##  <Ref Sect="Implementing New Vector and Matrix Objects Types"/>.
##  <#/GAPDoc>
##


#############################################################################
##
#A  Length( <v> )
##
##  <#GAPDoc Label="Length_IsVectorObj">
##  <ManSection>
##  <Attr Name="Length" Arg='v' Label="for a vector object"/>
##
##  <Description>
##  returns the length of the vector object <A>v</A>,
##  which is defined to be the number of entries of <A>v</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "Length", IsVectorObj );


#############################################################################
##
#A  ConstructingFilter( <v> )
#A  ConstructingFilter( <M> )
##
##  <#GAPDoc Label="ConstructingFilter">
##  <ManSection>
##  <Heading>ConstructingFilter</Heading>
##  <Attr Name="ConstructingFilter" Arg="v" Label="for a vector object"/>
##  <Attr Name="ConstructingFilter" Arg="M" Label="for a matrix object"/>
##
##  <Returns>a filter</Returns>
##  <Description>
##  Called with a vector object <A>v</A> or a matrix object <A>M</A>,
##  respectively,
##  <Ref Attr="ConstructingFilter" Label="for a vector object"/> returns
##  a filter <C>f</C> such that when
##  <Ref Oper="NewVector"/> or <Ref Oper="NewMatrix"/>, respectively,
##  is called with <C>f</C> then a vector object or a matrix object,
##  respectively, in the same representation as the argument is produced.
##  <P/>
##  If the <Ref Attr="ConstructingFilter" Label="for a vector object"/>
##  value of <A>v</A> or <A>M</A> implies <Ref Filt="IsCopyable"/> then
##  mutable versions of <A>v</A> or <A>M</A> can be created,
##  otherwise all vector or matrix objects with this filter are immutable.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "ConstructingFilter", IsVecOrMatObj );


#############################################################################
##
#A  CompatibleVectorFilter( <M> )
##
##  <#GAPDoc Label="CompatibleVectorFilter">
##  <ManSection>
##  <Heading>CompatibleVectorFilter</Heading>
##  <Attr Name="CompatibleVectorFilter" Arg="M" Label="for a matrix object"/>
##
##  <Returns>a filter</Returns>
##  <Description>
##  Called with a matrix object <A>M</A>,
##  <Ref Attr="CompatibleVectorFilter" Label="for a matrix object"/> returns
##  either a filter <C>f</C> such that vector objects with
##  <Ref Attr="ConstructingFilter" Label="for a vector object"/> value
##  <C>f</C> are compatible in the sense that <A>M</A> can be multiplied with
##  these vector objects, of <K>fail</K> if no such filter is known.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "CompatibleVectorFilter", IsMatrixOrMatrixObj );


#############################################################################
##
##  List Like Operations for Vector Objects
##


#############################################################################
##
#O  \[\]( <v>, <i> )
#O  \[\]\:\=( <v>, <i>, <obj> )
#O  \{\}( <v>, <list> )
##
##  <#GAPDoc Label="ElementAccessVectorObj">
##  <ManSection>
##  <Heading>Element Access and Assignment for Vector Objects</Heading>
##
##  <Oper Name="\[\]" Arg="v,i" Label="for a vector object and an integer"/>
##  <Oper Name="\[\]\:\=" Arg="v,i,obj"
##   Label="for a vector object and an integer"/>
##  <Oper Name="\{\}" Arg="v,list" Label="for a vector object and a list"/>
##
##  <Description>
##  For a vector object <A>v</A> and a positive integer <A>i</A> that is
##  not larger than the length of <A>v</A>
##  (see <Ref Attr="Length" Label="for a vector object"/>),
##  <A>v</A><C>[</C><A>i</A><C>]</C> is the entry at position <A>i</A>.
##  <P/>
##  If <A>v</A> is mutable, <A>i</A> is as above, and <A>obj</A> is an object
##  from the base domain of <A>v</A> then
##  <A>v</A><C>[</C><A>i</A><C>]:= </C><A>obj</A> assigns <A>obj</A> to the
##  <A>i</A>-th position of <A>v</A>.
##  <P/>
##  If <A>list</A> is a list of positive integers that are not larger than
##  the length of <A>v</A> then
##  <A>v</A><C>{</C><A>list</A><C>}</C> returns a new mutable vector object
##  in the same representation as <A>v</A>
##  (see <Ref Attr="ConstructingFilter" Label="for a vector object"/>)
##  that contains the <A>list</A><M>[ k ]</M>-th entry of <A>v</A> at
##  position <M>k</M>.
##  <P/>
##  If the global option <C>check</C> is set to <K>false</K> then
##  <Ref Oper="\[\]\:\=" Label="for a vector object and an integer"/>
##  need not perform consistency checks.
##  <P/>
##  Note that the sublist assignment operation <Ref Oper="\{\}\:\="/>
##  is left out here since it tempts the programmer to use constructions like
##  <C>v{ [ 1 .. 3 ] }:= w{ [ 4 .. 6 ] }</C>
##  which produces an unnecessary intermediate object;
##  one should use <Ref Oper="CopySubVector"/> instead.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "[]", [ IsVectorObj, IsPosInt ] );

DeclareOperation( "[]:=", [ IsVectorObj, IsPosInt, IsObject ] );

DeclareOperation( "{}", [ IsVectorObj, IsList ] );


#############################################################################
##
##  <#GAPDoc Label="MatObj_PositionNonZero">
##  <ManSection>
##  <Oper Name="PositionNonZero" Arg="v" Label="for a vector object"/>
##
##  <Returns>An integer</Returns>
##  <Description>
##  Returns the index of the first entry in the vector object <A>v</A>
##  that is not zero.
##  If all entries are zero,
##  the function returns <C>Length(<A>v</A>) + 1</C>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "PositionNonZero", [ IsVectorObj ] );


#############################################################################
##
##  <#GAPDoc Label="MatObj_PositionLastNonZero">
##  <ManSection>
##  <Oper Name="PositionLastNonZero" Arg="v"
##   Label="for a vector object"/>
##
##  <Returns>An integer</Returns>
##  <Description>
##  Returns the index of the last entry in the vector object <A>v</A>
##  that is not zero.
##  If all entries are zero, the function returns <M>0</M>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "PositionLastNonZero", [ IsVectorObj ] );


#############################################################################
##
#O  ListOp( <v>[, <func>] )
##
##  <#GAPDoc Label="MatObj_ListOp">
##  <ManSection>
##  <Oper Name="ListOp" Arg="v[, func]"
##   Label="for vector object and function"/>
##
##  <Returns>A plain list</Returns>
##  <Description>
##  Applies the function <A>func</A> to each entry of the vector object
##  <A>v</A> and returns the results as a mutable plain list.
##  This allows for calling <Ref Func="List" Label="for a collection"/>
##  on vector objects.
##  <P/>
##  If the argument <A>func</A> is not given,
##  applies  <Ref Func="IdFunc"/> to all entries.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "ListOp", [ IsVectorObj ] );
DeclareOperation( "ListOp", [ IsVectorObj, IsFunction ] );


#############################################################################
##
#O  Unpack( <v> )
#O  Unpack( <M> )
##
##  <#GAPDoc Label="Unpack">
##  <ManSection>
##  <Heading>Unpack</Heading>
##  <Oper Name="Unpack" Arg="v" Label="for a vector object"/>
##  <Oper Name="Unpack" Arg="M" Label="for a matrix object"/>
##
##  <Returns>A plain list</Returns>
##  <Description>
##  Returns a new mutable plain list (see <Ref Filt="IsPlistRep"/>)
##  containing the entries of the vector object <A>v</A> or the matrix object
##  <A>M</A>, respectively.
##  In the case of a matrix object,
##  the result is a plain list of plain lists.
##  <P/>
##  Changing the result does not change <A>v</A> or <A>M</A>, respectively.
##  The entries themselves are not copied.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
##  Note that 'AsList' would not be suitable in the case of vector objects
##  because its result would be immutable.
##
DeclareOperation( "Unpack", [ IsVecOrMatObj ] );
#DeclareOperation( "Unpack", [ IsVectorObj ] );
#DeclareOperation( "Unpack", [ IsMatrixOrMatrixObj ] );


#############################################################################
##
##  <#GAPDoc Label="MatObj_ConcatenationOfVectors">
##  <ManSection>
##  <Heading>ConcatenationOfVectors</Heading>
##  <Func Name="ConcatenationOfVectors" Arg="v1,v2,..."
##   Label="for arbitrary many vector objects"/>
##  <Func Name="ConcatenationOfVectors" Arg="vlist"
##   Label="for a list of vector objects"/>
##
##  <Returns>a vector object</Returns>
##
##  <Description>
##  Returns a new mutable vector object in the representation of <A>v1</A>
##  or the first entry of the nonempty list <A>vlist</A> of vector objects,
##  respectively,
##  such that the entries are the concatenation of the given vector objects.
##  <P/>
##  (Note that <Ref Func="Concatenation" Label="for several lists"/>
##  is a function for which no methods can be installed.)
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "ConcatenationOfVectors" );


