File: matrix.gd

package info (click to toggle)
gap 4.15.1-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 110,212 kB
  • sloc: ansic: 97,261; xml: 48,343; cpp: 13,946; sh: 4,900; perl: 1,650; javascript: 255; makefile: 252; ruby: 9
file content (2243 lines) | stat: -rw-r--r-- 76,448 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
#############################################################################
##
##  This file is part of GAP, a system for computational discrete algebra.
##  This file's authors include Thomas Breuer, Frank Celler, Alexander Hulpke, Heiko Theißen, Martin Schönert.
##
##  Copyright of GAP belongs to its developers, whose names are too numerous
##  to list here. Please refer to the COPYRIGHT file for details.
##
##  SPDX-License-Identifier: GPL-2.0-or-later
##
##  This file contains those functions that mainly deal with matrices.
##


#############################################################################
##
#V  InfoMatrix
##
##  <#GAPDoc Label="InfoMatrix">
##  <ManSection>
##  <InfoClass Name="InfoMatrix"/>
##
##  <Description>
##  The info class for matrix operations is <Ref InfoClass="InfoMatrix"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareInfoClass( "InfoMatrix" );

#############################################################################
##
#F  PrintArray( <array> )
##
##  <#GAPDoc Label="PrintArray">
##  <ManSection>
##  <Func Name="PrintArray" Arg='array'/>
##
##  <Description>
##  pretty-prints the array <A>array</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("PrintArray");

#############################################################################
##
#P  IsGeneralizedCartanMatrix( <A> )
##
##  <ManSection>
##  <Prop Name="IsGeneralizedCartanMatrix" Arg='A'/>
##
##  <Description>
##  The square matrix <A>A</A> is a generalized Cartan Matrix if and only if
##  1. <C>A[i,i] = 2</C> for all <M>i</M>,
##  2. <C>A[i,j]</C> are nonpositive integers for <M>i \neq j</M>,
##  3. <C>A[i,j] = 0</C> implies <C>A[j,i] = 0</C>.
##  </Description>
##  </ManSection>
##
DeclareProperty( "IsGeneralizedCartanMatrix", IsMatrixOrMatrixObj );


#############################################################################
##
#P  IsDiagonalMatrix( <mat> )
#P  IsDiagonalMat( <mat> )
##
##  <#GAPDoc Label="IsDiagonalMat">
##  <ManSection>
##  <Prop Name="IsDiagonalMatrix" Arg='mat'/>
##  <Prop Name="IsDiagonalMat" Arg='mat'/>
##
##  <Description>
##  return <K>true</K> if the matrix <A>mat</A> has only zero entries
##  off the main diagonal, and <K>false</K> otherwise.
##  <Example><![CDATA[
##  gap> IsDiagonalMatrix( [ [ 1 ] ] );
##  true
##  gap> IsDiagonalMatrix( [ [ 1, 0, 0 ], [ 0, 1, 0 ] ] );
##  true
##  gap> IsDiagonalMatrix( [ [ 0, 1 ], [ 1, 0 ] ] );
##  false
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsDiagonalMatrix", IsMatrixOrMatrixObj );

DeclareSynonym( "IsDiagonalMat", IsDiagonalMatrix );


#############################################################################
##
#P  IsUpperTriangularMatrix( <mat> )
#P  IsUpperTriangularMat( <mat> )
##
##  <#GAPDoc Label="IsUpperTriangularMat">
##  <ManSection>
##  <Prop Name="IsUpperTriangularMatrix" Arg='mat'/>
##  <Prop Name="IsUpperTriangularMat" Arg='mat'/>
##
##  <Description>
##  return <K>true</K> if the matrix <A>mat</A> has only zero entries below
##  the main diagonal, and <K>false</K> otherwise.
##  <Example><![CDATA[
##  gap> IsUpperTriangularMatrix( [ [ 1 ] ] );
##  true
##  gap> IsUpperTriangularMatrix( [ [ 1, 2, 3 ], [ 0, 5, 6 ] ] );
##  true
##  gap> IsUpperTriangularMatrix( [ [ 0, 1 ], [ 1, 0 ] ] );
##  false
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsUpperTriangularMatrix", IsMatrixOrMatrixObj );

DeclareSynonym( "IsUpperTriangularMat", IsUpperTriangularMatrix );


#############################################################################
##
#P  IsLowerTriangularMatrix( <mat> )
#P  IsLowerTriangularMat( <mat> )
##
##  <#GAPDoc Label="IsLowerTriangularMat">
##  <ManSection>
##  <Prop Name="IsLowerTriangularMatrix" Arg='mat'/>
##  <Prop Name="IsLowerTriangularMat" Arg='mat'/>
##
##  <Description>
##  return <K>true</K> if the matrix <A>mat</A> has only zero entries above
##  the main diagonal, and <K>false</K> otherwise.
##  <Example><![CDATA[
##  gap> IsLowerTriangularMatrix( [ [ 1 ] ] );
##  true
##  gap> IsLowerTriangularMatrix( [ [ 1, 0, 0 ], [ 2, 3, 0 ] ] );
##  true
##  gap> IsLowerTriangularMatrix( [ [ 0, 1 ], [ 1, 0 ] ] );
##  false
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsLowerTriangularMatrix", IsMatrixOrMatrixObj );

DeclareSynonym( "IsLowerTriangularMat", IsLowerTriangularMatrix );


#############################################################################
##
#F  DiagonalOfMatrix( <mat> )
#F  DiagonalOfMat( <mat> )
##
##  <#GAPDoc Label="DiagonalOfMat">
##  <ManSection>
##  <Func Name="DiagonalOfMatrix" Arg='mat'/>
##  <Func Name="DiagonalOfMat" Arg='mat'/>
##
##  <Description>
##  return the diagonal of the matrix <A>mat</A>. If <A>mat</A> is not a
##  square matrix, then the result has the same length as the rows of
##  <A>mat</A>, and is padded with zeros if <A>mat</A> has fewer rows than
##  columns.
##  <Example><![CDATA[
##  gap> DiagonalOfMatrix( [ [ 1, 2, 3 ], [ 4, 5, 6 ] ] );
##  [ 1, 5, 0 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "DiagonalOfMatrix" );

DeclareSynonym( "DiagonalOfMat", DiagonalOfMatrix );


#############################################################################
##
#A  BaseMat( <mat> )  . . . . . . . . . .  base for the row space of a matrix
##
##  <#GAPDoc Label="BaseMat">
##  <ManSection>
##  <Attr Name="BaseMat" Arg='mat'/>
##
##  <Description>
##  returns a basis for the row space generated by the rows of <A>mat</A> in the
##  form of an immutable matrix.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "BaseMat", IsMatrix );

#############################################################################
##
#O  BaseMatDestructive( <mat> )
##
##  <#GAPDoc Label="BaseMatDestructive">
##  <ManSection>
##  <Oper Name="BaseMatDestructive" Arg='mat'/>
##
##  <Description>
##  Does the same as <Ref Attr="BaseMat"/>, with the difference that it may destroy
##  the matrix <A>mat</A>. The matrix <A>mat</A> must be mutable.
##  <Example><![CDATA[
##  gap> mat:=[[1,2,3],[4,5,6],[7,8,9]];;
##  gap> BaseMat(mat);
##  [ [ 1, 2, 3 ], [ 0, 1, 2 ] ]
##  gap> mm:= [[1,2,3],[4,5,6],[5,7,9]];;
##  gap> BaseMatDestructive( mm );
##  [ [ 1, 2, 3 ], [ 0, 1, 2 ] ]
##  gap> mm;
##  [ [ 1, 2, 3 ], [ 0, 1, 2 ], [ 0, 0, 0 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "BaseMatDestructive", [ IsMatrix ] );

#############################################################################
##
#A  BaseOrthogonalSpaceMat( <mat> )
##
##  <#GAPDoc Label="BaseOrthogonalSpaceMat">
##  <ManSection>
##  <Attr Name="BaseOrthogonalSpaceMat" Arg='mat'/>
##
##  <Description>
##  Let <M>V</M> be the row space generated  by the rows of  <A>mat</A> (over any field
##  that contains all  entries of <A>mat</A>).  <C>BaseOrthogonalSpaceMat( <A>mat</A>  )</C>
##  computes a base of the orthogonal space of <M>V</M>.
##  <P/>
##  The rows of <A>mat</A> need not be linearly independent.
##  <P/>
##  <!-- Note that this means to transpose twice ...-->
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "BaseOrthogonalSpaceMat", IsMatrix );


#############################################################################
##
#A  DefaultFieldOfMatrix( <mat> )
##
##  <#GAPDoc Label="DefaultFieldOfMatrix">
##  <ManSection>
##  <Attr Name="DefaultFieldOfMatrix" Arg='mat'/>
##
##  <Description>
##  For a matrix <A>mat</A>, <Ref Attr="DefaultFieldOfMatrix"/> returns either a field
##  (not necessarily the smallest one) containing all entries of <A>mat</A>,
##  or <K>fail</K>.
##  <P/>
##  If <A>mat</A> is a matrix of finite field elements or a matrix of cyclotomics,
##  <Ref Attr="DefaultFieldOfMatrix"/> returns the default field generated by the matrix
##  entries (see&nbsp;<Ref Sect="Creating Finite Fields"/> and <Ref Sect="Operations for Cyclotomics"/>).
##  <Example><![CDATA[
##  gap> DefaultFieldOfMatrix([[Z(4),Z(8)]]);
##  GF(2^6)
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "DefaultFieldOfMatrix", IsMatrix );


#############################################################################
##
#A  DepthOfUpperTriangularMatrix( <mat> )
##
##  <#GAPDoc Label="DepthOfUpperTriangularMatrix">
##  <ManSection>
##  <Attr Name="DepthOfUpperTriangularMatrix" Arg='mat'/>
##
##  <Description>
##  If <A>mat</A> is an upper triangular matrix this attribute returns the
##  index of the first nonzero diagonal.
##  <Example><![CDATA[
##  gap> DepthOfUpperTriangularMatrix([[0,1,2],[0,0,1],[0,0,0]]);
##  1
##  gap> DepthOfUpperTriangularMatrix([[0,0,2],[0,0,0],[0,0,0]]);
##  2
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "DepthOfUpperTriangularMatrix", IsMatrix );


#############################################################################
##
#A  DeterminantMatrix( <mat> )  . . . . . . . . . . . determinant of a matrix
#A  DeterminantMat( <mat> ) . . . . . . . . . . . . . determinant of a matrix
#O  Determinant( <mat> )
##
##  <#GAPDoc Label="DeterminantMat">
##  <ManSection>
##  <Attr Name="DeterminantMatrix" Arg='mat'/>
##  <Attr Name="DeterminantMat" Arg='mat'/>
##  <Oper Name="Determinant" Arg='mat'/>
##
##  <Description>
##  returns the determinant of the square matrix <A>mat</A>.
##  <P/>
##  These methods assume implicitly that <A>mat</A> is defined over an
##  integral domain whose quotient field is implemented in &GAP;. For
##  matrices defined over an arbitrary commutative ring with one
##  see&nbsp;<Ref Oper="DeterminantMatDivFree"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "DeterminantMatrix", IsMatrixOrMatrixObj );
DeclareSynonymAttr( "DeterminantMat", DeterminantMatrix );


