File: maxsub.gi

package info (click to toggle)
gap 4.15.1-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 110,212 kB
  • sloc: ansic: 97,261; xml: 48,343; cpp: 13,946; sh: 4,900; perl: 1,650; javascript: 255; makefile: 252; ruby: 9
file content (1087 lines) | stat: -rw-r--r-- 34,614 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
#############################################################################
##
##  This file is part of GAP, a system for computational discrete algebra.
##  This file's authors include Bettina Eick, Alexander Hulpke.
##
##  Copyright of GAP belongs to its developers, whose names are too numerous
##  to list here. Please refer to the COPYRIGHT file for details.
##
##  SPDX-License-Identifier: GPL-2.0-or-later
##
##  This file contains functions using the trivial-fitting paradigm for
##  determining maximal subgroups.
##


##
## methods for soluble normal subgroups
##
#############################################################################
##
#F MaxSubmodsByPcgs( G, pcgs, field )
##
BindGlobal("MaxSubmodsByPcgs",function( G, pcgs, field )
    local mats, modu, max, pcgD, pcgN, i, base, sub;
    mats := LinearOperationLayer( G, pcgs );
    modu := GModuleByMats( mats, Length(pcgs), field );
    if modu.dimension=1 then
      max:=[[]];
    else
      max  := MTX.BasesMaximalSubmodules( modu );
    fi;
    pcgD := DenominatorOfModuloPcgs( pcgs );
    pcgN := NumeratorOfModuloPcgs( pcgs );
    for i in [1..Length( max )] do
        base := List( max[i], x -> PcElementByExponents( pcgs, x ) );
        Append( base, pcgD );
        sub := InducedPcgsByPcSequenceNC( pcgN, base );
        if Length(pcgD)=0 then
          max[i]:=sub;
        else
          max[i] := sub mod pcgD;
        fi;
    od;
    return max;
end);

#############################################################################
##
#F IsCentralModule( G, modu )
##
BindGlobal("IsCentralModule",function( G, modu )
    local mats;
    if Length( modu ) > 1 then return false; fi;
    mats := LinearOperationLayer( G, modu );
    return ForAll( mats, IsOne );
end);

#############################################################################
##
#F ComplementClassesByPcgsModulo( G, pcgs, fphom,words,wordgens,wordimgs )
##
BindGlobal("ComplementClassesByPcgsModulo",
function( G, fampcgs,pcgs,fphom,words,wordgens,wordimgs)
    local ocr, cc, cb, co, field, z, V, reps, cls, r, den,ggens;

    den:=DenominatorOfModuloPcgs(pcgs);
    # the mysterious one-cocycle record
    ocr := rec( modulePcgs := pcgs,
                group := G,
                factorfphom:=fphom
                         );

    OCOneCocycles( ocr, false );
    if not IsBound( ocr.complement ) then return []; fi;

    # derive complementreps
    cc := Basis( ocr.oneCocycles );
    cb := Basis( ocr.oneCoboundaries );
    co := BaseSteinitzVectors( BasisVectors( cc ), BasisVectors( cb ) );
    field := LeftActingDomain( ocr.oneCocycles );
    z := Zero( ocr.oneCocycles );
    V := VectorSpace( field, co.factorspace, z );

    cls:=[];
    for r in V do
      # complement generators (as per presentation)
      reps:=ocr.cocycleToList(r);
      reps:=List([1..Length(reps)],x->ocr.complementGens[x]*reps[x]);
      # translate factor gens to original generators
      ggens:=List(words,
              x->MappedWord(x,FreeGeneratorsOfFpGroup(Range(fphom)),reps));
      # and keep the extra pc generators
      reps:=reps{[Length(wordgens)+1..Length(reps)]};
      reps:=Concatenation(reps,den);
      reps:=InducedPcgsByGenerators(fampcgs,reps);
      SetOneOfPcgs(reps,OneOfPcgs(fampcgs));
      #z:=Size(Group(wordimgs,()))*Product(RelativeOrders(reps));
      reps:=SubgroupByFittingFreeData( G, ggens, wordimgs,reps);
      #SetSize(reps,z);
#if IsSubset(reps,SolvableRadical(G)) then Error("radicalA");fi;
      reps!.classsize:=Size(ocr.oneCoboundaries);
      Add(cls,reps);
    od;

    return cls;
end);