#############################################################################
##
##  <#GAPDoc Label="MatObj_ExtractSubVector">
##  <ManSection>
##  <Oper Name="ExtractSubVector" Arg="v,l"/>
##
##  <Returns>a vector object</Returns>
##
##  <Description>
##  Returns a new mutable vector object of the same vector representation
##  as <A>v</A>, containing the entries of <A>v</A> at the positions in
##  the list <A>l</A>.
##  <P/>
##  This is the same as <A>v</A><C>{</C><A>l</A><C>}</C>,
##  the name <Ref Oper="ExtractSubVector"/> was introduced in analogy to
##  <Ref Oper="ExtractSubMatrix"/>, for which no equivalent syntax using
##  curly brackets is available.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "ExtractSubVector", [ IsVectorObj, IsList ] );


#############################################################################
##
##  Arithmetical operations for vector objects
##


#############################################################################
##
#O  AddVector( <dst>, <src>[, <mul>[, <from>, <to>]] )
#O  AddVector( <dst>, <mul>, <src>[, <from>, <to>] )
##
##  <#GAPDoc Label="MatObj_AddVector">
##  <ManSection>
##  <Oper Name="AddVector" Arg='dst, src[, mul[, from, to]]'
##   Label="for two vector objects"/>
##  <Oper Name="AddVector" Arg='dst, mul, src[, from, to]'
##   Label="for two vector objects and a scalar"/>
##
##  <Returns>nothing</Returns>
##
##  <Description>
##  Called with two vector objects <A>dst</A> and <A>src</A>,
##  this function replaces the entries of <A>dst</A> in-place
##  by the entries of the sum <A>dst</A><C> + </C><A>src</A>.
##  <P/>
##  If a scalar <A>mul</A> is given as the third or second argument,
##  respectively, then the entries of <A>dst</A> get replaced by those of
##  <A>dst</A><C> + </C><A>src</A><C> * </C><A>mul</A> or
##  <A>dst</A><C> + </C><A>mul</A><C> * </C><A>src</A>, respectively.
##  <P/>
##  If the optional parameters <A>from</A> and <A>to</A> are given then
##  only the index range <C>[<A>from</A>..<A>to</A>]</C> is guaranteed to be
##  affected.
##  Other indices <E>may</E> be affected, if it is more convenient to do so.
##  This can be helpful if entries of <A>src</A> are known to be zero.
##  <P/>
##  If <A>from</A> is bigger than <A>to</A>, the operation does nothing.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "AddVector",
  [ IsVectorObj and IsMutable, IsVectorObj ] );
DeclareOperation( "AddVector",
  [ IsVectorObj and IsMutable,  IsVectorObj, IsObject ] );
DeclareOperation( "AddVector",
  [ IsVectorObj and IsMutable, IsObject, IsVectorObj ] );
DeclareOperation( "AddVector",
  [ IsVectorObj and IsMutable, IsVectorObj, IsObject, IsPosInt, IsPosInt ] );
DeclareOperation( "AddVector",
  [ IsVectorObj and IsMutable, IsObject, IsVectorObj, IsPosInt, IsPosInt ] );


#############################################################################
##
#O  MultVector( <v>, <mul>[, <from>, <to>] )
#O  MultVectorLeft( <v>, <mul>[, <from>, <to>] )
#O  MultVectorRight( <v>, <mul>[, <from>, <to>] )
##
##  <#GAPDoc Label="MatObj_MultVectorLeft">
##  <ManSection>
##  <Oper Name="MultVector" Arg='v, mul[, from, to]'
##   Label="for a vector object"/>
##  <Oper Name="MultVectorLeft" Arg='v, mul[, from, to]'
##   Label="for a vector object"/>
##  <Oper Name="MultVectorRight" Arg='v, mul[, from, to]'
##   Label="for a vector object"/>
##
##  <Returns>nothing</Returns>
##
##  <Description>
##  These operations multiply <A>v</A> by <A>mul</A> in-place
##  where <Ref Oper="MultVectorLeft" Label="for a vector object"/>
##  multiplies with <A>mul</A> from the left
##  and <Ref Oper="MultVectorRight" Label="for a vector object"/>
##  does so from the right.
##  <P/>
##  Note that <Ref Oper="MultVector" Label="for a vector object"/>
##  is just a synonym for
##  <Ref Oper="MultVectorLeft" Label="for a vector object"/>.
##  This was chosen because vectors in &GAP; are by default row vectors
##  and scalar multiplication is usually written as
##  <M>a \cdot v = a \cdot [v_1, ..., v_n] = [a \cdot v_1, ..., a \cdot v_n]</M>
##  with scalars being applied from the left.
##  <P/>
##  If the optional parameters <A>from</A> and <A>to</A> are given then
##  only the index range <C>[<A>from</A>..<A>to</A>]</C> is guaranteed to be
##  affected. Other indices <E>may</E> be affected, if it is more convenient
##  to do so.
##  This can be helpful if entries of <A>v</A> are known to be zero.
##  If <A>from</A> is bigger than <A>to</A>, the operation does nothing.
##  <P/>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "MultVectorLeft",
  [ IsVectorObj and IsMutable, IsObject ] );
DeclareOperation( "MultVectorLeft",
  [ IsVectorObj and IsMutable, IsObject, IsInt, IsInt ] );

DeclareOperation( "MultVectorRight",
  [ IsVectorObj and IsMutable, IsObject ] );
DeclareOperation( "MultVectorRight",
  [ IsVectorObj and IsMutable, IsObject, IsInt, IsInt ] );


# This is defined for two vectors of equal length,
# it returns the standard scalar product.
# (The documentation is in the section about arithm. operations.)
DeclareOperation( "ScalarProduct", [ IsVectorObj, IsVectorObj ] );


#############################################################################
##
#O  ZeroVector( <filt>, <R>, <len> )
#O  ZeroVector( <R>, <len> )
#O  ZeroVector( <len>, <v> )
#O  ZeroVector( <len>, <M> )
##
##  <#GAPDoc Label="VectorObj_ZeroVector">
##  <ManSection>
##  <Heading>ZeroVector</Heading>
##  <Oper Name="ZeroVector" Arg="filt,R,len" Label="for filter, base domain and length"/>
##  <Oper Name="ZeroVector" Arg="R,len" Label="for base domain and length"/>
##  <Oper Name="ZeroVector" Arg="len,v" Label="for length and vector object"/>
##  <Oper Name="ZeroVector" Arg="len,M" Label="for length and matrix object"/>
##
##  <Returns>a vector object</Returns>
##  <Description>
##  For a filter <A>filt</A>, a semiring <A>R</A> and a nonnegative integer <A>len</A>,
##  this operation returns a new vector object of length <A>len</A> over <A>R</A>
##  in the representation <A>filt</A> containing only zeros.
##  <P/>
##  If only <A>R</A> and <A>len</A> are given,
##  then &GAP; guesses a suitable representation.
##  <P/>
##  For a vector object <A>v</A> and a nonnegative integer <A>len</A>,
##  this operation returns a new vector object of length <A>len</A>
##  in the same representation as <A>v</A> containing only zeros.
##  <P/>
##  For a matrix object <A>M</A> and a nonnegative integer <A>len</A>,
##  this operation returns a new zero vector object of length
##  <A>len</A> in the representation given by the
##  <Ref Attr="CompatibleVectorFilter" Label="for a matrix object"/> value
##  of <A>M</A>, provided that such a representation exists.
##  <P/>
##  If the <Ref Attr="ConstructingFilter" Label="for a vector object"/>
##  value of the result implies <Ref Filt="IsCopyable"/> then the result is
##  mutable.
##  <P/>
##  Default methods for
##  <Ref Oper="ZeroVector" Label="for filter, base domain and length"/>
##  delegate to <Ref Oper="NewZeroVector"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "ZeroVector", [ IsOperation, IsSemiring, IsInt ] );
DeclareOperation( "ZeroVector", [ IsSemiring, IsInt ] );
DeclareOperation( "ZeroVector", [ IsInt, IsVecOrMatObj ] );
#DeclareOperation( "ZeroVector", [ IsInt, IsVectorObj ] );
#DeclareOperation( "ZeroVector", [ IsInt, IsMatrixOrMatrixObj ] );