#############################################################################
##
#O  DeterminantMatrixDestructive( <mat> )
#O  DeterminantMatDestructive( <mat> )
##
##  <#GAPDoc Label="DeterminantMatDestructive">
##  <ManSection>
##  <Oper Name="DeterminantMatrixDestructive" Arg='mat'/>
##  <Oper Name="DeterminantMatDestructive" Arg='mat'/>
##
##  <Description>
##  Does the same as <Ref Attr="DeterminantMatrix"/>,
##  with the difference that it may
##  destroy its argument. The matrix <A>mat</A> must be mutable.
##  <Example><![CDATA[
##  gap> DeterminantMatrix([[1,2],[2,1]]);
##  -3
##  gap> mm:= [[1,2],[2,1]];;
##  gap> DeterminantMatrixDestructive( mm );
##  -3
##  gap> mm;
##  [ [ 1, 2 ], [ 0, -3 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "DeterminantMatrixDestructive",
    [ IsMatrixOrMatrixObj and IsMutable] );
DeclareSynonym( "DeterminantMatDestructive", DeterminantMatrixDestructive );


#############################################################################
##
#O  DeterminantMatrixDivFree( <mat> )
#O  DeterminantMatDivFree( <mat> )
##
##  <#GAPDoc Label="DeterminantMatDivFree">
##  <ManSection>
##  <Oper Name="DeterminantMatrixDivFree" Arg='mat'/>
##  <Oper Name="DeterminantMatDivFree" Arg='mat'/>
##
##  <Description>
##  return the determinant of a square matrix <A>mat</A> over an arbitrary
##  commutative ring with one using the division free method of
##  Mahajan and Vinay <Cite Key="MV97"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "DeterminantMatrixDivFree", [ IsMatrixOrMatrixObj ] );
DeclareSynonym( "DeterminantMatDivFree", DeterminantMatrixDivFree );


#############################################################################
##
#A  DimensionsMat( <mat> )  . . . . . . . . . . . . .  dimensions of a matrix
##
##  <#GAPDoc Label="DimensionsMat">
##  <ManSection>
##  <Attr Name="DimensionsMat" Arg='mat'/>
##
##  <Description>
##  is a list of length 2, the first being the number of rows, the second
##  being the number of columns of the matrix <A>mat</A>. If <A>mat</A> is
##  malformed, that is, it is not a <Ref Prop="IsRectangularTable"/>,
##  returns <K>fail</K>.
##  <Example><![CDATA[
##  gap> DimensionsMat([[1,2,3],[4,5,6]]);
##  [ 2, 3 ]
##  gap> DimensionsMat([[1,2,3],[4,5]]);
##  fail
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "DimensionsMat", IsMatrix );


#############################################################################
##
#O  ElementaryDivisorsMat([<ring>,] <mat>)
#F  ElementaryDivisorsMatDestructive(<ring>,<mat>)
##
##  <#GAPDoc Label="ElementaryDivisorsMat">
##  <ManSection>
##  <Oper Name="ElementaryDivisorsMat" Arg='[ring,] mat'/>
##  <Func Name="ElementaryDivisorsMatDestructive" Arg='ring,mat'/>
##
##  <Description>
##  returns a list of the elementary divisors, i.e., the
##  unique <M>d</M> with <M>d[i]</M> divides  <M>d[i+1]</M> and <A>mat</A> is  equivalent
##  to a diagonal matrix with the elements <M>d[i]</M> on the diagonal.
##  The operations are performed over the euclidean
##  ring <A>ring</A>, which must contain
##  all matrix entries. For compatibility reasons it can be omitted and
##  defaults to the <Ref Func="DefaultRing" Label="for ring elements"/> of the matrix entries.
##  <P/>
##  The function <Ref Func="ElementaryDivisorsMatDestructive"/> produces the same result
##  but in the process may destroy the contents of <A>mat</A>.
##  <Example><![CDATA[
##  gap> mat:=[[1,2,3],[4,5,6],[7,8,9]];;
##  gap> ElementaryDivisorsMat(mat);
##  [ 1, 3, 0 ]
##  gap> x:=Indeterminate(Rationals,"x");;
##  gap> mat:=mat*One(x)-x*mat^0;
##  [ [ -x+1, 2, 3 ], [ 4, -x+5, 6 ], [ 7, 8, -x+9 ] ]
##  gap> ElementaryDivisorsMat(PolynomialRing(Rationals,1),mat);
##  [ 1, 1, x^3-15*x^2-18*x ]
##  gap> mat:=KroneckerProduct(CompanionMat((x-1)^2),
##  >                          CompanionMat((x^3-1)*(x-1)));;
##  gap> mat:=mat*One(x)-x*mat^0;
##  [ [ -x, 0, 0, 0, 0, 0, 0, 1 ], [ 0, -x, 0, 0, -1, 0, 0, -1 ],
##    [ 0, 0, -x, 0, 0, -1, 0, 0 ], [ 0, 0, 0, -x, 0, 0, -1, -1 ],
##    [ 0, 0, 0, -1, -x, 0, 0, -2 ], [ 1, 0, 0, 1, 2, -x, 0, 2 ],
##    [ 0, 1, 0, 0, 0, 2, -x, 0 ], [ 0, 0, 1, 1, 0, 0, 2, -x+2 ] ]
##  gap> ElementaryDivisorsMat(PolynomialRing(Rationals,1),mat);
##  [ 1, 1, 1, 1, 1, 1, x-1, x^7-x^6-2*x^4+2*x^3+x-1 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "ElementaryDivisorsMat", [IsRing,IsMatrix] );
DeclareGlobalFunction( "ElementaryDivisorsMatDestructive" );

#############################################################################
##
#O  ElementaryDivisorsTransformationsMat([<ring>,] <mat>)
#F  ElementaryDivisorsTransformationsMatDestructive(<ring>,<mat>)
##
##  <#GAPDoc Label="ElementaryDivisorsTransformationsMat">
##  <ManSection>
##  <Oper Name="ElementaryDivisorsTransformationsMat" Arg='[ring,] mat'/>
##  <Func Name="ElementaryDivisorsTransformationsMatDestructive" Arg='ring,mat'/>
##
##  <Description>
##  <C>ElementaryDivisorsTransformations</C>, in addition to the tasks done
##  by <C>ElementaryDivisorsMat</C>, also calculates transforming matrices.
##  It returns a record with components <C>normal</C> (a matrix <M>S</M>),
##  <C>rowtrans</C> (a matrix <M>P</M>),
##  and <C>coltrans</C> (a matrix <M>Q</M>) such that <M>P A Q = S</M>.
##  The operations are performed over the euclidean ring
##  <A>ring</A>, which must contain
##  all matrix entries. For compatibility reasons it can be omitted and
##  defaults to the <Ref Func="DefaultRing" Label="for ring elements"/> of the matrix entries.
##  <P/>
##  The function <Ref Func="ElementaryDivisorsTransformationsMatDestructive"/>
##  produces the same result
##  but in the process destroys the contents of <A>mat</A>.
##  <Example><![CDATA[
##  gap> mat:=KroneckerProduct(CompanionMat((x-1)^2),CompanionMat((x^3-1)*(x-1)));;
##  gap> mat:=mat*One(x)-x*mat^0;
##  [ [ -x, 0, 0, 0, 0, 0, 0, 1 ], [ 0, -x, 0, 0, -1, 0, 0, -1 ],
##    [ 0, 0, -x, 0, 0, -1, 0, 0 ], [ 0, 0, 0, -x, 0, 0, -1, -1 ],
##    [ 0, 0, 0, -1, -x, 0, 0, -2 ], [ 1, 0, 0, 1, 2, -x, 0, 2 ],
##    [ 0, 1, 0, 0, 0, 2, -x, 0 ], [ 0, 0, 1, 1, 0, 0, 2, -x+2 ] ]
##  gap> t:=ElementaryDivisorsTransformationsMat(PolynomialRing(Rationals,1),mat);
##  rec( coltrans := [ [ 0, 0, 0, 0, 0, 0, 1/6*x^2-7/9*x-1/18, -3*x^3-x^2-x-1 ],
##        [ 0, 0, 0, 0, 0, 0, -1/6*x^2+x-1, 3*x^3-3*x^2 ],
##        [ 0, 0, 0, 0, 0, 1, -1/18*x^4+1/3*x^3-1/3*x^2-1/9*x, x^5-x^4+2*x^2-2*x
##           ], [ 0, 0, 0, 0, -1, 0, -1/9*x^3+1/2*x^2+1/9*x, 2*x^4+x^3+x^2+2*x ],
##        [ 0, -1, 0, 0, 0, 0, -2/9*x^2+19/18*x, 4*x^3+x^2+x ],
##        [ 0, 0, -1, 0, 0, -x, 1/18*x^5-1/3*x^4+1/3*x^3+1/9*x^2,
##            -x^6+x^5-2*x^3+2*x^2 ],
##        [ 0, 0, 0, -1, x, 0, 1/9*x^4-2/3*x^3+2/3*x^2+1/18*x,
##            -2*x^5+2*x^4-x^2+x ],
##        [ 1, 0, 0, 0, 0, 0, 1/6*x^3-7/9*x^2-1/18*x, -3*x^4-x^3-x^2-x ] ],
##    normal := [ [ 1, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 0, 0, 0, 0 ],
##        [ 0, 0, 1, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 1, 0, 0, 0, 0 ],
##        [ 0, 0, 0, 0, 1, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 1, 0, 0 ],
##        [ 0, 0, 0, 0, 0, 0, x-1, 0 ],
##        [ 0, 0, 0, 0, 0, 0, 0, x^7-x^6-2*x^4+2*x^3+x-1 ] ],
##    rowtrans := [ [ 1, 0, 0, 0, 0, 0, 0, 0 ], [ 1, 1, 0, 0, 0, 0, 0, 0 ],
##        [ 0, 0, 1, 0, 0, 0, 0, 0 ], [ 1, 0, 0, 1, 0, 0, 0, 0 ],
##        [ -x+2, -x, 0, 0, 1, 0, 0, 0 ],
##        [ 2*x^2-4*x+2, 2*x^2-x, 0, 2, -2*x+1, 0, 0, 1 ],
##        [ 3*x^3-6*x^2+3*x, 3*x^3-2*x^2, 2, 3*x, -3*x^2+2*x, 0, 1, 2*x ],
##        [ 1/6*x^8-7/6*x^7+2*x^6-4/3*x^5+7/3*x^4-4*x^3+13/6*x^2-7/6*x+2,
##            1/6*x^8-17/18*x^7+13/18*x^6-5/18*x^5+35/18*x^4-31/18*x^3+1/9*x^2-x+\
##  2, 1/9*x^5-5/9*x^4+1/9*x^3-1/9*x^2+14/9*x-1/9,
##            1/6*x^6-5/6*x^5+1/6*x^4-1/6*x^3+11/6*x^2-1/6*x,
##            -1/6*x^7+17/18*x^6-13/18*x^5+5/18*x^4-35/18*x^3+31/18*x^2-1/9*x+1,
##            1, 1/18*x^5-5/18*x^4+1/18*x^3-1/18*x^2+23/18*x-1/18,
##            1/9*x^6-5/9*x^5+1/9*x^4-1/9*x^3+14/9*x^2-1/9*x ] ] )
##  gap> t.rowtrans*mat*t.coltrans;
##  [ [ 1, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 0, 0, 0, 0 ],
##    [ 0, 0, 1, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 1, 0, 0, 0, 0 ],
##    [ 0, 0, 0, 0, 1, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 1, 0, 0 ],
##    [ 0, 0, 0, 0, 0, 0, x-1, 0 ],
##    [ 0, 0, 0, 0, 0, 0, 0, x^7-x^6-2*x^4+2*x^3+x-1 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "ElementaryDivisorsTransformationsMat", [IsRing,IsMatrix] );
DeclareGlobalFunction( "ElementaryDivisorsTransformationsMatDestructive" );