#############################################################################
##
#F MaxsubSifted( pcgs, elm ) . . . sift elm through modulo pcgs
##
BindGlobal("MaxsubSifted",function( pcgs, elm )
    local exp, new;
    exp := ExponentsOfPcElement( pcgs, elm );
    new := PcElementByExponents( pcgs, exp );
    return new^-1 * elm;
end);

#############################################################################
##
#F HeadComplementGens( gensG, pcgsT, pcgsA, field )
##
BindGlobal("HeadComplementGens",function( gensG, pcgsT, pcgsA, field )
    local gensK, g, V, M, t, h, b, v, A, B, l, s, a;

    # lift gensG to generators of the complement
    gensK := [];

    # loop over gensG
    for g in gensG do

        # set up system of linear equations
        V := [];
        M := List( [1..Length(pcgsA)], x -> [] );

        for t in pcgsT do
            h := Comm( t, g );
            b := MaxsubSifted( pcgsT, h );
            v := ExponentsOfPcElement( pcgsA, b ) * One( field );
            Append( V, v );

            A := List( pcgsA, x -> ExponentsOfPcElement( pcgsA, x ^ (t^g) ));
            A := A * One( field );
            B := A - A^0;
            for l in [1..Length(pcgsA)] do
                Append( M[l], B[l] );
            od;
        od;

        # solve system
        s := SolutionMat( M, V );
        a := PcElementByExponents( pcgsA, s );
        Add( gensK, g*a );
    od;
    return gensK;
end);

#############################################################################
##
#F MaximalSubgroupClassesSol( G )
##
BindGlobal("MaximalSubgroupClassesSol",function(G)
    local pcgs, spec, first, weights, m, max, i, gensG, f, n, p, w, field,
          pcgsN, pcgsM, pcgsF, modus, modu, oper, L, cl, K, R, I, hom,
          V, W, index, pcgsT, gensK, pcgsL, pcgsML, M, H,ff,S,
          fphom,mgi,sel,words,wordgens,homliftlevel,
          fam,wordfpgens,wordpre;

    # set up
    ff:=FittingFreeLiftSetup(G);
    S:=ff.radical;
    pcgs := ff.pcgs;

    spec:=SpecialPcgs(S);
    first := LGFirst( spec );
    weights := LGWeights( spec );
    m := Length( spec );

    max := [];
    f:=ff.factorhom;
    mgi:=MappingGeneratorsImages(ff.factorhom);
    sel:=Filtered([1..Length(mgi[2])],x->not IsOne(mgi[2][x]));
    if 4^Length(sel)>Size(Range(ff.factorhom)) then
      f:=SmallGeneratingSet(Image(ff.factorhom));
      mgi:=[List(f,x->PreImagesRepresentative(ff.factorhom,x)),f];
      sel:=[1..Length(mgi[1])];
    fi;
    gensG:=mgi[1]{sel};

    # fp group and word representation for gensG
    fphom:=IsomorphismFpGroup(Image(ff.factorhom));
    words:=List(mgi[2]{sel},
      x->UnderlyingElement(ImagesRepresentative(fphom,x)));
    wordgens:=FreeGeneratorsOfFpGroup(Range(fphom));
    fam:=FamilyObj(One(Range(fphom)));
    # just in case the stored group generators differ...
    wordfpgens:=List(wordgens,x->ElementOfFpGroup(fam,x));
    wordpre:=List(wordfpgens,x->PreImagesRepresentative(ff.factorhom,
              PreImagesRepresentative(fphom,x)));
    fphom:=ff.factorhom*fphom;
    # no assertion as this is not a proper homomorphism, but an inverse
    # multiplicative map
    f:=GroupGeneralMappingByImagesNC(Range(fphom),Source(fphom),
        wordfpgens,wordpre:noassert);
    SetInverseGeneralMapping(fphom,f);

    homliftlevel:=0;

    # loop down LG series
    for i in [1..Length( first )-1] do
        f := first[i];
        n := first[i+1];
        w := weights[f];
        p := w[3];
        field := GF(p);
        if w[2] = 1 then
          Info(InfoLattice,2,"start layer with weight ", w," ^ ",n-f);