#############################################################################
##
#O  Vector( <filt>, <R>, <list> )
#O  Vector( <filt>, <R>, <v> )
#O  Vector( <R>, <list> )
#O  Vector( <R>, <v> )
#O  Vector( <list>, <v> )
#O  Vector( <v1>, <v2> )
##
##  <#GAPDoc Label="Vector">
##  <ManSection>
##  <Heading>Vector</Heading>
##  <Oper Name="Vector" Arg='filt,R,list'
##   Label="for filter, base domain, and list"/>
##  <Oper Name="Vector" Arg='filt,R,v'
##   Label="for filter, base domain, and vector object"/>
##  <Oper Name="Vector" Arg='R,list'
##   Label="for base domain and list"/>
##  <Oper Name="Vector" Arg='R,v'
##   Label="for base domain and vector object"/>
##  <Oper Name="Vector" Arg='list,v'
##   Label="for a list and a vector object"/>
##  <Oper Name="Vector" Arg='v1,v2'
##   Label="for two vector objects"/>
##  <Oper Name="Vector" Arg='list'
##   Label="for a list"/>
##
##  <Returns>a vector object</Returns>
##  <Description>
##  If a filter <A>filt</A> is given as the first argument then
##  a vector object is returned that has
##  <Ref Attr="ConstructingFilter" Label="for a vector object"/>
##  value <A>filt</A>, is defined over the base domain <A>R</A>,
##  and has the entries given by the list <A>list</A> or the vector object
##  <A>v</A>, respectively.
##  <P/>
##  If a semiring <A>R</A> is given as the first argument then
##  a vector object is returned whose
##  <Ref Attr="ConstructingFilter" Label="for a vector object"/>
##  value is guessed from <A>R</A>, again with base domain <A>R</A>
##  and entries given by the last argument.
##  <P/>
##  In the remaining cases with two arguments,
##  the first argument is a list or a vector object
##  that defines the entries of the result,
##  and the second argument is a vector object whose
##  <Ref Attr="ConstructingFilter" Label="for a vector object"/> and
##  <Ref Attr="BaseDomain" Label="for a vector object"/> are taken for the
##  result.
##  <P/>
##  If only a list <A>list</A> is given then both the
##  <Ref Attr="ConstructingFilter" Label="for a vector object"/> and the
##  <Ref Attr="BaseDomain" Label="for a vector object"/> are guessed from
##  this list.
##  <P/>
##  The variant <C>Vector( </C><A>v1</A><C>, </C><A>v2</A><C> )</C>
##  is supported also for the case that <A>v2</A> is a row vector but not
##  a vector object.
##  In this situation, the result is a row vector that is equal to
##  <A>v1</A> and whose internal representation fits to that of <A>v2</A>.
##  <P/>
##  If the global option <C>check</C> is set to <K>false</K> then
##  <Ref Oper="Vector" Label="for filter, base domain, and list"/>
##  need not perform consistency checks.
##  <P/>
##  If the <Ref Attr="ConstructingFilter" Label="for a vector object"/>
##  value of the result implies <Ref Filt="IsCopyable"/> then the result is
##  mutable if and only if the argument that determines the entries of the
##  result (<A>list</A>, <A>v</A>, <A>v1</A>) is mutable.
##  <P/>
##  In the case of a mutable result, it is <E>not</E> guaranteed that
##  the given list of entries is copied.
##  <P/>
##  Default methods for
##  <Ref Oper="Vector" Label="for filter, base domain, and list"/>
##  delegate to <Ref Oper="NewVector"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "Vector", [ IsOperation, IsSemiring, IsList ] );
DeclareOperation( "Vector", [ IsOperation, IsSemiring, IsVectorObj ] );
DeclareOperation( "Vector", [ IsSemiring, IsList ] );
DeclareOperation( "Vector", [ IsSemiring, IsVectorObj ] );
DeclareOperation( "Vector", [ IsList, IsVectorObj ] );
DeclareOperation( "Vector", [ IsVectorObj, IsVectorObj ] );
DeclareOperation( "Vector", [ IsList ] );


#############################################################################
##
#O  NewVector( <filt>, <R>, <list> )
#O  NewZeroVector( <filt>, <R>, <n> )
##
##  <#GAPDoc Label="NewVector">
##  <ManSection>
##  <Heading>NewVector and NewZeroVector</Heading>
##  <Oper Name="NewVector" Arg='filt,R,list'/>
##  <Oper Name="NewZeroVector" Arg='filt,R,n'/>
##
##  <Description>
##  For a filter <A>filt</A>, a semiring <A>R</A>, and a list <A>list</A>
##  of elements that belong to <A>R</A>,
##  <Ref Oper="NewVector"/> returns a vector object which has
##  the <Ref Attr="ConstructingFilter" Label="for a vector object"/>
##  <A>filt</A>,
##  the <Ref Attr="BaseDomain" Label="for a vector object"/> <A>R</A>,
##  and the entries in <A>list</A>.
##  The list <A>list</A> is guaranteed not to be changed by this operation.
##  <P/>
##  If the global option <C>check</C> is set to <K>false</K> then
##  <Ref Oper="NewVector"/> need not perform consistency checks.
##  <P/>
##  Similarly, <Ref Oper="NewZeroVector"/> returns a vector object
##  of length <A>n</A> which has <A>filt</A> and <A>R</A> as
##  <Ref Attr="ConstructingFilter" Label="for a vector object"/> and
##  <Ref Attr="BaseDomain" Label="for a vector object"/> values,
##  and contains the zero of <A>R</A> in each position.
##  <P/>
##  The returned object is mutable if and only if <A>filt</A> implies
##  <Ref Filt="IsCopyable"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareTagBasedOperation( "NewVector", [ IsOperation, IsSemiring, IsList ] );

DeclareTagBasedOperation( "NewZeroVector",
    [ IsOperation, IsSemiring, IsInt ] );


#############################################################################
##
#O  NewMatrix( <filt>, <R>, <ncols>, <list> )
#O  NewZeroMatrix( <filt>, <R>, <m>, <n> )
#O  NewIdentityMatrix( <filt>, <R>, <n> )
##
##  <#GAPDoc Label="NewMatrix">
##  <ManSection>
##  <Heading>NewMatrix, NewZeroMatrix, NewIdentityMatrix</Heading>
##  <Oper Name="NewMatrix" Arg='filt,R,ncols,list'/>
##  <Oper Name="NewZeroMatrix" Arg='filt,R,m,n'/>
##  <Oper Name="NewIdentityMatrix" Arg='filt,R,n'/>
##
##  <Description>
##  For a filter <A>filt</A>, a semiring <A>R</A>,
##  a positive integer <A>ncols</A>, and a list <A>list</A>,
##  <Ref Oper="NewMatrix"/> returns a matrix object which has
##  the <Ref Attr="ConstructingFilter" Label="for a vector object"/>
##  <A>filt</A>,
##  the <Ref Attr="BaseDomain" Label="for a matrix object"/> <A>R</A>,
##  <A>n</A> columns
##  (see <Ref Attr="NumberColumns" Label="for a matrix object"/>),
##  and the entries described by <A>list</A>,
##  which can be either a plain list of vector objects of length <A>ncols</A>
##  or a plain list of plain lists of length <A>ncols</A>
##  or a plain list of length a multiple of <A>ncols</A> containing the
##  entries in row major order.
##  The list <A>list</A> is guaranteed not to be changed by this operation.
##  <P/>
##  The corresponding entries must be in or compatible with <A>R</A>.
##  If <A>list</A> already contains vector objects, they are copied.
##  <P/>
##  If the global option <C>check</C> is set to <K>false</K> then
##  <Ref Oper="NewMatrix"/> need not perform consistency checks.
##  <P/>
##  Similarly, <Ref Oper="NewZeroMatrix"/> returns a zero matrix
##  object with <A>m</A> rows and <A>n</A> columns
##  which has <A>filt</A> and <A>R</A> as
##  <Ref Attr="ConstructingFilter" Label="for a vector object"/> and
##  <Ref Attr="BaseDomain" Label="for a vector object"/> values.
##  <P/>
##  Similarly, <Ref Oper="NewIdentityMatrix"/> returns an identity
##  matrix object with <A>n</A> rows and columns
##  which has <A>filt</A> and <A>R</A> as
##  <Ref Attr="ConstructingFilter" Label="for a vector object"/> and
##  <Ref Attr="BaseDomain" Label="for a vector object"/> values,
##  and contains the identity element of <A>R</A> in the diagonal
##  and the zero of <A>R</A> in each off-diagonal position.
##  <P/>
##  The returned object is mutable if and only if <A>filt</A> implies
##  <Ref Filt="IsCopyable"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareTagBasedOperation( "NewMatrix",
    [ IsOperation, IsSemiring, IsInt, IsList] );

DeclareTagBasedOperation( "NewZeroMatrix",
    [ IsOperation, IsSemiring, IsInt, IsInt ] );

DeclareTagBasedOperation( "NewIdentityMatrix",
    [ IsOperation, IsSemiring, IsInt ] );


#############################################################################
##
#O  ChangedBaseDomain( <v>, <R> )
#O  ChangedBaseDomain( <M>, <R> )
##
##  <#GAPDoc Label="ChangedBaseDomain">
##  <ManSection>
##  <Heading>ChangedBaseDomain</Heading>
##  <Oper Name="ChangedBaseDomain" Arg='v,R' Label="for a vector object"/>
##  <Oper Name="ChangedBaseDomain" Arg='M,R' Label="for a matrix object"/>
##
##  <Description>
##  For a vector object <A>v</A> (a matrix object <A>M</A>)
##  and a semiring <A>R</A>,
##  <Ref Oper="ChangedBaseDomain" Label="for a vector object"/> returns
##  a new vector object (matrix object)
##  with <Ref Attr="BaseDomain" Label="for a vector object"/> value <A>R</A>,
##  <Ref Attr="ConstructingFilter" Label="for a vector object"/> value
##  equal to that of <A>v</A> (<A>M</A>),
##  and the same entries as <A>v</A> (<A>M</A>).
##  <P/>
##  The result is mutable if and only if <A>v</A> (<A>M</A>) is mutable.
##  <P/>
##  For example, one can create a vector defined over <C>GF(4)</C>
##  from a vector defined over <C>GF(2)</C> with this operation.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "ChangedBaseDomain", [ IsVecOrMatObj, IsSemiring ] );
#DeclareOperation( "ChangedBaseDomain", [ IsVectorObj, IsSemiring ] );
#DeclareOperation( "ChangedBaseDomain", [ IsMatrixOrMatrixObj, IsSemiring ] );