#############################################################################
##
#O  TriangulizedNullspaceMatNT(<mat>)
##
##  <ManSection>
##  <Oper Name="TriangulizedNullspaceMatNT" Arg='mat'/>
##
##  <Description>
##  This returns the triangulized nullspace of the matrix <A>mat</A>, without
##  transposing it. This is used in <C>TriangulizedNullspaceMat</C>, and
##  <C>TriangulizedNullspaceMatDestructive</C>.
##  </Description>
##  </ManSection>
##
DeclareOperation( "TriangulizedNullspaceMatNT", [ IsMatrix ] );


#############################################################################
##
#A  NullspaceMat( <mat> ) . . . . . . basis of solutions of <vec> * <mat> = 0
#A  TriangulizedNullspaceMat(<mat>)
##
##  <#GAPDoc Label="NullspaceMat">
##  <ManSection>
##  <Attr Name="NullspaceMat" Arg='mat'/>
##  <Attr Name="TriangulizedNullspaceMat" Arg='mat'/>
##
##  <Description>
##  <Index Subkey="of a matrix">kernel</Index>
##  returns a list of row vectors that form a basis of the vector space of
##  solutions to the equation <C><A>vec</A>*<A>mat</A>=0</C>.
##  The result is an immutable matrix.
##  This basis is not guaranteed to be in any specific form.
##  <P/>
##  The variant <Ref Attr="TriangulizedNullspaceMat"/> returns a basis of the
##  nullspace in triangulized form as is often needed for algorithms.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "NullspaceMat", IsMatrix );
DeclareAttribute( "TriangulizedNullspaceMat", IsMatrix );


#############################################################################
##
#O  NullspaceMatDestructive( <mat> )
#O  TriangulizedNullspaceMatDestructive(<mat>)
##
##  <#GAPDoc Label="NullspaceMatDestructive">
##  <ManSection>
##  <Oper Name="NullspaceMatDestructive" Arg='mat'/>
##  <Oper Name="TriangulizedNullspaceMatDestructive" Arg='mat'/>
##
##  <Description>
##  This function does the same as <Ref Attr="NullspaceMat"/>.
##  However, the latter function makes a copy of <A>mat</A> to avoid having
##  to change it.
##  This function does not do that; it returns the nullspace and may destroy
##  <A>mat</A>;
##  this saves a lot of memory in case <A>mat</A> is big.
##  The matrix <A>mat</A> must be mutable.
##  <P/>
##  The variant <Ref Oper="TriangulizedNullspaceMatDestructive"/> returns a
##  basis of the nullspace in triangulized form.
##  It may destroy the matrix <A>mat</A>.
##  <Example><![CDATA[
##  gap> mat:=[[1,2,3],[4,5,6],[7,8,9]];;
##  gap> NullspaceMat(mat);
##  [ [ 1, -2, 1 ] ]
##  gap> mm:=[[1,2,3],[4,5,6],[7,8,9]];;
##  gap> NullspaceMatDestructive( mm );
##  [ [ 1, -2, 1 ] ]
##  gap> mm;
##  [ [ 1, 2, 3 ], [ 0, -3, -6 ], [ 0, 0, 0 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "NullspaceMatDestructive", [ IsMatrix and IsMutable] );
DeclareOperation( "TriangulizedNullspaceMatDestructive", [ IsMatrix and IsMutable] );


#############################################################################
##
#O  GeneralisedEigenvalues( <F>, <A> )
#O  GeneralizedEigenvalues( <F>, <A> )
##
##  <#GAPDoc Label="GeneralisedEigenvalues">
##  <ManSection>
##  <Oper Name="GeneralisedEigenvalues" Arg='F, A'/>
##  <Oper Name="GeneralizedEigenvalues" Arg='F, A'/>
##
##  <Description>
##  The generalised eigenvalues of the matrix <A>A</A> over the field <A>F</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "GeneralisedEigenvalues", [ IsRing, IsMatrixOrMatrixObj ] );
DeclareSynonym( "GeneralizedEigenvalues", GeneralisedEigenvalues );

#############################################################################
##
#O  GeneralisedEigenspaces( <F>, <A> )
#O  GeneralizedEigenspaces( <F>, <A> )
##
##  <#GAPDoc Label="GeneralisedEigenspaces">
##  <ManSection>
##  <Oper Name="GeneralisedEigenspaces" Arg='F, A'/>
##  <Oper Name="GeneralizedEigenspaces" Arg='F, A'/>
##
##  <Description>
##  The generalised eigenspaces of the matrix <A>A</A> over the field <A>F</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "GeneralisedEigenspaces", [ IsRing, IsMatrixOrMatrixObj ] );
DeclareSynonym( "GeneralizedEigenspaces", GeneralisedEigenspaces );


#############################################################################
##
#O  Eigenvalues( <F>, <A> )
##
##  <#GAPDoc Label="Eigenvalues">
##  <ManSection>
##  <Oper Name="Eigenvalues" Arg='F, A'/>
##
##  <Description>
##  The eigenvalues of the matrix <A>A</A> over the field <A>F</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "Eigenvalues", [ IsRing, IsMatrixOrMatrixObj ] );

#############################################################################
##
#O  Eigenspaces( <F>, <A> )
##
##  <#GAPDoc Label="Eigenspaces">
##  <ManSection>
##  <Oper Name="Eigenspaces" Arg='F, A'/>
##
##  <Description>
##  The eigenspaces of the matrix <A>A</A> over the field <A>F</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "Eigenspaces", [ IsRing, IsMatrix ] );

#############################################################################
##
#O  Eigenvectors( <F>, <A> )
##
##  <#GAPDoc Label="Eigenvectors">
##  <ManSection>
##  <Oper Name="Eigenvectors" Arg='F, A'/>
##
##  <Description>
##  The eigenvectors of the matrix <A>A</A> over the field <A>F</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "Eigenvectors", [ IsRing, IsMatrix ] );


#############################################################################
##
#A  ProjectiveOrder( <mat> )
##
##  <#GAPDoc Label="ProjectiveOrder">
##  <ManSection>
##  <Attr Name="ProjectiveOrder" Arg='mat'/>
##
##  <Description>
##  Returns an integer n and a finite field element e such that
##  <A>A</A>^n = eI.
##  <A>mat</A> must be a matrix defined over a finite field.
##  <Example><![CDATA[
##  gap> ProjectiveOrder([[1,4],[5,2]]*Z(11)^0);
##  [ 5, Z(11)^5 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "ProjectiveOrder", IsMatrix );

#############################################################################
##
#F  OrderMatTrial( <mat>,<lim> )
##
##  <ManSection>
##  <Func Name="OrderMatTrial" Arg='mat,lim'/>
##
##  <Description>
##  tries to compute the order of <A>mat</A> (of small order) by mapping the
##  basis vectors under <A>mat</A>. This is done at most <A>lim</A> times, if the
##  matrix order has not been determined at this point (or if the matrix is
##  not invertible) <K>fail</K> is returned.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "OrderMatTrial" );


#############################################################################
##
#A  RankMatrix( <mat> ) . . . . . . . . . . . . . . . . . .  rank of a matrix
#A  RankMat( <mat> )  . . . . . . . . . . . . . . . . . . .  rank of a matrix
##
##  <#GAPDoc Label="RankMat">
##  <ManSection>
##  <Attr Name="RankMatrix" Arg='mat'/>
##  <Attr Name="RankMat" Arg='mat'/>
##
##  <Description>
##  If <A>mat</A> is a matrix object representing a matrix whose rows span a
##  free module over the ring generated by the matrix entries and their
##  inverses then <Ref Attr="RankMatrix"/> returns the dimension of this free
##  module.
##  Otherwise <K>fail</K> is returned.
##  <P/>
##  Note that <Ref Attr="RankMatrix"/> may perform a Gaussian elimination.
##  For large rational matrices this may take very long,
##  because the entries may become very large.
##  <Example><![CDATA[
##  gap> mat:=[[1,2,3],[4,5,6],[7,8,9]];;
##  gap> RankMatrix( mat );
##  2
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
#T suitable definition? example for a 'fail' result?
##
DeclareAttribute( "RankMatrix", IsMatrixOrMatrixObj );
DeclareSynonymAttr( "RankMat", RankMatrix );


#############################################################################
##
#O  RankMatrixDestructive( <mat> ) . . . . . . . . . . . . . rank of a matrix
#O  RankMatDestructive( <mat> )  . . . . . . . . . . . . . . rank of a matrix
##
##  <ManSection>
##  <Oper Name="RankMatrixDestructive" Arg='mat'/>
##  <Oper Name="RankMatDestructive" Arg='mat'/>
##
##  <Description>
##  For a matrix object <A>mat</A>,
##  <Ref Oper="RankMatrixDestructive"/>
##  returns the same result as <Ref Attr="RankMatrix"/> but may
##  modify its argument in the process, if this saves time or memory.
##  </Description>
##  </ManSection>
##
DeclareOperation( "RankMatrixDestructive", [ IsMatrixOrMatrixObj and IsMutable ]);
DeclareSynonymAttr( "RankMatDestructive", RankMatrixDestructive );


#############################################################################
##
#A  SemiEchelonMat( <mat> )
##
##  <#GAPDoc Label="SemiEchelonMat">
##  <ManSection>
##  <Attr Name="SemiEchelonMat" Arg='mat'/>
##
##  <Description>
##  A matrix over a field <M>F</M> is in semi-echelon form if the first nonzero
##  element in each row is the identity of <M>F</M>,
##  and all values exactly below these pivots are the zero of <M>F</M>.
##  <P/>
##  <Ref Attr="SemiEchelonMat"/> returns a record that contains information about
##  a semi-echelonized form of the matrix <A>mat</A>.
##  <P/>
##  The components of this record are
##  <P/>
##  <List>
##  <Mark><C>vectors</C></Mark>
##  <Item>
##        list of row vectors, each with pivot element the identity of <M>F</M>,
##  </Item>
##  <Mark><C>heads</C></Mark>
##  <Item>
##        list that contains at position <A>i</A>, if nonzero, the number of the
##        row for that the pivot element is in column <A>i</A>.
##  </Item>
##  </List>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "SemiEchelonMat", IsMatrix );