          # if necessary extent the fphom
          if homliftlevel+1<f then
            pcgsM := InducedPcgsByPcSequenceNC( spec, spec{[homliftlevel+1..f-1]} );
            RUN_IN_GGMBI:=true;
            fphom:=LiftFactorFpHom(fphom,G,
              Group(spec{[f..Length(spec)]}),pcgsM);
            RUN_IN_GGMBI:=false;
            homliftlevel:=f-1;
            # translate words
            L:=FreeGeneratorsOfFpGroup(Range(fphom)){[1..Length(wordgens)]};
            words:=List(words,x->MappedWord(x,wordgens,L));
            wordgens:=L;
          fi;

          # compute modulo pcgs
          pcgsM := InducedPcgsByPcSequenceNC( spec, spec{[f..m]} );
          pcgsN := InducedPcgsByPcSequenceNC( spec, spec{[n..m]} );

          pcgsF := pcgsM mod pcgsN;

          # compute maximal submodules
          Info(InfoLattice,3,"  compute maximal submodules");
          oper  := Concatenation( gensG, spec{[1..f-1]} );
          modus := MaxSubmodsByPcgs( oper, pcgsF, field );

          # lift to maximal subgroups
          if w[1] = 1 and Length(gensG) = 0 then

            # this is the trivial case
            for modu in modus do
              L:=Concatenation(spec{[1..f-1]},NumeratorOfModuloPcgs( modu ) );
              L := SubgroupNC(G,L);
              #cl := ConjugacyClassSubgroups( G, L );
              #SetSize( cl, 1 );
              #Add( max, cl );
              L!.classsize:=1;
              Add(max,L);
            od;
          elif w[1] = 1 then

            # here we need general complements
            for modu in modus do
              pcgsL  := NumeratorOfModuloPcgs( modu );
              pcgsML := pcgsM mod pcgsL;
              if true or not IsCentralModule( G, pcgsML ) then
                Info(InfoLattice,3,"  compute complement classes ",
                  Length(pcgsML));
                cl := ComplementClassesByPcgsModulo( G, ff.pcgs,
                        pcgsML, fphom,words,wordgens, mgi[2]{sel});
                Append( max, cl );
              else
                Info(InfoLattice,4,"  central case");
            Error("PRUMP");
                R := PRump( G, p );
                M := SubgroupNC( G, pcgsM );
                L := SubgroupNC( G, pcgsL );
                I := Intersection( R, M );
                if IsSubgroup( L, I ) then
                    H:=ClosureGroup( L, R );
                    hom:=NaturalHomomorphismByNormalSubgroup(G,H);
                    V := Image( hom );
                    W := Image( hom, M );
                    cl := ComplementClassesRepresentatives( V, W );
                    cl := List( cl, x -> PreImage( hom, x ) );
                    for K in cl do
                        #new := ConjugacyClassSubgroups( G, K );
                        #SetSize( new, 1 );
                        #Add( max, new );
                        K!.classsize:=1;
                        Add(max,K);
                    od;
                fi;
            fi;
        od;
    else

        # here we use head complements
        Info(InfoLattice,2,"  compute head complement");
        index := Filtered( [1..m], x -> weights[x][1] = w[1]-1
                                    and weights[x][2] = 1
                                    and weights[x][3] <> p );
        pcgsT := Concatenation( spec{index}, pcgsM );
        pcgsT := InducedPcgsByPcSequenceNC( spec, pcgsT );
        pcgsT := pcgsT mod pcgsM;
        gensK := HeadComplementGens( gensG, pcgsT, pcgsF, field );
        index := Filtered( [1..m], x -> weights[x] <> w );
        #Append( gensK, spec{index} );
        for modu in modus do
          K:=Concatenation(spec{index},modu);
          K:=InducedPcgsByGenerators(ff.pcgs,K);
          K:=SubgroupByFittingFreeData(G,gensK,mgi[2]{sel},K);
  #if IsSubset(K,SolvableRadical(G)) then Error("radicalB");fi;
          #cl := ConjugacyClassSubgroups( G, K );
          #SetSize( cl, p^(Length(pcgsF)-Length(modu)) );
          #Add( max, cl );
          K!.classsize:=p^(Length(pcgsF)-Length(modu));
          Add(max,K);
        od;
      fi;
    fi;

  od;
  return max;
end);