############################################################################
##
#O  Randomize( [Rs, ]v )
#O  Randomize( [Rs, ]M )
##
##  <#GAPDoc Label="Randomize">
##  <ManSection>
##  <Heading>Randomize</Heading>
##  <Oper Name="Randomize" Arg="[Rs,]v" Label="for a vector object"/>
##  <Oper Name="Randomize" Arg="[Rs,]M" Label="for a matrix object"/>
##  <Description>
##  Replaces every entry in the mutable vector object <A>v</A>
##  or matrix object <A>M</A>, respectively, with
##  a random one from the base domain of <A>v</A> or <A>M</A>,
##  respectively, and returns the argument.
##  <P/>
##  If given, the random source <A>Rs</A> is used to compute the
##  random elements.
##  Note that in this case,
##  a <Ref Oper="Random" Label="for random source and collection"/>
##  method must be available that takes a random source as its first
##  argument and the base domain as its second argument.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "Randomize", [ IsVectorObj and IsMutable ] );
DeclareOperation( "Randomize", [ IsRandomSource, IsVectorObj and IsMutable ] );
DeclareOperation( "Randomize", [ IsMatrixOrMatrixObj and IsMutable ] );
DeclareOperation( "Randomize", [ IsRandomSource, IsMatrixOrMatrixObj and IsMutable ] );


#############################################################################
##
#O  CopySubVector( <src>, <dst>, <scols>, <dcols> )
##
##  <#GAPDoc Label="CopySubVector">
##  <ManSection>
##  <Oper Name="CopySubVector" Arg='src, dst, scols, dcols'/>
##
##  <Returns>nothing</Returns>
##
##  <Description>
##  For two vector objects <A>src</A> and <A>dst</A>,
##  such that <A>dst</A> is mutable,
##  and two lists <A>scols</A> and <A>dcols</A> of positions,
##  <Ref Oper="CopySubVector"/> assigns the entries
##  <A>src</A><C>{ </C><A>scols</A><C> }</C>
##  (see <Ref Oper="ExtractSubVector"/>)
##  to the positions <A>dcols</A> in <A>dst</A>,
##  but without creating an intermediate object and thus
##  &ndash;at least in special cases&ndash;
##  much more efficiently.
##  <P/>
##  For certain objects like compressed vectors this might be significantly
##  more efficient if <A>scols</A> and <A>dcols</A> are ranges
##  with increment 1.
##  <P/>
##  If the global option <C>check</C> is set to <K>false</K> then
##  <Ref Oper="CopySubVector"/> need not perform consistency checks.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "CopySubVector",
    [ IsVectorObj, IsVectorObj and IsMutable, IsList, IsList ] );



#############################################################################
##
##  <#GAPDoc Label="MatObj_WeightOfVector">
##  <ManSection>
##  <Oper Name="WeightOfVector" Arg="v" Label="for a vector object"/>
##  <Returns>an integer</Returns>
##  <Description>
##  returns the Hamming weight of the vector object <A>v</A>,
##  i.e., the number of nonzero entries in <A>v</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "WeightOfVector", [ IsVectorObj ] );


#############################################################################
##
##  <#GAPDoc Label="MatObj_DistanceOfVectors">
##  <ManSection>
##  <Oper Name="DistanceOfVectors" Arg="v1,v2"
##   Label="for two vector objects"/>
##  <Returns>an integer</Returns>
##  <Description>
##  returns the Hamming distance of the vector objects <A>v1</A> and
##  <A>v2</A>, i.e., the number of entries in which the vectors differ.
##  The vectors must have equal length.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "DistanceOfVectors", [ IsVectorObj, IsVectorObj ] );


#############################################################################
##
#O  ExtractSubMatrix( <M>, <rows>, <cols> )
##
##  <#GAPDoc Label="ExtractSubMatrix">
##  <ManSection>
##  <Oper Name="ExtractSubMatrix" Arg='M, rows, cols'/>
##
##  <Description>
##  Creates a copy of the submatrix described by the two
##  lists, which mean subsets of row and column positions, respectively.
##  This does <A>M</A>{<A>rows</A>}{<A>cols</A>} and returns the result.
##  It preserves the representation of the matrix.
##  <P/>
##  If the <Ref Attr="ConstructingFilter" Label="for a matrix object"/>
##  value of the result implies <Ref Filt="IsCopyable"/> then the result is
##  fully mutable.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "ExtractSubMatrix", [ IsMatrixOrMatrixObj, IsList, IsList ] );


#############################################################################
##
#O  MutableCopyMatrix( <M> )
##
##  <#GAPDoc Label="MutableCopyMatrix">
##  <ManSection>
##  <Oper Name="MutableCopyMatrix" Arg='M' Label="for a matrix object"/>
##
##  <Description>
##  For a matrix object <A>M</A>, this operation returns a fully mutable
##  copy of <A>M</A>, with the same
##  <Ref Attr="ConstructingFilter" Label="for a matrix object"/> and
##  <Ref Attr="BaseDomain" Label="for a matrix object"/> values,
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "MutableCopyMatrix", [ IsMatrixOrMatrixObj ] );


#############################################################################
##
#O  CopySubMatrix( <src>, <dst>, <srows>, <drows>, <scols>, <dcols> )
##
##  <#GAPDoc Label="CopySubMatrix">
##  <ManSection>
##  <Oper Name="CopySubMatrix" Arg='src, dst, srows, drows, scols, dcols'/>
##
##  <Returns>nothing</Returns>
##
##  <Description>
##  Does <C><A>dst</A>{<A>drows</A>}{<A>dcols</A>} :=
##  <A>src</A>{<A>srows</A>}{<A>scols</A>}</C>
##  without creating an intermediate object and thus
##  &ndash;at least in special cases&ndash;
##  much more efficiently.
##  For certain objects like compressed vectors this might be
##  significantly more efficient if <A>scols</A> and <A>dcols</A> are
##  ranges with increment 1.
##  <P/>
##  If the global option <C>check</C> is set to <K>false</K> then
##  <Ref Oper="CopySubMatrix"/> need not perform consistency checks.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "CopySubMatrix",
    [ IsMatrixOrMatrixObj, IsMatrixOrMatrixObj, IsList, IsList, IsList, IsList ] );


#############################################################################
##
#O  MatElm( <M>, <row>, <col> )  . . . . . .  select an entry from a matrix
#O  <M>[ <row>, <col> ]  . . . . . . . . . .  select an entry from a matrix
##
##  <#GAPDoc Label="MatObj_MatElm">
##  <ManSection>
##  <Oper Name="MatElm" Arg='M, row, col'/>
##
##  <Returns>an entry of the matrix object</Returns>
##
##  <Description>
##  For a matrix object <A>M</A>, this operation returns the entry in
##  row <A>row</A> and column <A>col</A>.
##  <P/>
##  Also the syntax <A>M</A><C>[ </C><A>row</A><C>, </C><A>col</A><C> ]</C>
##  is supported.
##  <P/>
##  Note that this is <E>not</E> equivalent to
##  <A>M</A><C>[ </C><A>row</A><C> ][ </C><A>col</A><C> ]</C>,
##  which would first try to access <A>M</A><C>[ </C><A>row</A><C> ]</C>,
##  and this is in general not possible.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperationKernel( "[,]", [ IsMatrixOrMatrixObj, IS_INT, IS_INT ], ELM_MAT );
DeclareSynonym( "MatElm", ELM_MAT );


#############################################################################
##
#O  SetMatElm( <M>, <row>, <col>, <obj> )  . . . . set an entry in a matrix
#O  <M>[ <row>, <col> ]:= <obj>  . . . . . . . . . set an entry in a matrix
##
##  <#GAPDoc Label="MatObj_SetMatElm">
##  <ManSection>
##  <Oper Name="SetMatElm" Arg='M, row, col, obj'/>
##
##  <Returns>nothing</Returns>
##
##  <Description>
##  For a mutable matrix object <A>M</A>, this operation assigns the object
##  <A>obj</A> to the position in row <A>row</A> and column <A>col</A>,
##  provided that <A>obj</A> is compatible with the
##  <Ref Attr="BaseDomain" Label="for a matrix object"/> value of <A>M</A>.
##  <P/>
##  Also the syntax
##  <A>M</A><C>[ </C><A>row</A><C>, </C><A>col</A><C> ]:= </C><A>obj</A>
##  is supported.
##  <P/>
##  Note that this is <E>not</E> equivalent to
##  <A>M</A><C>[ </C><A>row</A><C> ][ </C><A>col</A><C> ]:= </C><A>obj</A>,
##  which would first try to access <A>M</A><C>[ </C><A>row</A><C> ]</C>,
##  and this is in general not possible.
##  <P/>
##  If the global option <C>check</C> is set to <K>false</K> then
##  <Ref Oper="SetMatElm"/> need not perform consistency checks.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperationKernel( "[,]:=", [ IsMatrixOrMatrixObj, IsInt, IsInt, IsObject ],
    ASS_MAT );
#T We want to require also 'IsMutable' for the first argument,
#T but some package may have installed methods without this requirement.
#T Note that if we declare the operation twice, once with requirement
#T 'IsMutable' and once without, each method installation will show
#T a complaint that it matches more than one declaration.
DeclareSynonym( "SetMatElm", ASS_MAT );