#############################################################################
##
#O  SemiEchelonMatDestructive( <mat> )
##
##  <#GAPDoc Label="SemiEchelonMatDestructive">
##  <ManSection>
##  <Oper Name="SemiEchelonMatDestructive" Arg='mat'/>
##
##  <Description>
##  This does the same as <C>SemiEchelonMat( <A>mat</A> )</C>, except that it may
##  (and probably will) destroy the matrix <A>mat</A>.
##  <Example><![CDATA[
##  gap> mm:=[[1,2,3],[4,5,6],[7,8,9]];;
##  gap> SemiEchelonMatDestructive( mm );
##  rec( heads := [ 1, 2, 0 ], vectors := [ [ 1, 2, 3 ], [ 0, 1, 2 ] ] )
##  gap> mm;
##  [ [ 1, 2, 3 ], [ 0, 1, 2 ], [ 0, 0, 0 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "SemiEchelonMatDestructive", [ IsMatrix and IsMutable] );


#############################################################################
##
#A  SemiEchelonMatTransformation( <mat> )
##
##  <#GAPDoc Label="SemiEchelonMatTransformation">
##  <ManSection>
##  <Attr Name="SemiEchelonMatTransformation" Arg='mat'/>
##
##  <Description>
##  does the same as <Ref Attr="SemiEchelonMat"/> but additionally stores the linear
##  transformation <M>T</M> performed on the matrix.
##  The additional components of the result are
##  <P/>
##  <List>
##  <Mark><C>coeffs</C></Mark>
##  <Item>
##        a list of coefficients vectors of the <C>vectors</C> component,
##        with respect to the rows of <A>mat</A>, that is, <C>coeffs * mat</C>
##        is the <C>vectors</C> component.
##  </Item>
##  <Mark><C>relations</C></Mark>
##  <Item>
##        a list of basis vectors for the (left) null space of <A>mat</A>.
##  </Item>
##  </List>
##  <Example><![CDATA[
##  gap> SemiEchelonMatTransformation([[1,2,3],[0,0,1]]);
##  rec( coeffs := [ [ 1, 0 ], [ 0, 1 ] ], heads := [ 1, 0, 2 ],
##    relations := [  ], vectors := [ [ 1, 2, 3 ], [ 0, 0, 1 ] ] )
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "SemiEchelonMatTransformation", IsMatrix );

#############################################################################
##
#O  SemiEchelonMatTransformationDestructive( <mat> )
##
##  <ManSection>
##  <Oper Name="SemiEchelonMatTransformationDestructive" Arg='mat'/>
##
##  <Description>
##  This does the same as <C>SemiEchelonMatTransformation( <A>mat</A> )</C>, except that it may
##  (and probably will) destroy the matrix <A>mat</A>.
##  </Description>
##  </ManSection>
##
DeclareOperation( "SemiEchelonMatTransformationDestructive", [
        IsMatrix and IsMutable ] );


#############################################################################
##
#F  SemiEchelonMatsNoCo( <mats> )
##
##  <ManSection>
##  <Func Name="SemiEchelonMatsNoCo" Arg='mats'/>
##
##  <Description>
##  The function that does the work for <C>SemiEchelonMats</C> and
##  <C>SemiEchelonMatsDestructive</C>.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "SemiEchelonMatsNoCo" );

#############################################################################
##
#O  SemiEchelonMats( <mats> )
##
##  <#GAPDoc Label="SemiEchelonMats">
##  <ManSection>
##  <Oper Name="SemiEchelonMats" Arg='mats'/>
##
##  <Description>
##  A list of matrices over a field <M>F</M> is in semi-echelon form if the
##  list of row vectors obtained on concatenating the rows of each matrix
##  is a semi-echelonized matrix (see <Ref Attr="SemiEchelonMat"/>).
##  <P/>
##  <Ref Oper="SemiEchelonMats"/> returns a record that contains information about
##  a semi-echelonized form of the list <A>mats</A> of matrices.
##  <P/>
##  The components of this record are
##  <P/>
##  <List>
##  <Mark><C>vectors</C></Mark>
##  <Item>
##        list of matrices, each with pivot element the identity of <M>F</M>,
##  </Item>
##  <Mark><C>heads</C></Mark>
##  <Item>
##        matrix that contains at position [<A>i</A>,<A>j</A>], if nonzero,
##        the number of the matrix that has the pivot element in
##        this position
##  </Item>
##  </List>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "SemiEchelonMats", [ IsList ] );

#############################################################################
##
#O  SemiEchelonMatsDestructive( <mats> )
##
##  <#GAPDoc Label="SemiEchelonMatsDestructive">
##  <ManSection>
##  <Oper Name="SemiEchelonMatsDestructive" Arg='mats'/>
##
##  <Description>
##  Does the same as <Ref Oper="SemiEchelonMats"/>,
##  except that it may destroy its argument.
##  Therefore the argument must be a list of matrices that are mutable.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "SemiEchelonMatsDestructive", [ IsList ] );


#############################################################################
##
#A  TransposedMatImmutable( <mat> ) . . . . . . . . .  transposed of a matrix
#A  TransposedMat( <mat> )  . . . . . . . . . . . . .  transposed of a matrix
#O  TransposedMatMutable( <mat> ) . . . . . . . . . .  transposed of a matrix
#O  TransposedMatOp( <mat> )  . . . . . . . . . . . .  transposed of a matrix
##
##  <#GAPDoc Label="TransposedMatImmutable">
##  <ManSection>
##  <Attr Name="TransposedMatImmutable" Arg='mat'/>
##  <Attr Name="TransposedMat" Arg='mat'/>
##  <Oper Name="TransposedMatMutable" Arg='mat'/>
##  <Oper Name="TransposedMatOp" Arg='mat'/>
##
##  <Description>
##  These functions all return the transposed of the matrix object
##  <A>mat</A>, i.e.,
##  a matrix object <M>trans</M> such that
##  <M>trans[i,k] = <A>mat</A>[k,i]</M> holds.
##  <P/>
##  They differ only w.r.t. the mutability of the result.
##  <P/>
##  <Ref Attr="TransposedMat"/> is an attribute and hence returns an
##  immutable result.
##  <Ref Oper="TransposedMatMutable"/> is guaranteed to return a new
##  <E>mutable</E> matrix.
##  <P/>
##  <Ref Attr="TransposedMatImmutable"/> is a synonym of
##  <Ref Attr="TransposedMat"/>,
##  and <Ref Oper="TransposedMatOp"/> is a synonym of
##  <Ref Oper="TransposedMatMutable"/>,
##  in analogy to operations such as <Ref Attr="Zero"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "TransposedMatImmutable", IsMatrixOrMatrixObj );
DeclareSynonymAttr( "TransposedMat", TransposedMatImmutable );

DeclareOperation( "TransposedMatMutable", [ IsMatrixOrMatrixObj ] );
DeclareSynonym( "TransposedMatOp", TransposedMatMutable );
DeclareSynonym( "MutableTransposedMat", TransposedMatMutable ); # needed?


#############################################################################
##
#O  MutableTransposedMatDestructive( <mat> )
##
##  <ManSection>
##  <Oper Name="MutableTransposedMatDestructive" Arg='mat'/>
##
##  <Description>
##  <C>MutableTransposedMatDestructive</C> returns the transpose of the mutable
##  matrix <A>mat</A>. It may, but does not have to, destroy the contents
##  of <A>mat</A> in the process. In particular, the returned matrix may be
##  identical to <A>mat</A>, having been transposed in place.
##  </Description>
##  </ManSection>
##
DeclareOperation( "MutableTransposedMatDestructive", [IsMatrix and IsMutable] );


#############################################################################
##
#O  TransposedMatDestructive( <mat> )
##
##  <#GAPDoc Label="TransposedMatDestructive">
##  <ManSection>
##  <Oper Name="TransposedMatDestructive" Arg='mat'/>
##
##  <Description>
##  If <A>mat</A> is a mutable matrix, then the transposed
##  is computed by swapping the entries in <A>mat</A>. In this way <A>mat</A> gets
##  changed. In all other cases the transposed is computed by <Ref Attr="TransposedMat"/>.
##  <Example><![CDATA[
##  gap> TransposedMat([[1,2,3],[4,5,6],[7,8,9]]);
##  [ [ 1, 4, 7 ], [ 2, 5, 8 ], [ 3, 6, 9 ] ]
##  gap> mm:= [[1,2,3],[4,5,6],[7,8,9]];;
##  gap> TransposedMatDestructive( mm );
##  [ [ 1, 4, 7 ], [ 2, 5, 8 ], [ 3, 6, 9 ] ]
##  gap> mm;
##  [ [ 1, 4, 7 ], [ 2, 5, 8 ], [ 3, 6, 9 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "TransposedMatDestructive", [ IsMatrix ] );



############################################################################
##
#P  IsMonomialMatrix( <mat> )
##
##  <#GAPDoc Label="IsMonomialMatrix">
##  <ManSection>
##  <Prop Name="IsMonomialMatrix" Arg='mat'/>
##
##  <Description>
##  A matrix is monomial if  and only if it  has exactly one nonzero entry in
##  every row and every column.
##  <Example><![CDATA[
##  gap> IsMonomialMatrix([[0,1],[1,0]]);
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsMonomialMatrix", IsMatrix );


#############################################################################
##
#O  InverseMatMod( <mat>, <obj> )
##
##  <#GAPDoc Label="InverseMatMod">
##  <ManSection>
##  <Oper Name="InverseMatMod" Arg='mat, obj'/>
##
##  <Description>
##  For a square matrix <A>mat</A>, <Ref Oper="InverseMatMod"/> returns a matrix <A>inv</A>
##  such that <C><A>inv</A> * <A>mat</A></C> is congruent to the identity matrix modulo
##  <A>obj</A>, if such a matrix exists, and <K>fail</K> otherwise.
##  <Example><![CDATA[
##  gap> mat:= [ [ 1, 2 ], [ 3, 4 ] ];;  inv:= InverseMatMod( mat, 5 );
##  [ [ 3, 1 ], [ 4, 2 ] ]
##  gap> mat * inv;
##  [ [ 11, 5 ], [ 25, 11 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "InverseMatMod", [ IsMatrix, IsObject ] );


#############################################################################
##
#O  KroneckerProduct( <mat1>, <mat2> )
##
##  <#GAPDoc Label="KroneckerProduct">
##  <ManSection>
##  <Oper Name="KroneckerProduct" Arg='mat1, mat2'/>
##
##  <Description>
##  The Kronecker product of two matrices is the matrix obtained when
##  replacing each entry <A>a</A> of <A>mat1</A> by the product <C><A>a</A>*<A>mat2</A></C> in one
##  matrix.
##  <Example><![CDATA[
##  gap> KroneckerProduct([[1,2]],[[5,7],[9,2]]);
##  [ [ 5, 7, 10, 14 ], [ 9, 2, 18, 4 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "KroneckerProduct", [ IsMatrixOrMatrixObj, IsMatrixOrMatrixObj ] );
#T state how mutable the result is!