#############################################################################
##
#M  FrattiniSubgroup( <G> ) . . . . . . . . . .  Frattini subgroup of a group
##
InstallMethod( FrattiniSubgroup, "Using radical",
[ IsGroup and CanComputeFittingFree ],0,
function(G)
local m,f,i;
  i:=HasIsSolvableGroup(G); # remember if the group knew about its solvability
  if IsTrivial(G) then
    return G;
  elif IsTrivial(SolvableRadical(G)) then
    return TrivialSubgroup(G);
  fi;
  f:=SolvableRadical(G);

  # computing the radical also determines if the group is solvable; if
  # it is, and if solvability was not known before, redispatch, to give
  # methods requiring solvability (e.g. for permutation groups) a chance.
  if not i and IsSolvableGroup(G) then
    return FrattiniSubgroup(G);
  fi;

  m:=MaximalSubgroupClassesSol(G);
  for i in [1..Length(m)] do
    if not IsSubset(m[i],f) then
      f:=Core(G,NormalIntersection(f,m[i]));
    fi;
  od;
  if HasIsFinite(G) and IsFinite(G) then
    SetIsNilpotentGroup(f,true);
  fi;
  return f;
end);

BindGlobal("MaxesByLattice",function(G)
local  c, maxs,sel,reps;

  c:=ConjugacyClassesSubgroups(G);
  c:=Filtered(c,x->Size(Representative(x))<Size(G));
  reps:=List(c,Representative);
  sel:=Filtered([1..Length(c)],x->ForAll(reps,y->Size(y)<=Size(reps[x]) or
        not IsSubset(y,reps[x])));
  sel:=Filtered(sel,x->IsPrime(Size(G)/Size(reps[x]))
        or Size(reps[x])=Size(StabilizerOfExternalSet(c[x])));

  reps:=reps{sel};
  SortBy(reps, Size);

  # nor go by descending order through the representatives. Always eliminate
  # all remaining proper subgroups of conjugates. What remains must be
  # maximal.
  maxs:=[];
  while Length(reps)>0 do
    c:=Remove(reps);
    # we have eliminated all subgroups of larger maxes, so remaining must be
    # maximal
    Add(maxs,c);
    sel:=Filtered([1..Length(reps)],x->Size(reps[x])<Size(c)
          and (Size(c) mod Size(reps[x]))=0);
    if Length(sel)>0 then
      # some remaining groups could be subgroups
      c:=Orbit(G,c);
      sel:=Filtered(sel,x->ForAny(c,y->IsSubset(y,reps[x])));
      reps:=reps{Difference([1..Length(reps)],sel)};
    fi;

  od;
  return maxs;

end);

# here in case the generic normalizer code is still missing improvements
BindGlobal("MaxesCalcNormalizer",function(P,U)
local map, s, b, bl, bb, sp;
  map:=SmallerDegreePermutationRepresentation(P:inmax);
  if Range(map)=P then
    map:=fail;
  else
    P:=Image(map,P);
    U:=Image(map,U);
  fi;
  s:=Size(U);
  b:=SmallGeneratingSet(U);
  if not IsSubset(P,b) then
    TryNextMethod();
  fi;
  U:=SubgroupNC(P,b);
  SetSize(U,s);
  if Size(P)/s>10^6 then
    if IsTransitive(U,MovedPoints(P)) then
      b:=AllBlocks(U);
      bl:=Collected(List(b,Length));
      bl:=Filtered(bl,i->i[2]=1);
      if Length(bl)>0 then
        b:=First(b,i->Length(i)=bl[1][1]);
        bb:=Stabilizer(U,Set(b),OnSets);
        bb:=Core(U,bb);
        sp:=NormalizerParentSA(SymmetricGroup(MovedPoints(P)),bb);
      else
        sp:=Normalizer(P,U);
        if map<>fail then
          sp:=PreImage(map,sp);
        fi;
        return sp;
      fi;
    else
      sp:=NormalizerParentSA(SymmetricGroup(MovedPoints(P)),U);
    fi;
#Error("B");
    Assert(1,IsSubset(sp,U));
    if (Size(sp)/Size(U))^2<Size(P)/s then
      sp:=Intersection(P,Normalizer(sp,U));
      if map<>fail then
        sp:=PreImage(map,sp);
      fi;
      return sp;
    fi;
  fi;
  sp:=Normalizer(P,U);
  if map<>fail then
    sp:=PreImage(map,sp);
  fi;
  return sp;
end);