#############################################################################
##
#O  ZeroMatrix( <m>, <n>, <M> )
#O  ZeroMatrix( <R>, <m>, <n> )
#O  ZeroMatrix( <filt>, <R>, <m>, <n> )
##
##  <#GAPDoc Label="MatObj_ZeroMatrix">
##  <ManSection>
##  <Heading>ZeroMatrix</Heading>
##  <Oper Name="ZeroMatrix" Arg="m, n, M"
##   Label="for dimensions and matrix object"/>
##  <Oper Name="ZeroMatrix" Arg="R, m, n"
##   Label="for base domain and dimensions"/>
##  <Oper Name="ZeroMatrix" Arg="filt, R, m, n"
##   Label="for filter, base domain, and dimensions"/>
##
##  <Returns>a matrix object</Returns>
##  <Description>
##  For a matrix object <A>M</A> and two nonnegative integers <A>m</A>
##  and <A>n</A>, this operation returns a new matrix object
##  with <A>m</A> rows and <A>n</A> columns
##  in the same representation and over the same base domain as <A>M</A>
##  containing only zeros.
##  <P/>
##  If a semiring <A>R</A> and two nonnegative integers <A>m</A> and
##  <A>n</A> are given,
##  the representation of the result is guessed from <A>R</A>.
##  <P/>
##  If a filter <A>filt</A> and a semiring <A>R</A> are  given as the first
##  and second argument, they are taken as the values of
##  <Ref Attr="ConstructingFilter" Label="for a matrix object"/> and
##  <Ref Attr="BaseDomain" Label="for a matrix object"/> of the result.
##  <P/>
##  If the <Ref Attr="ConstructingFilter" Label="for a matrix object"/>
##  value of the result implies <Ref Filt="IsCopyable"/> then the result is
##  fully mutable.
##  <P/>
##  Default methods for
##  <Ref Oper="ZeroMatrix" Label="for dimensions and matrix object"/>
##  delegate to <Ref Oper="NewZeroMatrix"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "ZeroMatrix", [ IsInt, IsInt, IsMatrixOrMatrixObj ] );
DeclareOperation( "ZeroMatrix", [ IsSemiring, IsInt, IsInt ] );
DeclareOperation( "ZeroMatrix", [ IsOperation, IsSemiring, IsInt, IsInt ] );


#############################################################################
##
#O  IdentityMatrix( <n>, <M> )
#O  IdentityMatrix( <R>, <n> )
#O  IdentityMatrix( <filt>, <R>, <n> )
##
##  <#GAPDoc Label="MatObj_IdentityMatrix">
##  <ManSection>
##  <Heading>IdentityMatrix</Heading>
##  <Oper Name="IdentityMatrix" Arg="n, M"
##   Label="for dimension and matrix object"/>
##  <Oper Name="IdentityMatrix" Arg="R, n"
##   Label="for base domain and dimension"/>
##  <Oper Name="IdentityMatrix" Arg="filt, R, n"
##   Label="for filter, base domain, and dimension"/>
##
##  <Returns>a matrix object</Returns>
##  <Description>
##  For a matrix object <A>M</A> and a nonnegative integer <A>n</A>,
##  this operation returns a new identity matrix object
##  with <A>n</A> rows and columns
##  in the same representation and over the same base domain as <A>M</A>.
##  <P/>
##  If a semiring <A>R</A> and a nonnegative integer <A>n</A> is given,
##  the representation of the result is guessed from <A>R</A>.
##  <P/>
##  If a filter <A>filt</A> and a semiring <A>R</A> are  given as the first
##  and second argument, they are taken as the values of
##  <Ref Attr="ConstructingFilter" Label="for a matrix object"/> and
##  <Ref Attr="BaseDomain" Label="for a matrix object"/> of the result.
##  <P/>
##  If the <Ref Attr="ConstructingFilter" Label="for a matrix object"/>
##  value of the result implies <Ref Filt="IsCopyable"/> then the result is
##  fully mutable.
##  <P/>
##  Default methods for
##  <Ref Oper="IdentityMatrix" Label="for dimension and matrix object"/>
##  delegate to <Ref Oper="NewIdentityMatrix"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "IdentityMatrix", [ IsInt, IsMatrixOrMatrixObj ] );
DeclareOperation( "IdentityMatrix", [ IsSemiring, IsInt ] );
DeclareOperation( "IdentityMatrix", [ IsOperation, IsSemiring, IsInt ] );


#############################################################################
##
#O  CompanionMatrix( <pol>, <M> )
#O  CompanionMatrix( [<filt>, ]<pol>, <R> )
##
##  <#GAPDoc Label="MatObj_CompanionMatrix">
##  <ManSection>
##  <Heading>CompanionMatrix</Heading>
##  <Oper Name="CompanionMatrix" Arg='pol, M'
##   Label="for polynomial and matrix object"/>
##  <Oper Name="CompanionMatrix" Arg='filt, pol, R'
##   Label="for filter, polynomial, and semiring"/>
##  <Oper Name="CompanionMatrix" Arg='pol, R'
##   Label="for polynomial and semiring"/>
##
##  <Returns>a matrix object</Returns>
##  <Description>
##  For a monic, univariate polynomial <A>pol</A> whose coefficients lie in
##  the base domain of the matrix object <A>M</A>,
##  <Ref Oper="CompanionMatrix" Label="for polynomial and matrix object"/>
##  returns the companion matrix of <A>pol</A>,
##  as a matrix object with the same
##  <Ref Attr="ConstructingFilter" Label="for a matrix object"/> and
##  <Ref Attr="BaseDomain" Label="for a matrix object"/> values as <A>M</A>.
##  <P/>
##  We use column convention, that is, the negatives of the coefficients of
##  <A>pol</A> appear in the last column of the result.
##  <P/>
##  If a filter <A>filt</A> and a semiring <A>R</A> are given then the
##  companion matrix is returned as a matrix object with
##  <Ref Attr="ConstructingFilter" Label="for a matrix object"/> value
##  <A>filt</A> and
##  <Ref Attr="BaseDomain" Label="for a matrix object"/> value <A>R</A>.
##  <P/>
##  If only <A>pol</A> and a semiring <A>R</A> are given,
##  the representation of the result is guessed from <A>R</A>.
##  <P/>
##  If the <Ref Attr="ConstructingFilter" Label="for a matrix object"/>
##  value of the result implies <Ref Filt="IsCopyable"/> then the result is
##  fully mutable.
##  <P/>
##  <Example><![CDATA[
##  gap> x:= X( GF(5) );;  pol:= x^3 + x^2 + 2*x + 3;;
##  gap> M:= CompanionMatrix( IsPlistMatrixRep, pol, GF(25) );;
##  gap> Display( M );
##  <3x3-matrix over GF(5^2):
##  [[ 0*Z(5), 0*Z(5), Z(5) ]
##   [ Z(5)^0, 0*Z(5), Z(5)^3 ]
##   [ 0*Z(5), Z(5)^0, Z(5)^2 ]
##  ]>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "CompanionMatrix",
    [ IsUnivariatePolynomial, IsMatrixOrMatrixObj ] );
DeclareOperation( "CompanionMatrix",
    [ IsOperation, IsUnivariatePolynomial, IsSemiring ] );
DeclareOperation( "CompanionMatrix",
    [ IsUnivariatePolynomial, IsSemiring ] );