#############################################################################
##
#O  SolutionMatNoCo( <mat>, <vec> )
##
##  <ManSection>
##  <Oper Name="SolutionMatNoCo" Arg='mat, vec'/>
##
##  <Description>
##  Does thework for <C>SolutionMat</C> and <C>SolutionMatDestructive</C>.
##  </Description>
##  </ManSection>
##
DeclareOperation( "SolutionMatNoCo", [ IsMatrix, IsRowVector ] );


#############################################################################
##
#O  SolutionMat( <mat>, <vec> ) . . . . . . . . . .  one solution of equation
##
##  <#GAPDoc Label="SolutionMat">
##  <ManSection>
##  <Oper Name="SolutionMat" Arg='mat, vec'/>
##
##  <Description>
##  returns a row vector <A>x</A> that is a solution of the equation <C><A>x</A> * <A>mat</A>
##  = <A>vec</A></C>. It returns <K>fail</K> if no such vector exists.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "SolutionMat", [ IsMatrix, IsRowVector ] );

#############################################################################
##
#O  SolutionMatDestructive( <mat>, <vec> )
##
##  <#GAPDoc Label="SolutionMatDestructive">
##  <ManSection>
##  <Oper Name="SolutionMatDestructive" Arg='mat, vec'/>
##
##  <Description>
##  Does the same as <C>SolutionMat( <A>mat</A>, <A>vec</A> )</C> except that
##  it may destroy the matrix <A>mat</A> and the vector <A>vec</A>.
##  The matrix <A>mat</A> must be mutable.
##  <Example><![CDATA[
##  gap> mat:=[[1,2,3],[4,5,6],[7,8,9]];;
##  gap> SolutionMat(mat,[3,5,7]);
##  [ 5/3, 1/3, 0 ]
##  gap> mm:= [[1,2,3],[4,5,6],[7,8,9]];;
##  gap> v:= [3,5,7];;
##  gap> SolutionMatDestructive( mm, v );
##  [ 5/3, 1/3, 0 ]
##  gap> mm;
##  [ [ 1, 2, 3 ], [ 0, -3, -6 ], [ 0, 0, 0 ] ]
##  gap> v;
##  [ 0, 0, 0 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "SolutionMatDestructive",
    [ IsMatrix and IsMutable, IsRowVector ] );


############################################################################
##
#O  SumIntersectionMat( <M1>, <M2> )  . .  sum and intersection of two spaces
##
##  <#GAPDoc Label="SumIntersectionMat">
##  <ManSection>
##  <Oper Name="SumIntersectionMat" Arg='M1, M2'/>
##
##  <Description>
##  performs  Zassenhaus'  algorithm to compute  bases  for  the sum  and the
##  intersection of spaces generated by the rows of the matrices <A>M1</A>, <A>M2</A>.
##  <P/>
##  returns a list  of length 2,   at first position   a base of the sum,  at
##  second  position a  base   of the   intersection.   Both  bases  are   in
##  semi-echelon form (see&nbsp;<Ref Sect="Echelonized Matrices"/>).
##  <Example><![CDATA[
##  gap> SumIntersectionMat(mat,[[2,7,6],[5,9,4]]);
##  [ [ [ 1, 2, 3 ], [ 0, 1, 2 ], [ 0, 0, 1 ] ], [ [ 1, -3/4, -5/2 ] ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "SumIntersectionMat", [ IsMatrix, IsMatrix ] );



#############################################################################
##
#O  TriangulizedMat( <mat> ) . . .  compute upper triangular form of a matrix
##
##  <#GAPDoc Label="TriangulizedMat">
##  <ManSection>
##  <Oper Name="TriangulizedMat" Arg='mat'/>
##  <Oper Name="RREF" Arg='mat'/>
##
##  <Description>
##  Computes an upper triangular form of the matrix <A>mat</A> via
##  the Gaussian Algorithm. It returns a mutable matrix in upper triangular form.
##  This is sometimes also  called <Q>Hermite normal form</Q> or <Q>Reduced Row Echelon
##  Form</Q>.
##  <C>RREF</C> is a synonym for <C>TriangulizedMat</C>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "TriangulizedMat", [ IsMatrix ] );
DeclareSynonym( "RREF", TriangulizedMat);

#############################################################################
##
#O  TriangulizeMat( <mat> ) . . . . . bring a matrix in upper triangular form
##
##  <#GAPDoc Label="TriangulizeMat">
##  <ManSection>
##  <Oper Name="TriangulizeMat" Arg='mat'/>
##
##  <Description>
##  Applies the Gaussian Algorithm to the mutable matrix
##  <A>mat</A> and changes <A>mat</A> such that it is in upper triangular normal
##  form (sometimes called <Q>Hermite normal form</Q> or <Q>Reduced Row Echelon
##  Form</Q>).
##  <Example><![CDATA[
##  gap> m:=TransposedMatMutable(mat);
##  [ [ 1, 4, 7 ], [ 2, 5, 8 ], [ 3, 6, 9 ] ]
##  gap> TriangulizeMat(m);m;
##  [ [ 1, 0, -1 ], [ 0, 1, 2 ], [ 0, 0, 0 ] ]
##  gap> m:=TransposedMatMutable(mat);
##  [ [ 1, 4, 7 ], [ 2, 5, 8 ], [ 3, 6, 9 ] ]
##  gap> TriangulizedMat(m);m;
##  [ [ 1, 0, -1 ], [ 0, 1, 2 ], [ 0, 0, 0 ] ]
##  [ [ 1, 4, 7 ], [ 2, 5, 8 ], [ 3, 6, 9 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "TriangulizeMat", [ IsMatrix and IsMutable ] );


#############################################################################
##
#O  UpperSubdiagonal( <mat>, <pos> )
##
##  <#GAPDoc Label="UpperSubdiagonal">
##  <ManSection>
##  <Oper Name="UpperSubdiagonal" Arg='mat, pos'/>
##
##  <Description>
##  returns a mutable list containing the entries of the <A>pos</A>th upper
##  subdiagonal of the matrix <A>mat</A>.
##  <Example><![CDATA[
##  gap> UpperSubdiagonal( [ [ 1, 2, 3 ], [ 4, 5, 6 ], [ 7, 8, 9 ] ], 1 );
##  [ 2, 6 ]
##  gap> UpperSubdiagonal( [ [ 1, 2 ], [ 3, 4 ], [ 5, 6 ] ], 1 );
##  [ 2 ]
##  gap> UpperSubdiagonal( [ [ 1, 2, 3, 4 ], [ 5, 6, 7, 8 ] ], 1 );
##  [ 2, 7 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "UpperSubdiagonal", [ IsMatrixOrMatrixObj, IsPosInt ] );


#############################################################################
##
#F  BaseFixedSpace( <mats> )  . . . . . . . . . . . .  calculate fixed points
##
##  <#GAPDoc Label="BaseFixedSpace">
##  <ManSection>
##  <Func Name="BaseFixedSpace" Arg='mats'/>
##
##  <Description>
##  <Ref Func="BaseFixedSpace"/> returns a list of row vectors that form a base of the
##  vector space <M>V</M> such that <M>v M = v</M> for all <M>v</M> in <M>V</M> and all matrices
##  <M>M</M> in the list <A>mats</A>.  (This is the common eigenspace of all matrices
##  in <A>mats</A> for the eigenvalue 1.)
##  <Example><![CDATA[
##  gap> BaseFixedSpace([[[1,2],[0,1]]]);
##  [ [ 0, 1 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "BaseFixedSpace" );


#############################################################################
##
#F  BaseSteinitzVectors( <bas>, <mat> )
##
##  <#GAPDoc Label="BaseSteinitzVectors">
##  <ManSection>
##  <Func Name="BaseSteinitzVectors" Arg='bas, mat'/>
##
##  <Description>
##  find vectors extending mat to a basis spanning the span of <A>bas</A>.
##  Both <A>bas</A> and <A>mat</A> must be matrices of full (row) rank. It returns a
##  record with the following components:
##  <List>
##  <Mark><C>subspace</C></Mark>
##  <Item>
##  is a basis of the space spanned by <A>mat</A> in upper triangular
##  form with leading ones at all echelon steps and zeroes above these ones.
##  </Item>
##  <Mark><C>factorspace</C></Mark>
##  <Item>
##  is a list of extending vectors in upper triangular form.
##  </Item>
##  <Mark><C>factorzero</C></Mark>
##  <Item>
##  is a zero vector.
##  </Item>
##  <Mark><C>heads</C></Mark>
##  <Item>
##  is a list of integers which can be used to decompose vectors in
##  the basis vectors. The <A>i</A>th entry indicating the vector
##  that gives an echelon step at position <A>i</A>.
##  A negative number indicates an echelon step in the subspace, a positive
##  number an echelon step in the complement, the absolute value gives the
##  position of the vector in the lists <C>subspace</C> and <C>factorspace</C>.
##  </Item>
##  </List>
##  <Example><![CDATA[
##  gap> BaseSteinitzVectors(IdentityMat(3,1),[[11,13,15]]);
##  rec( factorspace := [ [ 0, 1, 15/13 ], [ 0, 0, 1 ] ],
##    factorzero := [ 0, 0, 0 ], heads := [ -1, 1, 2 ],
##    subspace := [ [ 1, 13/11, 15/11 ] ] )
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "BaseSteinitzVectors" );


#############################################################################
##
#F  BlownUpMat( <B>, <mat> )
##
##  <#GAPDoc Label="BlownUpMat">
##  <ManSection>
##  <Func Name="BlownUpMat" Arg='B, mat'/>
##
##  <Description>
##  Let <A>B</A> be a basis of a field extension <M>F / K</M>,
##  and <A>mat</A> a matrix whose entries are all in <M>F</M>.
##  (This is not checked.)
##  <Ref Func="BlownUpMat"/> returns a matrix over <M>K</M> that is obtained by replacing each
##  entry of <A>mat</A> by its regular representation w.r.t.&nbsp;<A>B</A>.
##  <P/>
##  More precisely,
##  regard <A>mat</A> as the matrix of a linear transformation on the row space
##  <M>F^n</M> w.r.t.&nbsp;the <M>F</M>-basis with vectors <M>(v_1, \ldots, v_n)</M>
##  and suppose that the basis <A>B</A> consists of the vectors
##  <M>(b_1,  \ldots, b_m)</M>;
##  then the returned matrix is the matrix of the linear transformation
##  on the row space <M>K^{mn}</M> w.r.t.&nbsp;the <M>K</M>-basis whose vectors are
##  <M>(b_1 v_1, \ldots b_m v_1, \ldots, b_m v_n)</M>.
##  <P/>
##  Note that the linear transformations act on <E>row</E> vectors, i.e.,
##  each row of the matrix is a concatenation of vectors of <A>B</A>-coefficients.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "BlownUpMat" );