# Aut(T)\wr S_n, G, Aut(T),T,n
BindGlobal("MaxesType3",function(w,g,a,t,n,donorm)
local hom,embs,s,k,agens,ad,i,j,perm,dia,ggens,e,tgens,d,m,reco,emba,outs,id;
  if n<>2 and not IsPrimitive(g,WreathProductInfo(w).components,OnSets) then
    # primitivity condition
    Info(InfoLattice,2,"Type 3: Primitivity condition violated");
    return [];
  fi;

  # we need embedding in full automorphism group
  IsNaturalSymmetricGroup(a);
  IsNaturalAlternatingGroup(a);
  reco:=TomDataAlmostSimpleRecognition(a);
  if reco=fail then
    outs:=Size(AutomorphismGroup(Socle(a)))/Size(Socle(a));
  else
    id:=DataAboutSimpleGroup(PerfectResiduum(a));
    outs:=id.fullAutGroup[1];
  fi;

  if Size(g)/Size(Image(Projection(w),g))/(Size(t)^n)>outs then
    Info(InfoLattice,2,"Type 3 can't happen as Outer part is too big");
    return [];
  fi;

  if Size(a)/Size(t)<outs then
    Info(InfoLattice,3,"Not full automorphism group");
    emba:=EmbedFullAutomorphismWreath(w,a,t,n);
    g:=Image(emba[1],g);
    w:=emba[2];
    a:=emba[3];
    t:=emba[4];
  else
    emba:=fail;
  fi;

  embs:=List([1..n+1],i->Embedding(w,i));
  tgens:=GeneratorsOfGroup(t);
  d:=List(tgens,i->Image(embs[1],i));
  s:=Subgroup(w,d);
  k:=TrivialSubgroup(w); # the first component autos can be undone.
  agens:=GeneratorsOfGroup(a);
  ad:=List(agens,i->Image(embs[1],i));
  for i in [2..n] do
    for j in [1..Length(ad)] do
      e:=Image(embs[i],agens[j]);
      ad[j]:=ad[j]*e;
      k:=ClosureGroup(k,e);
    od;
    for j in [1..Length(d)] do
      e:=Image(embs[i],tgens[j]);
      d[j]:=d[j]*e;
      s:=ClosureGroup(s,e);
    od;
  od;
  hom:=NaturalHomomorphismByNormalSubgroup(w,s);
  k:=Image(hom,k);
  ad:=Image(hom,ad);
  perm:=Image(hom,Image(embs[n+1]));
  dia:=ClosureGroup(perm,ad);
  ggens:=List(GeneratorsOfGroup(g),i->Image(hom,i));
  e:=Filtered(AsList(k),i->ForAll(ggens,j->j^i in dia));
  Info(InfoLattice,1,"Type3: ",Length(e)," invariant classes");
  m:=[];
  d:=SubgroupNC(w,d);
  for i in e do
    j:=PreImagesRepresentative(hom,i^-1);
    Info(InfoLattice,2,"Orders:",Order(i),",",Order(j));
    j:=d^j;
    if donorm then
      j:=MaxesCalcNormalizer(g,j);
      Assert(1,Index(g,j)=Size(t)^(n-1));
    fi;
    Add(m,j);
  od;
  if emba<>fail then
    m:=List(m,i->PreImage(emba[1],i));
  fi;
  return m;
end);

InstallMethod(MaxesAlmostSimple,"fallback to lattice",true,[IsGroup],0,
function(G)
  if ValueOption("cheap")=true then return [];fi;
  Info(InfoLattice,1,"MaxesAlmostSimple: Fallback to lattice");
  return MaxesByLattice(G);
end);

InstallMethod(MaxesAlmostSimple,"table of marks and classical",true,[IsGroup],0,
function(G)
local m,id,epi,H,ids,ft;

  # does the table of marks have it?
  m:=TomDataMaxesAlmostSimple(G);
  if m<>fail then return m;fi;

  if IsNonabelianSimpleGroup(G) then
    # following is stopgap for L
    id:=DataAboutSimpleGroup(G);
    ids:=id.idSimple;
    if ids.series="A" then
      Info(InfoPerformance,1,"Alternating recognition needed!");
      H:=AlternatingGroup(ids.parameter);
      m:=MaximalSubgroupClassReps(H); # library, natural
      epi:=IsomorphismGroups(G,H);
      m:=List(m,x->PreImage(epi,x));
      return m;
    elif IsBound(ids.parameter) and IsList(ids.parameter)
      and Length(ids.parameter)=2 and ForAll(ids.parameter,IsInt) then