#############################################################################
##
#O  Matrix( <filt>, <R>, <list>, <ncols> )
#O  Matrix( <filt>, <R>, <list> )
#O  Matrix( <filt>, <R>, <M> )
#O  Matrix( <R>, <list>, <ncols> )
#O  Matrix( <R>, <list> )
#O  Matrix( <R>, <M> )
#O  Matrix( <list>, <ncols>, <M> )
#O  Matrix( <list>, <M> )
#O  Matrix( <M1>, <M2> )
#O  Matrix( <list>, <ncols> )
#O  Matrix( <list> )
##
##  <#GAPDoc Label="MatObj_Matrix">
##  <ManSection>
##  <Heading>Matrix</Heading>
##  <Oper Name="Matrix" Arg='filt,R,list,ncols'
##   Label="for filter, base domain, list, ncols"/>
##  <Oper Name="Matrix" Arg='filt,R,list'
##   Label="for filter, base domain, and list"/>
##  <Oper Name="Matrix" Arg='filt,R,M'
##   Label="for filter, base domain, and matrix object"/>
##  <Oper Name="Matrix" Arg='R,list,ncols'
##   Label="for base domain, list, ncols"/>
##  <Oper Name="Matrix" Arg='R,list'
##   Label="for base domain and list"/>
##  <Oper Name="Matrix" Arg='R,M'
##   Label="for base domain and matrix object"/>
##  <Oper Name="Matrix" Arg='list,ncols,M'
##   Label="for a list, ncols, and a matrix object"/>
##  <Oper Name="Matrix" Arg='list,M'
##   Label="for a list and a matrix object"/>
##  <Oper Name="Matrix" Arg='M1,M2'
##   Label="for two matrix objects"/>
##  <Oper Name="Matrix" Arg='list,ncols'
##   Label="for a list and ncols"/>
##  <Oper Name="Matrix" Arg='list'
##   Label="for a list"/>
##
##  <Returns>a matrix object</Returns>
##  <Description>
##  If a filter <A>filt</A> is given as the first argument then
##  a matrix object is returned that has
##  <Ref Attr="ConstructingFilter" Label="for a matrix object"/>
##  value <A>filt</A>, is defined over the base domain <A>R</A>,
##  and has the entries given by the list <A>list</A> or the matrix object
##  <A>M</A>, respectively.
##  Here <A>list</A> can be either a list of plain lists that describe the
##  entries of the rows, or a flat list of the entries in row major order,
##  where <A>ncols</A> defines the number of columns.
##  <P/>
##  If a semiring <A>R</A> is given as the first argument then
##  a matrix object is returned whose
##  <Ref Attr="ConstructingFilter" Label="for a matrix object"/>
##  value is guessed from <A>R</A>, again with base domain <A>R</A>
##  and entries given by the last argument.
##  <P/>
##  In those remaining cases where the last argument is a matrix object,
##  the first argument is a list or a matrix object
##  that defines (together with <A>ncols</A> if applicable) the entries of
##  the result, and the
##  <Ref Attr="ConstructingFilter" Label="for a matrix object"/> and
##  <Ref Attr="BaseDomain" Label="for a matrix object"/> of the last argument
##  are taken for the result.
##  <P/>
##  Finally, if only a list <A>list</A> and perhaps <A>ncols</A> is given
##  then both the
##  <Ref Attr="ConstructingFilter" Label="for a matrix object"/> and the
##  <Ref Attr="BaseDomain" Label="for a vector object"/> are guessed from
##  the list.
##  <P/>
##  If the global option <C>check</C> is set to <K>false</K> then
##  <Ref Oper="Matrix" Label="for filter, base domain, list, ncols"/>
##  need not perform consistency checks.
##  <P/>
##  If the <Ref Attr="ConstructingFilter" Label="for a matrix object"/>
##  value of the result implies <Ref Filt="IsCopyable"/> then the result is
##  mutable if and only if the argument that determines the entries of the
##  result (<A>list</A>, <A>M</A>, <A>M1</A>) is mutable.
##  <P/>
##  In the case of a mutable result, it is guaranteed that the given list
##  <A>list</A> is copied in the sense of <Ref Oper="ShallowCopy"/>,
##  and if <A>list</A> is a nested list then it is <E>not</E> guaranteed
##  that also the entries of <A>list</A> are copied.
##  <P/>
##  Default methods for
##  <Ref Oper="Matrix" Label="for filter, base domain, list, ncols"/>
##  delegate to <Ref Oper="NewMatrix"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "Matrix", [ IsOperation, IsSemiring, IsList, IsInt ] );
DeclareOperation( "Matrix", [ IsOperation, IsSemiring, IsList ] );
DeclareOperation( "Matrix", [ IsOperation, IsSemiring, IsMatrixOrMatrixObj ] );
DeclareOperation( "Matrix", [ IsSemiring, IsList, IsInt ] );
DeclareOperation( "Matrix", [ IsSemiring, IsList ] );
DeclareOperation( "Matrix", [ IsSemiring, IsMatrixOrMatrixObj ] );
DeclareOperation( "Matrix", [ IsList, IsInt, IsMatrixOrMatrixObj ] );
DeclareOperation( "Matrix", [ IsList, IsMatrixOrMatrixObj ] );
DeclareOperation( "Matrix", [ IsMatrixOrMatrixObj, IsMatrixOrMatrixObj ] );
DeclareOperation( "Matrix", [ IsList, IsInt ] );
DeclareOperation( "Matrix", [ IsList ]);


############################################################################
##
#A  CompatibleVector( <M> )
##
##  <#GAPDoc Label="CompatibleVector">
##  <ManSection>
##  <Oper Name="CompatibleVector" Arg='M' Label="for a matrix object"/>
##
##  <Returns>a vector object</Returns>
##
##  <Description>
##  Called with a matrix object <A>M</A> with <M>m</M> rows,
##  this operation returns a mutable zero vector object <M>v</M> of length
##  <M>m</M> and in the representation given by the
##  <Ref Attr="CompatibleVectorFilter" Label="for a matrix object"/> value
##  of <A>M</A> (provided that such a representation exists).
##  <P/>
##  The idea is that there should be an efficient way to
##  form the product <M>v</M><A>M</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "CompatibleVector", [ IsMatrixOrMatrixObj ] );


############################################################################
##
#A  RowsOfMatrix( <M> )
##
##  <#GAPDoc Label="RowsOfMatrix">
##  <ManSection>
##  <Attr Name="RowsOfMatrix" Arg='M' Label="for a matrix object"/>
##
##  <Returns>a plain list</Returns>
##
##  <Description>
##  Called with a matrix object <A>M</A>, this operation
##  returns a plain list of objects in the representation given by the
##  <Ref Attr="CompatibleVectorFilter" Label="for a matrix object"/> value
##  of <A>M</A> (provided that such a representation exists),
##  where the <M>i</M>-th entry describes the <M>i</M>-th row of the input.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
##  This function is used for creating an isomorphic permutation group
##  of a matrix group that consists of matrix objects.
##  <!-- If 'NicomorphismOfGeneralMatrixGroup' would be documented then
##  one could insert a reference to it. -->
##
##  We assume that the matrix knows how to create suitable vector objects;
##  entering a template vector as the second argument is not an option
##  in this situation.
##
DeclareAttribute( "RowsOfMatrix", IsMatrixOrMatrixObj );


#############################################################################
##
#F  DefaultVectorRepForBaseDomain( <D> )
#F  DefaultMatrixRepForBaseDomain( <D> )
##
##  currently undocumented
##
DeclareGlobalFunction( "DefaultVectorRepForBaseDomain" );
DeclareGlobalFunction( "DefaultMatrixRepForBaseDomain" );


#############################################################################
##
##  Operations for Row List Matrix Objects
##


############################################################################
##
#O  <M>[ <pos> ]<v>
##
##  <#GAPDoc Label="RowListMatObj_[]">
##  <ManSection>
##  <Heading>List Access for a Row List Matrix</Heading>
##  <Oper Name="\[\]" Arg='M, pos' Label="for a row list matrix"/>
##
##  <Returns>a vector object</Returns>
##
##  <Description>
##  If <A>M</A> is a row list matrix and if <A>pos</A> is a
##  positive integer not larger than the number of rows of <A>M</A>,
##  this operation returns the <A>pos</A>-th row of <A>M</A>.
##  <P/>
##  It is not specified what happens if <A>pos</A> is larger.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "[]", [ IsRowListMatrix, IsPosInt ] );


############################################################################
##
#O  <M>[ <pos> ]:= <v>
##
##  <#GAPDoc Label="RowListMatObj_[]_ASS">
##  <ManSection>
##  <Heading>List Assignment for a Row List Matrix</Heading>
##  <Oper Name="\[\]\:\=" Arg='M, pos, v'
##   Label="for a row list matrix and a vector object"/>
##
##  <Returns>nothing</Returns>
##
##  <Description>
##  If <A>M</A> is a row list matrix, <A>v</A> is a vector object
##  that can occur as a row in <A>M</A>
##  (that is, <A>v</A> has the same base domain, the right length,
##  and the right vector representation),
##  and if <A>pos</A> is a positive integer not larger than
##  the number of rows of <A>M</A> plus 1,
##  this operation sets <A>v</A> as the <A>pos</A>-th row of
##  <A>M</A>.
##  <P/>
##  In all other situations, it is not specified what happens.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "[]:=", [ IsRowListMatrix, IsPosInt, IsVectorObj ] );


#############################################################################
##
#O  <M>{ <pos> }
##
##  <#GAPDoc Label="RowListMatObj_{}">
##  <ManSection>
##  <Heading>Sublist Access for a Row List Matrix</Heading>
##  <Oper Name="\{\}" Arg='M, poss' Label="for a row list matrix"/>
##
##  <Returns>a row list matrix</Returns>
##
##  <Description>
##  For a row list matrix <A>M</A> and a list <A>poss</A> of positions,
##  <A>M</A><C>{ </C><A>poss</A><C> }</C> returns a new mutable
##  row list matrix with the same representation as <A>M</A>,
##  whose rows are identical to the rows at the positions
##  in the list <A>poss</A> in <A>M</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "{}", [IsRowListMatrix,IsList] );


#############################################################################
##
#O  <M>{ <poss> }:= <M2>
##
##  <#GAPDoc Label="RowListMatObj_{}_ASS">
##  <ManSection>
##  <Heading>Sublist Assignment for a Row List Matrix</Heading>
##  <Oper Name="\{\}\:\=" Arg='M, poss, M2' Label="for row list matrices"/>
##
##  <Returns>nothing</Returns>
##
##  <Description>
##  For a mutable row list matrix <A>M</A>, a list <A>poss</A> of
##  positions, and a row list matrix <A>M2</A> of the same vector type
##  and with the same base domain,
##  <A>M</A><C>{ </C><A>poss</A><C> }:= </C><A>M2</A> assigns the rows
##  of <A>M2</A> to the positions <A>poss</A> in the list of rows of
##  <A>M</A>.
##  <P/>
##  It is not specified what happens if the resulting range of row positions
##  is not dense.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "{}:=", [IsRowListMatrix,IsList,IsRowListMatrix] );