#############################################################################
##
#F  BlownUpVector( <B>, <vector> )
##
##  <#GAPDoc Label="BlownUpVector">
##  <ManSection>
##  <Func Name="BlownUpVector" Arg='B, vector'/>
##
##  <Description>
##  Let <A>B</A> be a basis of a field extension <M>F / K</M>,
##  and <A>vector</A> a row vector whose entries are all in <M>F</M>.
##  <Ref Func="BlownUpVector"/> returns a row vector over <M>K</M> that is obtained by
##  replacing each entry of <A>vector</A> by its coefficients w.r.t.&nbsp;<A>B</A>.
##  <P/>
##  So <Ref Func="BlownUpVector"/> and <Ref Func="BlownUpMat"/> are compatible
##  in the sense that for a matrix <A>mat</A> over <M>F</M>,
##  <C>BlownUpVector( <A>B</A>, <A>mat</A> * <A>vector</A> )</C>
##  is equal to
##  <C>BlownUpMat( <A>B</A>, <A>mat</A> ) * BlownUpVector( <A>B</A>, <A>vector</A> )</C>.
##  <Example><![CDATA[
##  gap> B:= Basis( CF(4), [ 1, E(4) ] );;
##  gap> mat:= [ [ 1, E(4) ], [ 0, 1 ] ];;  vec:= [ 1, E(4) ];;
##  gap> bmat:= BlownUpMat( B, mat );;  bvec:= BlownUpVector( B, vec );;
##  gap> Display( bmat );  bvec;
##  [ [   1,   0,   0,   1 ],
##    [   0,   1,  -1,   0 ],
##    [   0,   0,   1,   0 ],
##    [   0,   0,   0,   1 ] ]
##  [ 1, 0, 0, 1 ]
##  gap> bvec * bmat = BlownUpVector( B, vec * mat );
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "BlownUpVector" );


#############################################################################
##
#O  DiagonalizeMat(<ring>,<mat>)
##
##  <#GAPDoc Label="DiagonalizeMat">
##  <ManSection>
##  <Oper Name="DiagonalizeMat" Arg='ring,mat'/>
##
##  <Description>
##  brings the mutable matrix <A>mat</A>, considered as a matrix over <A>ring</A>,
##  into diagonal form by elementary row and column operations.
##  <Example><![CDATA[
##  gap> m:=[[1,2],[2,1]];;
##  gap> DiagonalizeMat(Integers,m);m;
##  [ [ 1, 0 ], [ 0, 3 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "DiagonalizeMat", [IsRing,IsMatrix and IsMutable] );


#############################################################################
##
#F  IdentityMat( <m> [, <R>] )  . . . . . . . identity matrix of a given size
##
##  <#GAPDoc Label="IdentityMat">
##  <ManSection>
##  <Func Name="IdentityMat" Arg='m [, R]'/>
##
##  <Description>
##  returns a (mutable) <A>m</A><M>\times</M><A>m</A> identity matrix over the ring given
##  by <A>R</A>. Here, <A>R</A> can be either a ring, or an element of a ring. By default,
##  an integer matrix is created.
##  <Example><![CDATA[
##  gap> IdentityMat(3);
##  [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ]
##  gap> IdentityMat(2,Integers mod 15);
##  [ [ ZmodnZObj( 1, 15 ), ZmodnZObj( 0, 15 ) ],
##    [ ZmodnZObj( 0, 15 ), ZmodnZObj( 1, 15 ) ] ]
##  gap> IdentityMat(2,Z(3));
##  [ [ Z(3)^0, 0*Z(3) ], [ 0*Z(3), Z(3)^0 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "IdentityMat" );


#############################################################################
##
#O  MutableCopyMatrix( <mat> )  . . . . . . . . . . . . . . . copies a matrix
##
##  <ManSection>
##  <Oper Name="MutableCopyMatrix" Arg='mat'/>
##
##  <Description>
##  <Ref Oper="MutableCopyMatrix"/> returns a fully mutable copy of the
##  matrix <A>mat</A>.
##  <P/>
##  The default method does <C>List( </C><A>mat</A><C>, ShallowCopy )</C>
##  and thus may also be called for the empty list,
##  returning a new empty list.
##  <P/>
##  Note that this is different from what <Ref Func="StructuralCopy"/> does,
##  where exactly those rows of the result are mutable which are already
##  mutable in <A>mat</A>,
##  and where two rows in the result are identical if and only if they are
##  identical in <A>mat</A>.
##  </Description>
##  </ManSection>
##
DeclareOperation( "MutableCopyMatrix", [ IsList ] );


#############################################################################
##
#F  NullMat( <m>, <n> [, <R>] ) . . . . . . . . . null matrix of a given size
##
##  <#GAPDoc Label="NullMat">
##  <ManSection>
##  <Func Name="NullMat" Arg='m, n [, R]'/>
##
##  <Description>
##  returns a (mutable) <A>m</A><M>\times</M><A>n</A> null matrix over the ring given by
##  by <A>R</A>. Here, <A>R</A> can be either a ring, or an element of a ring. By default,
##  an integer matrix is created.
##  <Example><![CDATA[
##  gap> NullMat(3,2);
##  [ [ 0, 0 ], [ 0, 0 ], [ 0, 0 ] ]
##  gap> NullMat(2,2,Integers mod 15);
##  [ [ ZmodnZObj( 0, 15 ), ZmodnZObj( 0, 15 ) ],
##    [ ZmodnZObj( 0, 15 ), ZmodnZObj( 0, 15 ) ] ]
##  gap> NullMat(3,2,Z(3));
##  [ [ 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3) ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "NullMat" );


#############################################################################
##
#F  NullspaceModN( <M>, <n> ) . . . . . . . . . . . .nullspace of <M> mod <n>
##
##  <#GAPDoc Label="NullspaceModN">
##  <ManSection>
##  <Func Name="NullspaceModQ" Arg='M, q'/>
##  <Func Name="NullspaceModN" Arg='M, n'/>
##
##  <Description>
##  <A>M</A> must be a matrix of integers and <A>n</A> a positive integer.
##  Then <Ref Func="NullspaceModN"/> returns the set of all vectors of
##  integers modulo <A>n</A>, which solve the homogeneous equation system
##  <A>v</A> <A>M</A> = 0 modulo <A>n</A>.
##  <P/>
##  <Ref Func="NullspaceModQ"/> is a synonym for <Ref Func="NullspaceModN"/>.
##  <Example><![CDATA[
##  gap> NullspaceModN( [ [ 2 ] ], 8 );
##  [ [ 0 ], [ 4 ] ]
##  gap> NullspaceModN( [ [ 2, 1 ], [ 0, 2 ] ], 6 );
##  [ [ 0, 0 ], [ 0, 3 ] ]
##  gap> mat:= [ [ 1, 3 ], [ 1, 2 ], [ 1, 1 ] ];;
##  gap> NullspaceModN( mat, 5 );
##  [ [ 0, 0, 0 ], [ 1, 3, 1 ], [ 2, 1, 2 ], [ 3, 4, 3 ], [ 4, 2, 4 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "NullspaceModN" );
DeclareSynonym( "NullspaceModQ", NullspaceModN );


#############################################################################
##
#F  BasisNullspaceModN( <M>, <n> ) . .  basis of the nullspace of <M> mod <n>
##
##  <#GAPDoc Label="BasisNullspaceModN">
##  <ManSection>
##  <Func Name="BasisNullspaceModN" Arg='M, n'/>
##
##  <Description>
##  <A>M</A> must be a matrix of integers and <A>n</A> a positive integer.
##  Then <Ref Func="BasisNullspaceModN"/> returns a set <A>B</A> of vectors
##  such that every vector <A>v</A> of integer modulo <A>n</A> satisfying
##  <A>v</A> <A>M</A> = 0 modulo <A>n</A> can be expressed by a Z-linear
##  combination of elements of <A>B</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "BasisNullspaceModN" );


#############################################################################
##
#F  PermutationMat( <perm>, <dim> [, <F> ] ) . . . . . .  permutation matrix
##
##  <#GAPDoc Label="PermutationMat">
##  <ManSection>
##  <Func Name="PermutationMat" Arg='perm, dim [, F ]'/>
##
##  <Description>
##  returns a matrix in dimension <A>dim</A> over the field given by <A>F</A> (i.e.
##  the smallest field containing the element <A>F</A> or <A>F</A> itself if it is a
##  field)  that
##  represents the permutation <A>perm</A> acting by permuting the basis vectors
##  as it permutes points.
##  <Example><![CDATA[
##  gap> PermutationMat((1,2,3),4,1);
##  [ [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 1, 0, 0, 0 ], [ 0, 0, 0, 1 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "PermutationMat" );


#############################################################################
##
#O  DiagonalMatrix( [<filt>, ]<R>, <vector> )
#O  DiagonalMatrix( <vector>[, <M>] )
##
##  <#GAPDoc Label="DiagonalMatrix">
##  <ManSection>
##  <Oper Name="DiagonalMatrix" Arg='[filt, ]R, vector'
##   Label="with base domain"/>
##  <Oper Name="DiagonalMatrix" Arg='vector[, M]'
##   Label="with example matrix"/>
##
##  <Returns>
##  a square matrix or matrix object with column number equal to the length
##  of the dense list <A>vector</A>,
##  whose diagonal entries are given by the entries of <A>vector</A>,
##  and whose off-diagonal entries are zero.
##  </Returns>
##  <Description>
##  If a semiring <A>R</A> is given then it will be the base domain
##  (see <Ref Attr="BaseDomain" Label="for a matrix object"/>)
##  of the returned matrix.
##  In this case, a filter <A>filt</A> can be specified that defines the
##  internal representation of the result
##  (see <Ref Attr="ConstructingFilter" Label="for a matrix object"/>).
##  The default value for <A>filt</A> is determined from <A>R</A>.
##  <P/>
##  If a matrix object <A>M</A> is given then the returned matrix will have
##  the same internal representation and the same base domain as <A>M</A>.
##  <P/>
##  If only <A>vector</A> is given then it is used to compute a default for
##  <A>R</A>.
##  <P/>
##  If the <Ref Attr="ConstructingFilter" Label="for a matrix object"/> value
##  of the result implies <Ref Filt="IsCopyable"/> then the result is
##  fully mutable.
##  <P/>
##  <Example><![CDATA[
##  gap> d1:= DiagonalMatrix( GF(9), [ 1, 2 ] * Z(3)^0 );
##  [ [ Z(3)^0, 0*Z(3) ], [ 0*Z(3), Z(3) ] ]
##  gap> Is8BitMatrixRep( d1 );
##  true
##  gap> d2:= DiagonalMatrix( IsPlistMatrixRep, GF(9), [ 1, 2 ] * Z(3)^0 );
##  <2x2-matrix over GF(3^2)>
##  gap> IsPlistMatrixRep( d2 );
##  true
##  gap> DiagonalMatrix( [ 1, 2 ] );
##  <2x2-matrix over Rationals>
##  gap> DiagonalMatrix( [ 1, 2 ], Matrix( Integers, [ [ 1 ] ], 1 ) );
##  <2x2-matrix over Integers>
##  gap> DiagonalMatrix( [ 1, 2 ], [ [ 1 ] ] );
##  [ [ 1, 0 ], [ 0, 2 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareTagBasedOperation( "DiagonalMatrix",
    [ IsOperation, IsSemiring, IsRowVectorOrVectorObj ] );
DeclareOperation( "DiagonalMatrix", [ IsSemiring, IsRowVectorOrVectorObj ] );
DeclareOperation( "DiagonalMatrix",
    [ IsRowVectorOrVectorObj, IsMatrixOrMatrixObj ] );
DeclareOperation( "DiagonalMatrix", [ IsRowVectorOrVectorObj ] );


#############################################################################
##
#F  DiagonalMat( <vector> ) . . . . . . . . . . . . . . . . . diagonal matrix
##
##  <#GAPDoc Label="DiagonalMat">
##  <ManSection>
##  <Func Name="DiagonalMat" Arg='vector'/>
##
##  <Description>
##  returns a diagonal matrix <A>mat</A> with the diagonal entries given by
##  <A>vector</A>.
##  <Example><![CDATA[
##  gap> DiagonalMat([1,2,3]);
##  [ [ 1, 0, 0 ], [ 0, 2, 0 ], [ 0, 0, 3 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "DiagonalMat" );


#############################################################################
##
#F  ReflectionMat( <coeffs>[, <conj>][, <root>] )
##
##  <#GAPDoc Label="ReflectionMat">
##  <ManSection>
##  <Func Name="ReflectionMat" Arg='coeffs[, conj][, root]'/>
##
##  <Description>
##  Let <A>coeffs</A> be a row vector.
##  <Ref Func="ReflectionMat"/> returns the matrix of the reflection in this
##  vector.
##  <P/>
##  More precisely, if <A>coeffs</A> is the coefficients list of a vector
##  <M>v</M> w.r.t. a basis <M>B</M> (see&nbsp;<Ref Attr="Basis"/>)
##  then the returned matrix describes the
##  reflection in <M>v</M> w.r.t. <M>B</M> as a map on a row space,
##  with action from the right.
##  <P/>
##  The optional argument <A>root</A> is a root of unity that determines the
##  order of the reflection.
##  The default is a reflection of order 2.
##  For triflections one should choose a third root of unity etc.
##  (see&nbsp;<Ref Oper="E"/>).
##  <P/>
##  <A>conj</A> is a function of one argument that conjugates a ring element.
##  The default is <Ref Attr="ComplexConjugate"/>.
##  <P/>
##  The matrix of the reflection in <M>v</M> is defined as
##  <Display Mode="M">
##  M = I_n + <A>conj</A>(v^{tr}) \cdot (<A>root</A>-1) /
##  (v \cdot <A>conj</A>(v^{tr})) \cdot v
##  </Display>
##  where <M>n</M> is the length of the coefficient list.
##  <P/>
##  So <M>v</M> is mapped to <A>root</A><M> \cdot v</M>,
##  with default <M>-v</M>, and any vector <M>x</M> with the property
##  <M>x \cdot </M><A>conj</A><M>(v^{tr}) = 0</M> is fixed by the reflection.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "ReflectionMat" );


#############################################################################
##
#F  RandomInvertibleMat( [rs ,] <m> [, <R>] ) . . .  random invertible matrix
##
##  <#GAPDoc Label="RandomInvertibleMat">
##  <ManSection>
##  <Func Name="RandomInvertibleMat" Arg='[rs ,] m [, R]'/>
##
##  <Description>
##  <Ref Func="RandomInvertibleMat"/> returns a new mutable invertible random
##  matrix with <A>m</A> rows and columns with elements taken from the ring
##  <A>R</A>, which defaults to <Ref Var="Integers"/>.
##  Optionally, a random source <A>rs</A> can be supplied.
##  <Example><![CDATA[
##  gap> m := RandomInvertibleMat(4);
##  [ [ -4, 1, 0, -1 ], [ -1, -1, 1, -1 ], [ 1, -2, -1, -2 ],
##    [ 0, -1, 2, -2 ] ]
##  gap> m^-1;
##  [ [ -1/8, -11/24, 1/24, 1/4 ], [ 1/4, -13/12, -1/12, 1/2 ],
##    [ -1/8, 5/24, -7/24, 1/4 ], [ -1/4, 3/4, -1/4, -1/2 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "RandomInvertibleMat" );


#############################################################################
##
#F  RandomMat( [rs ,] <m>, <n> [, <R>] ) . . . . . . . . make a random matrix
##
##  <#GAPDoc Label="RandomMat">
##  <ManSection>
##  <Func Name="RandomMat" Arg='[rs ,] m, n [, R]'/>
##
##  <Description>
##  <Ref Func="RandomMat"/> returns a new mutable random matrix with <A>m</A> rows and
##  <A>n</A> columns with elements taken from the ring <A>R</A>, which defaults
##  to <Ref Var="Integers"/>.
##  Optionally, a random source <A>rs</A> can be supplied.
##  <Example><![CDATA[
##  gap> RandomMat(2,3,GF(3));
##  [ [ Z(3), Z(3), 0*Z(3) ], [ Z(3), Z(3)^0, Z(3) ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "RandomMat" );


#############################################################################
##
#F  RandomUnimodularMat( [rs ,] <m> ) . . . . . . . . random unimodular matrix
##
##  <#GAPDoc Label="RandomUnimodularMat">
##  <ManSection>
##  <Func Name="RandomUnimodularMat" Arg='[rs ,] m'/>
##
##  <Description>
##  returns a new random mutable <A>m</A><M>\times</M><A>m</A> matrix with integer
##  entries that is invertible over the integers.
##  Optionally, a random source <A>rs</A> can be supplied.
##  If the option <A>domain</A> is given, random selection is made from <A>domain</A>, otherwise
##  from <A>Integers</A>
##  <Example><![CDATA[
##  gap> m := RandomUnimodularMat(3);
##  [ [ -5, 1, 0 ], [ 12, -2, -1 ], [ -14, 3, 0 ] ]
##  gap> m^-1;
##  [ [ -3, 0, 1 ], [ -14, 0, 5 ], [ -8, -1, 2 ] ]
##  gap> RandomUnimodularMat(3:domain:=[-1000..1000]);
##  [ [ 312330173, 15560030349, -125721926670 ],
##  [ -307290, -15309014, 123693281 ],
##  [ -684293792, -34090949551, 275448039848 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "RandomUnimodularMat" );


#############################################################################
##
#F  SimultaneousEigenvalues( <matlist>, <expo> ) . . . . . . . . .eigenvalues
##
##  <#GAPDoc Label="SimultaneousEigenvalues">
##  <ManSection>
##  <Func Name="SimultaneousEigenvalues" Arg='matlist, expo'/>
##
##  <Description>
##  The matrices in <A>matlist</A> must be matrices over GF(<A>q</A>)
##  for some prime <A>q</A>.
##  Together, they must generate an abelian p-group of exponent <A>expo</A>.
##  Then the eigenvalues of <A>mat</A> in the splitting field
##  <C>GF(<A>q</A>^<A>r</A>)</C> for some <A>r</A> are powers of an element
##  <M>\xi</M> in the splitting field, which is of order <A>expo</A>.
##  <Ref Func="SimultaneousEigenvalues"/> returns a matrix of
##  integers mod <A>expo</A> <M>(a_{{i,j}})</M>, such that the power
##  <M>\xi^{{a_{{i,j}}}}</M> is an eigenvalue of the <A>i</A>-th matrix in
##  <A>matlist</A> and the eigenspaces of the different matrices to the
##  eigenvalues <M>\xi^{{a_{{i,j}}}}</M> for fixed <A>j</A> are equal.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "SimultaneousEigenvalues" );


#############################################################################
##
#A  TraceMatrix( <mat> )  . . . . . . . . . . . . . . . . . trace of a matrix
#A  TraceMat( <mat> ) . . . . . . . . . . . . . . . . . . . trace of a matrix
#A  Trace( <mat> )
##
##  <#GAPDoc Label="TraceMat">
##  <ManSection>
##  <Attr Name="TraceMatrix" Arg='mat'/>
##  <Attr Name="TraceMat" Arg='mat'/>
##  <Attr Name="Trace" Arg='mat' Label="of a matrix"/>
##
##  <Description>
##  The trace of a square matrix is the sum of its diagonal entries.
##  <Example><![CDATA[
##  gap> TraceMatrix([[1,2,3],[4,5,6],[7,8,9]]);
##  15
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "TraceMatrix", IsMatrixOrMatrixObj );
DeclareSynonymAttr( "TraceMat", TraceMatrix );


#############################################################################
##
#A  JordanDecomposition( <mat> )
##
##  <#GAPDoc Label="JordanDecomposition">
##  <ManSection>
##  <Attr Name="JordanDecomposition" Arg='mat'/>
##
##  <Description>
##  <C>JordanDecomposition( <A>mat </A> )</C> returns a list <C>[S,N]</C> such that
##  <C>S</C> is a semisimple matrix and <C>N</C> is nilpotent. Furthermore, <C>S</C>
##  and <C>N</C> commute and <C><A>mat</A>=S+N</C>.
##  <Example><![CDATA[
##  gap> mat:=[[1,2,3],[4,5,6],[7,8,9]];;
##  gap> JordanDecomposition(mat);
##  [ [ [ 1, 2, 3 ], [ 4, 5, 6 ], [ 7, 8, 9 ] ],
##    [ [ 0, 0, 0 ], [ 0, 0, 0 ], [ 0, 0, 0 ] ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "JordanDecomposition", IsMatrix );


#############################################################################
##
#F  FlatBlockMat( <blockmat> ) . . . . . . . . convert block matrix to matrix
##
##  <ManSection>
##  <Func Name="FlatBlockMat" Arg='blockmat'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "FlatBlockMat" );

#############################################################################
##
#F  DirectSumMat( <matlist> ) . . . . . . . . . . . create block diagonal mat
##
##  <ManSection>
##  <Func Name="DirectSumMat" Arg='matlist'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "DirectSumMat" );

#############################################################################
##
#F  EmptyMatrix( <char> )
##
##  <#GAPDoc Label="EmptyMatrix">
##  <ManSection>
##  <Func Name="EmptyMatrix" Arg='char'/>
##
##  <Description>
##  is an empty (ordinary) matrix in characteristic <A>char</A> that can be added
##  to or multiplied with empty lists (representing zero-dimensional row
##  vectors). It also acts (via the operation <Ref Oper="\^"/>) on empty lists.
##  <P/>
##  <!-- store in the family as an attribute?-->
##  <Example><![CDATA[
##  gap> EmptyMatrix(5);
##  EmptyMatrix( 5 )
##  gap> AsList(last);
##  [  ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "EmptyMatrix" );