#############################################################################
##
#O  IsBound\[\]( <M>, <pos> )
##
##  <#GAPDoc Label="RowListMatObj_IsBound">
##  <ManSection>
##  <Oper Name="IsBound\[\]" Arg='M, pos' Label="for a row list matrix"/>
##
##  <Returns><K>true</K> or <K>false</K></Returns>
##
##  <Description>
##  For a row list matrix <A>M</A> and a positive integer <A>pos</A>,
##  <C>IsBound( </C><A>M</A><C>[ </C><A>pos</A><C> ] )</C> returns
##  <K>true</K> if <A>pos</A> is at most the number of rows of <A>M</A>,
##  and <K>false</K> otherwise.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "IsBound[]", [ IsRowListMatrix, IsPosInt ] );


#############################################################################
##
#O  Unbind\[\]( <M>, <pos> )
##
##  <#GAPDoc Label="RowListMatObj_Unbind">
##  <ManSection>
##  <Oper Name="Unbind\[\]" Arg='M, pos' Label="for a row list matrix"/>
##
##  <Returns>nothing</Returns>
##
##  <Description>
##  For a mutable row list matrix <A>M</A> with <A>pos</A> rows,
##  <C>Unbind( </C><A>M</A><C>[ </C><A>pos</A><C> ] )</C> removes the last
##  row.
##  It is not specified what happens if <A>pos</A> has another value.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "Unbind[]", [ IsRowListMatrix, IsPosInt ] );


#############################################################################
##
#O  Add( <M>, <v>[, <pos>] )
##
##  <#GAPDoc Label="RowListMatObj_Add">
##  <ManSection>
##  <Oper Name="Add" Arg='M, v[, pos]'
##   Label="for a row list matrix and a vector object"/>
##
##  <Returns>nothing</Returns>
##
##  <Description>
##  For a mutable row list matrix <A>M</A> and a vector object <A>v</A>
##  that is compatible with the rows of <A>M</A>,
##  the two argument version adds <A>v</A> at the end of the list of rows
##  of <A>M</A>.
##  <P/>
##  If a positive integer <A>pos</A> is given then <A>v</A> is added in
##  position <A>pos</A>, and all later rows are shifted up by one position.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "Add", [ IsRowListMatrix, IsVectorObj ] );
DeclareOperation( "Add", [ IsRowListMatrix, IsVectorObj, IsPosInt ] );


#############################################################################
##
#O  Remove( <M>[, <pos>] )
##
##  <#GAPDoc Label="RowListMatObj_Remove">
##  <ManSection>
##  <Oper Name="Remove" Arg='M[, pos]' Label="for a row list matrix"/>
##
##  <Returns>a vector object if the removed row exists,
##   otherwise nothing</Returns>
##
##  <Description>
##  For a mutable row list matrix <A>M</A>,
##  this operation removes the <A>pos</A>-th row and shifts the later rows
##  down by one position.
##  The default for <A>pos</A> is the number of rows of <A>M</A>.
##  <P/>
##  If the <A>pos</A>-th row existed in <A>M</A> then it is returned,
##  otherwise nothing is returned.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "Remove", [ IsRowListMatrix ] );
DeclareOperation( "Remove", [ IsRowListMatrix, IsPosInt ] );


#############################################################################
##
#O  Append( <rowlistmat1>, <rowlistmat2> )
##
##  <#GAPDoc Label="RowListMatObj_Append">
##  <ManSection>
##  <Oper Name="Append" Arg='M1, M2' Label="for two row list matrices"/>
##
##  <Returns>nothing</Returns>
##
##  <Description>
##  For two row list matrices <A>M1</A>, <A>M2</A>
##  such that <A>M1</A> is mutable and such that the
##  <Ref Attr="ConstructingFilter" Label="for a matrix object"/> and
##  <Ref Attr="BaseDomain" Label="for a matrix object"/> values are equal,
##  this operation appends the rows of <A>M2</A> to the
##  rows of <A>M1</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "Append", [ IsRowListMatrix, IsRowListMatrix ] );


#############################################################################
##
#O  ShallowCopy( <M> )
##
##  <#GAPDoc Label="RowListMatObj_ShallowCopy">
##  <ManSection>
##  <Oper Name="ShallowCopy" Arg='M' Label="for a row list matrix"/>
##
##  <Returns>a matrix object</Returns>
##
##  <Description>
##  For a row list matrix <A>M</A>,
##  this operation returns a new mutable matrix with the same
##  <Ref Attr="ConstructingFilter" Label="for a matrix object"/> and
##  <Ref Attr="BaseDomain" Label="for a matrix object"/> values as <A>M</A>,
##  which shares its rows with <A>M</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##


#############################################################################
##
#O  ListOp( <M>[ <func> ] )
##
##  <#GAPDoc Label="RowListMatObj_ListOp">
##  <ManSection>
##  <Oper Name="ListOp" Arg='M[, func]' Label="for a row list matrix"/>
##
##  <Returns>a plain list</Returns>
##
##  <Description>
##  For a row list matrix <A>M</A>,
##  the variant with one argument returns the plain list
##  (see <Ref Filt="IsPlistRep"/>) of its rows,
##  and the variant with two arguments returns the plain list of values
##  of these rows under the function <A>func</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "ListOp", [ IsRowListMatrix ] );
DeclareOperation( "ListOp", [ IsRowListMatrix, IsFunction ] );


#############################################################################
##
##  IsEmptyMatrix( <matobj> )
##
##  <#GAPDoc Label="MatObj_IsEmptyMatrix">
##  <ManSection>
##    <Prop Name="IsEmptyMatrix" Arg='M' Label="for a matrix object"/>
##    <Returns>A boolean</Returns>
##    <Description>
##      Is <K>true</K> if the matrix object <A>M</A> either has zero columns
##      or zero rows, and <K>false</K> otherwise.
##      In other words, a matrix object is empty if it has no entries.
##    </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsEmptyMatrix", IsMatrixOrMatrixObj );


#############################################################################
##
##  TODO:
##
##  Do we REALLY want to support and document the following feature?
##  If yes then it is intended as permanent,
##  although it contradicts the intended use of matrix objects.
##
##  Is this a feature with a generic solution,
##  such that the implementors of new kinds of matrix objects need not
##  care about it?
##  If not then it will be very annoying to be forced to support something
##  which will not be used at all as long as the code is used as intended.
##  (In particular, the documentation claims on the one hand that it is not
##  compulsory to provide a compatible vector object representation for one's
##  matrix object implementation, but the ``row access'' will force one to
##  provide one.)

############################################################################
# In the following sense matrices behave like lists:
############################################################################

DeclareOperation( "[]", [IsMatrixOrMatrixObj,IsPosInt] );  # <mat>, <pos>
# This is guaranteed to return a vector object that has the property
# that changing it changes <pos>th row (?) of the matrix <mat>!
# A matrix which is not a row-lists internally has to create an intermediate object that refers to some
# row within it to allow the old GAP syntax M[i][j] for read and write
# access to work. Note that this will never be particularly efficient
# for matrices which are not row-lists. Efficient code will have to use MatElm and
# SetMatElm instead.

# TODO:   ... resp. it will use use M[i,j]
# TODO: provide a default method which creates a proxy object for the given row
# and translates accesses to it to corresponding MatElm / SetMatElm calls;
#  creating such a proxy object prints an InfoWarning;
# but for the method for plist matrices, no warning is shown, as it is efficient
# anyway

# TODO: maybe also add GetRow(mat, i) and GetColumn(mat, i) ???
#  these return IsVectorObj objects.
# these again must be objects which are "linked" to the original matrix, as above...
# TODO: perhaps also have ExtractRow(mat, i) and ExtractColumn(mat, i)


#############################################################################
##
##  Backwards compatibility
##
##  We have to declare the operations/synonyms because otherwise
##  the method installations in some packages may not work.
##  We should remove them as soon as they are not used anymore.
##

#############################################################################
##
#C  IsRowVectorObj( <obj> )
##
##  Existing code which uses this name (most notably, the cvec package)
##  should be supported for some time.
##
DeclareSynonym( "IsRowVectorObj", IsVectorObj );


#############################################################################
##
#A  DimensionsMat( <matobj> )
##
##  only for backwards compatibility with existing code:
##  <matobj> -> [ NrRows( <matobj> ), NrCols( <matobj> ) ]
##
DeclareAttribute( "DimensionsMat", IsMatrixOrMatrixObj );


#############################################################################
##
#A  Length( <matobj> )
#A  RowLength( <matobj> )
##
##  They had been used in older versions.
##
DeclareAttribute( "Length", IsMatrixOrMatrixObj );
DeclareSynonymAttr( "RowLength", NumberColumns );