#############################################################################
##
#F  OnSubspacesByCanonicalBasis(<bas>,<mat>)
##
##  <#GAPDoc Label="OnSubspacesByCanonicalBasis">
##  <ManSection>
##  <Func Name="OnSubspacesByCanonicalBasis" Arg='bas,mat'/>
##  <Func Name="OnSubspacesByCanonicalBasisConcatenations" Arg='basvec,mat'/>
##
##  <Description>
##  implements the operation of a matrix group on subspaces of a vector
##  space. <A>bas</A> must be a list of (linearly independent) vectors which
##  forms a basis of the subspace in Hermite normal form. <A>mat</A> is an
##  element of the acting matrix group. The function returns a mutable
##  matrix which gives the basis of the image of the subspace in Hermite
##  normal form. (In other words: it triangulizes the product of <A>bas</A> with
##  <A>mat</A>.)
##  <P/>
##  <A>bas</A> must be given in Hermite normal form,
##  otherwise an error is triggered (see&nbsp;<Ref Sect="Action on canonical representatives"/>).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("OnSubspacesByCanonicalBasis");
DeclareGlobalFunction("OnSubspacesByCanonicalBasisConcatenations");


#############################################################################
##
#F  OnSubspacesByCanonicalBasisGF2(<bas>,<mat>)
##
##  <ManSection>
##  <Func Name="OnSubspacesByCanonicalBasisGF2" Arg='bas,mat'/>
##
##  <Description>
##  is a special version of <C>OnSubspacesByCanonicalBasis</C> for matrices over
##  GF2.
##  </Description>
##  </ManSection>
##
DeclareSynonym("OnSubspacesByCanonicalBasisGF2",OnSubspacesByCanonicalBasis);


#############################################################################
##
#A  CharacteristicPolynomial( [[<F>, <E>, ]<mat>[, <ind>] )
##
##  <#GAPDoc Label="CharacteristicPolynomial">
##  <ManSection>
##  <Attr Name="CharacteristicPolynomial" Arg='[F, E, ]mat[, ind]'/>
##
##  <Description>
##  For a square matrix <A>mat</A>, <Ref Attr="CharacteristicPolynomial"/>
##  returns the <E>characteristic polynomial</E> of <A>mat</A>, that is, the
##  <Ref Oper="StandardAssociate"/> of the determinant of the matrix
##  <M><A>mat</A> - X \cdot I</M>, where <M>X</M> is an indeterminate and
##  <M>I</M> is the appropriate identity matrix.
##  <P/>
##  If fields <A>F</A> and <A>E</A> are given, then <A>F</A> must be a
##  subfield of <A>E</A>, and <A>mat</A> must have entries in <A>E</A>.
##  Then <Ref Attr="CharacteristicPolynomial"/> returns the characteristic
##  polynomial of the <A>F</A>-linear mapping induced by <A>mat</A>
##  on the underlying <A>E</A>-vector space of <A>mat</A>. In this case,
##  the characteristic polynomial is computed using <Ref Func="BlownUpMat"/>
##  for the field extension of <M>E/F</M> generated by the default field.
##  Thus, if <M>F = E</M>, the result is the same as for the one argument
##  version.
##  <P/>
##  The returned polynomials are expressed in the indeterminate number
##  <A>ind</A>.  If <A>ind</A> is not given, it defaults to <M>1</M>.
##  <P/>
##  <C>CharacteristicPolynomial(<A>F</A>, <A>E</A>, <A>mat</A>)</C> is a
##  multiple of the  minimal polynomial
##  <C>MinimalPolynomial(<A>F</A>, <A>mat</A>)</C>
##  (see&nbsp;<Ref Oper="MinimalPolynomial"/>).
##  <P/>
##  Note that, up to &GAP; version 4.4.6,
##  <Ref Attr="CharacteristicPolynomial"/> only  allowed to specify one field
##  (corresponding to <A>F</A>) as an argument.
##  That usage has been disabled because its definition turned out to be
##  ambiguous and may have lead to unexpected results. (To ensure
##  backward compatibility, it is still possible to use the old form
##  if <A>F</A> contains the default field of the matrix,
##  see&nbsp;<Ref Attr="DefaultFieldOfMatrix"/>,
##  but this feature will disappear in future versions of &GAP;.)
##  <Example><![CDATA[
##  gap> CharacteristicPolynomial( [ [ 1, 1 ], [ 0, 1 ] ] );
##  x^2-2*x+1
##  gap> mat := [[0,1],[E(4)-1,E(4)]];;
##  gap> CharacteristicPolynomial( mat );
##  x^2+(-E(4))*x+(1-E(4))
##  gap> CharacteristicPolynomial( Rationals, CF(4), mat );
##  x^4+3*x^2+2*x+2
##  gap> mat:= [ [ E(4), 1 ], [ 0, -E(4) ] ];;
##  gap> CharacteristicPolynomial( mat );
##  x^2+1
##  gap> CharacteristicPolynomial( Rationals, CF(4), mat );
##  x^4+2*x^2+1
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "CharacteristicPolynomial", IsMatrix );
DeclareOperation( "CharacteristicPolynomial", [ IsMatrix, IsPosInt ] );
DeclareOperation( "CharacteristicPolynomial",
    [ IsRing, IsRing, IsMatrix, IsPosInt ] );
DeclareOperation( "CharacteristicPolynomial",
    [ IsRing, IsRing, IsMatrix ] );


#############################################################################
##
#O  CharacteristicPolynomialMatrixNC( <field>,<mat>,<indnum> )
##
##  <ManSection>
##  <Oper Name="CharacteristicPolynomialMatrixNC" Arg='field,mat,indnum'/>
##
##  <Description>
##  returns the characteristic polynomial for matrix <A>mat</A> which <E>must</E> be
##  defined over <A>field</A>. No tests are performed.
##  </Description>
##  </ManSection>
##
DeclareOperation("CharacteristicPolynomialMatrixNC",
  #IsField is not yet known
  [IsRing,IsOrdinaryMatrix,IsPosInt]);


#############################################################################
##
#O  MinimalPolynomialMatrixNC( <field>,<mat>,<indnum> )
##
##  <ManSection>
##  <Oper Name="MinimalPolynomialMatrixNC" Arg='field,mat,indnum'/>
##
##  <Description>
##  returns the minimal polynomial for matrix <A>mat</A> which <E>must</E> be
##  defined over field>. No tests are performed.
##  </Description>
##  </ManSection>
##
DeclareOperation("MinimalPolynomialMatrixNC",
  #IsField is not yet known
  [IsRing,IsOrdinaryMatrix,IsPosInt]);

#############################################################################
##
#O  FieldOfMatrixList( <matlist> )
##
##  <ManSection>
##  <Oper Name="FieldOfMatrixList" Arg='matlist'/>
##
##  <Description>
##  The smallest  field containing all the entries of all matrices in
##  <A>matlist</A>. As the algorithm must run through all matrix entries, this
##  can be hard.
##  </Description>
##  </ManSection>
##
DeclareOperation("FieldOfMatrixList",[IsListOrCollection]);

#############################################################################
##
#O  DefaultRingOfMatrixList( <matlist> )
##
##  <ManSection>
##  <Oper Name="DefaultScalarDomainOfMatrixList" Arg='matlist'/>
##
##  <Description>
##  For a list of matrices <A>matlist</A> this operation returns a ring
##  <M>R</M> such that all entries of the matrices lie in <M>R</M>. If
##  <M>R</M> has a quotient field that can be represented, this quotient
##  field is returned instead.
##  In general <M>R</R> is not chosen to be as small as possible, but to
##  be determined quickly without being unnecessarily large
##  (see <Ref Attr="DefaultFieldOfMatrix"/>).
##  </Description>
##  </ManSection>
##
DeclareOperation("DefaultScalarDomainOfMatrixList",[IsListOrCollection]);


#############################################################################
##
#O  BaseField( <matrixorvector> )
##
##  <ManSection>
##  <Oper Name="BaseField" Arg='matrixorvector'/>
##
##  <Description>
##  returns the base field of a matrix or a vector. This is only defined
##  for wrapped matrices and vectors, not for plain lists. That is, for
##  a plain list the operation returns fail. It is guaranteed
##  that a call to this operation is only a very fast lookup.
##  </Description>
##  </ManSection>
##
DeclareOperation("BaseField",[IsObject]);


#############################################################################
##
#O  SimplexMethod( <A>, <b>, <c> )
##
##  <#GAPDoc Label="SimplexMethod">
##  <ManSection>
##  <Func Name="SimplexMethod" Arg='A,b,c'/>
##
##  <Description>
##  Find a rational vector <A>x</A> that maximizes <M><A>x</A>\cdot<A>c</A></M>, subject
##  to the constraint <M><A>A</A>\cdot<A>x</A>\le<A>b</A></M>.
##  <Example><![CDATA[
##  gap> A:=[[3,1,1,4],[1,-3,2,3],[2,1,3,-1]];;
##  gap> b:=[12,7,10];;c:=[2,4,3,1];;
##  gap> SimplexMethod(A,b,c);
##  [ [ 0, 52/5, 0, 2/5 ], 42 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "SimplexMethod" );

#############################################################################
##
#O  RationalCanonicalFormTransform( <mat> )
##
##  <#GAPDoc Label="RationalCanonicalFormTransform">
##  <ManSection>
##  <Func Name="RationalCanonicalFormTransform" Arg='mat'/>
##
##  <Description>
##  <Index>Frobenius Normal Form</Index>
##  For a matrix <C>A</C>, return a matrix <C>P</C> such that
##  <M>A^{P}</M> is in rational canonical form (also called
##  Frobenius normal form). The algorithm used is the basic textbook
##  version and thus not of optimal complexity.
##  <Example><![CDATA[
##  gap> aa:=[[0,-8,12,40,-36,4,0,59,15,-9],[-2,-2,-2,6,-11,1,-1,10,1,0],
##  > [1,5,0,-6,12,-2,0,-12,-4,2],[0,0,0,2,0,0,0,7,0,0],
##  > [0,2,-3,-7,8,-1,0,-7,-3,2],[-5,-4,-6,18,-30,2,-2,35,5,-1],
##  > [-1,-6,6,20,-28,3,0,24,10,-6],[0,0,0,-1,0,0,0,-3,0,0],
##  > [0,0,-1,-2,-2,0,-1,-7,0,0],[0,-8,9,21,-36,4,-2,12,12,-8]];;
##  gap> t:=RationalCanonicalFormTransform(aa);;
##  gap> aa^t;
##  [ [ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ], [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
##    [ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ],
##    [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ], [ 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ],
##    [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 1 ], [ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ],
##    [ 0, 0, 0, 0, 0, 0, 0, 1, 0, -1 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 1, -1 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "RationalCanonicalFormTransform" );