#############################################################################
##
#O  NewCompanionMatrix( <filt>, <pol>, <R> )
##
##  This operation is intended for the installation of tag based methods for
##  'CompanionMatrix', such that 'CompanionMatrix' admits method dispatch
##  based on <filt>.
##
##  (Currently 'NewCompanionMatrix' is undocumented.
##  Perhaps we can simply declare 'CompanionMatrix' itself as a tag based
##  operation for the given requirement.
##  This would work also for `DiagonalMatrix`, `RandomMatrix`,
##  `ReflectionMatrix`, etc.
##  We could even get rid of `NewMatrix`, `NewZeroMatrix`,
##  `NewIdentityMatrix`, by declaring `Matrix`, `ZeroMatrix`,
##  `IdentityMatrix` as tag based operations for the requirements in
##  question, except that the ordering of the arguments for the four
##  argument versions of `NewMatrix` and `Matrix` does not fit.)
##
DeclareTagBasedOperation( "NewCompanionMatrix",
    [ IsOperation, IsUnivariatePolynomial, IsSemiring ] );


#############################################################################
##
#O  NewRowVector( ... )
##
DeclareSynonym( "NewRowVector", NewVector );


#############################################################################
##
#O  Randomize( ... )
##
##  for backwards compatibility with the cvec package
##
DeclareOperation( "Randomize", [ IsVectorObj and IsMutable, IsRandomSource ] );
DeclareOperation( "Randomize", [ IsMatrixOrMatrixObj and IsMutable, IsRandomSource ] );


#############################################################################
##
#O  <matobj>[ <i>, <j> ]
#O  <matobj>[ <i>, <j> ]:= <obj>
##
DeclareOperation( "[]", [ IsMatrixOrMatrixObj, IsPosInt, IsPosInt ] );
DeclareOperation( "[]:=", [ IsMatrixOrMatrixObj, IsPosInt, IsPosInt, IsObject ] );


############################################################################
# Elementary matrix operations
############################################################################
#
############################################################################
##
##  <#GAPDoc Label="MultMatrixRow">
##  <ManSection>
##  <Oper Name="MultMatrixRowLeft" Arg='mat,i,elm'/>
##  <Oper Name="MultMatrixRow" Arg='mat,i,elm'/>
##
##  <Returns>nothing</Returns>
##
##  <Description>
##  <P/>
##  Multiplies the <A>i</A>-th row of the mutable matrix <A>mat</A> with the scalar
##  <A>elm</A> from the left in-place.
##  <P/>
##  <Ref Oper="MultMatrixRow"/> is a synonym of <Ref Oper="MultMatrixRowLeft"/>. This was chosen
##  because linear combinations of rows of matrices are usually written as
##  <M> v \cdot A = [v_1, ... ,v_n] \cdot A</M> which multiplies scalars from the left.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "MultMatrixRowLeft", [ IsMatrixOrMatrixObj and IsMutable, IsInt, IsObject ] );
DeclareSynonym( "MultMatrixRow", MultMatrixRowLeft);

############################################################################
##
##  <#GAPDoc Label="MultMatrixRowRight">
##  <ManSection>
##  <Oper Name="MultMatrixRowRight" Arg='M,i,elm'/>
##
##  <Returns>nothing</Returns>
##
##  <Description>
##  <P/>
##  Multiplies the <A>i</A>-th row of the mutable matrix <A>M</A> with the scalar
##  <A>elm</A> from the right in-place.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "MultMatrixRowRight", [ IsMatrixOrMatrixObj and IsMutable, IsInt, IsObject ]);

############################################################################
##
##  <#GAPDoc Label="MultMatrixColumn">
##  <ManSection>
##  <Oper Name="MultMatrixColumnRight" Arg='M,i,elm'/>
##  <Oper Name="MultMatrixColumn" Arg='M,i,elm'/>
##
##  <Returns>nothing</Returns>
##
##  <Description>
##  <P/>
##  Multiplies the <A>i</A>-th column of the mutable matrix <A>M</A> with the scalar
##  <A>elm</A> from the right in-place.
##  <P/>
##  <Ref Oper="MultMatrixColumn"/> is a synonym of <Ref Oper="MultMatrixColumnRight"/>. This was
##  chosen because linear combinations of columns of matrices are usually written as
##  <M>A \cdot v^T = A \cdot [v_1, ... ,v_n]^T</M> which multiplies scalars from the right.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "MultMatrixColumnRight", [ IsMatrixOrMatrixObj and IsMutable, IsInt, IsObject ] );
DeclareSynonym( "MultMatrixColumn",  MultMatrixColumnRight);

############################################################################
##
##  <#GAPDoc Label="MultMatrixColumnLeft">
##  <ManSection>
##  <Oper Name="MultMatrixColumnLeft" Arg='M,i,elm'/>
##
##  <Returns>nothing</Returns>
##
##  <Description>
##  <P/>
##  Multiplies the <A>i</A>-th column of the mutable matrix <A>M</A> with the scalar
##  <A>elm</A> from the left in-place.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "MultMatrixColumnLeft", [ IsMatrixOrMatrixObj and IsMutable, IsInt, IsObject ] );

############################################################################
##
##  <#GAPDoc Label="AddMatrixRows">
##  <ManSection>
##  <Oper Name="AddMatrixRowsLeft" Arg='M,i,j,elm'/>
##  <Oper Name="AddMatrixRows" Arg='M,i,j,elm'/>
##
##  <Returns>nothing</Returns>
##
##  <Description>
##  <P/>
##  Adds the product of <A>elm</A> with the <A>j</A>-th row of the mutable matrix <A>M</A> to its <A>i</A>-th
##  row in-place. The <A>j</A>-th row is multiplied with <A>elm</A> from the left.
##  <P/>
##  <Ref Oper="AddMatrixRows"/> is a synonym of <Ref Oper="AddMatrixRowsLeft"/>. This was chosen
##  because linear combinations of rows of matrices are usually written as
##  <M> v \cdot A = [v_1, ... ,v_n] \cdot A</M> which multiplies scalars from the left.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "AddMatrixRowsLeft", [ IsMatrixOrMatrixObj and IsMutable, IsInt, IsInt, IsObject ] );
DeclareSynonym( "AddMatrixRows", AddMatrixRowsLeft);

############################################################################
##
##  <#GAPDoc Label="AddMatrixRowsRight">
##  <ManSection>
##  <Oper Name="AddMatrixRowsRight" Arg='M,i,j,elm'/>
##
##  <Returns>nothing</Returns>
##
##  <Description>
##  <P/>
##  Adds the product of <A>elm</A> with the <A>j</A>-th row of the mutable matrix <A>M</A> to its <A>i</A>-th
##  row in-place. The <A>j</A>-th row is multiplied with <A>elm</A> from the right.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "AddMatrixRowsRight", [ IsMatrixOrMatrixObj and IsMutable, IsInt, IsInt, IsObject ] );

############################################################################
##
##  <#GAPDoc Label="AddMatrixColumns">
##  <ManSection>
##  <Oper Name="AddMatrixColumnsRight" Arg='M,i,j,elm'/>
##  <Oper Name="AddMatrixColumns" Arg='M,i,j,elm'/>
##
##  <Returns>nothing</Returns>
##
##  <Description>
##  <P/>
##  Adds the product of <A>elm</A> with the <A>j</A>-th column of the mutable matrix <A>M</A> to its <A>i</A>-th
##  column in-place. The <A>j</A>-th column is multiplied with <A>elm</A> from the right.
##  <P/>
##  <Ref Oper="AddMatrixColumns"/> is a synonym of <Ref Oper="AddMatrixColumnsRight"/>. This was
##  chosen because linear combinations of columns of matrices are usually written as
##  <M>A \cdot v^T = A \cdot [v_1, ... ,v_n]^T</M> which multiplies scalars from the right.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "AddMatrixColumnsRight", [ IsMatrixOrMatrixObj and IsMutable, IsInt, IsInt, IsObject ] );
DeclareSynonym( "AddMatrixColumns", AddMatrixColumnsRight);

############################################################################
##
##  <#GAPDoc Label="AddMatrixColumnsLeft">
##  <ManSection>
##  <Oper Name="AddMatrixColumnsLeft" Arg='M,i,j,elm'/>
##
##  <Returns>nothing</Returns>
##
##  <Description>
##  <P/>
##  Adds the product of <A>elm</A> with the <A>j</A>-th column of the mutable matrix <A>M</A> to its <A>i</A>-th
##  column in-place. The <A>j</A>-th column is multiplied with <A>elm</A> from the left.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "AddMatrixColumnsLeft", [ IsMatrixOrMatrixObj and IsMutable, IsInt, IsInt, IsObject ] );

############################################################################
##
##  <#GAPDoc Label="SwapMatrixRows">
##  <ManSection>
##  <Oper Name="SwapMatrixRows" Arg='M,i,j'/>
##
##  <Returns>nothing</Returns>
##
##  <Description>
##  <P/>
##  Swaps the <A>i</A>-th row and <A>j</A>-th row of a mutable matrix <A>M</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperationKernel( "SwapMatrixRows", [ IsMatrixOrMatrixObj and IsMutable, IsInt, IsInt ], SWAP_MAT_ROWS );

############################################################################
##
##  <#GAPDoc Label="SwapMatrixColumns">
##  <ManSection>
##  <Oper Name="SwapMatrixColumns" Arg='M,i,j'/>
##
##  <Returns>nothing</Returns>
##
##  <Description>
##  <P/>
##  Swaps the <A>i</A>-th column and <A>j</A>-th column of a mutable matrix <A>M</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperationKernel( "SwapMatrixColumns", [ IsMatrixOrMatrixObj and IsMutable, IsInt, IsInt ], SWAP_MAT_COLS );