      # O(odd,2) is stored as SP(odd-1,2)
      if ids.series="B" and ids.parameter[2]=2 then
        ids:=rec(name:=ids.name,parameter:=ids.parameter,series:="C",
        shortname:=ids.shortname);
        ft:=ids;
      else
        ft:=fail;
      fi;

      # ClassicalMaximals will fail if it can't find
      m:=ClassicalMaximals(ids.series,
        ids.parameter[1],ids.parameter[2]);
      if m<>fail then
        epi:=EpimorphismFromClassical(G:classicepiuseiso:=true,
          forcetype:=ft,
          usemaximals:=false);
        if epi<>fail then
          m:=List(m,x->SubgroupNC(Range(epi),
              List(GeneratorsOfGroup(x),y->ImageElm(epi,y))));
          return m;
        fi;
      fi;
    fi;

  fi;
  TryNextMethod();
end);

InstallMethod(MaxesAlmostSimple,"permutation group",true,[IsPermGroup],0,
function(G)
local m,epi,cnt,h;

  # Are we just finding out that a group is symmetric or alternating?
  # if so, try to use method that uses data library
  if (IsNaturalSymmetricGroup(G) or IsNaturalAlternatingGroup(G)) then
    Info(InfoLattice,1,"MaxesAlmostSimple: Use S_n/A_n");
    m:=MaximalSubgroupsSymmAlt(G,false);
    if m<>fail then
      return m;
    fi;
  fi;

  # is a permutation degree too big?
  if NrMovedPoints(G)>
      SufficientlySmallDegreeSimpleGroupOrder(Size(PerfectResiduum(G))) then
    h:=G;
    for cnt in [1..5] do
      epi:=SmallerDegreePermutationRepresentation(h:cheap);
      if NrMovedPoints(Range(epi))<NrMovedPoints(h) then
        m:=MaxesAlmostSimple(Image(epi,G));
        m:=List(m,x->PreImage(epi,x));
        return m;
      fi;
      # re-create group to avoid storing the map
      h:=Group(GeneratorsOfGroup(G));
      SetSize(h,Size(G));
    od;
  fi;

  TryNextMethod();
end);

BindGlobal("MaxesType4a",function(w,G,a,t,n)
local dom, o, t1, a1, t1d, proj, reps, ts, ta, tb, s1, i, fix, wnew, max, s, p1, p2, en1, en2, emb, ma, img, f, j,projG;
  dom:=MovedPoints(w);
  o:=Orbits(G,dom);
  t:=Subgroup(Parent(t),SmallGeneratingSet(t));
  t1:=Image(Embedding(w,1),t);
  a1:=Image(Embedding(w,1),a);
  t1d:=Set(MovedPoints(t1));
  if not IsSubset(o[1],t1d) then
    o:=Reversed(o);
  fi;
  # get the ts corresponding to points
  proj:=Projection(w);
  projG:=RestrictedMapping(proj,G);
  reps:=List([1..n],i->PreImagesRepresentative(projG,RepresentativeAction(Image(projG),1,i)));
  reps[n+1]:=
    PreImagesRepresentative(proj,RepresentativeAction(Image(proj),[1..n],[n+1..2*n],OnSets));
  for i in [2..n] do
    j:=reps[i]*reps[n+1];
    reps[1^Image(proj,j)]:=j;
  od;

  #wremb:=Embedding(w,2*n+1);
  #reps:=List([1..2*n],i->Image(wremb,RepresentativeAction(Source(wremb),1,i)));

  ts:=List(reps,i->OnSets(t1d,i));
  ta:=Filtered([1..2*n],i->IsSubset(o[1],ts[i]));
  tb:=Difference([1..2*n],ta);
  s1:=Stabilizer(G,t1d,OnSets);
  i:=Size(s1);
  s1:=SubgroupNC(G,SmallGeneratingSet(s1));
  SetSize(s1,i);
  fix:=Filtered(tb,i->IsSubset(ts[i],Orbit(s1,ts[i][1])));
  Info(InfoLattice,2,"Type 4a: ",Length(fix)," candidates");
  wnew:=WreathProduct(a,SymmetricGroup(2));
  max:=[];
  for f in Difference(fix,[1]) do
    Info(InfoLattice,3,"trying ",f);
    # now try 1 with f -- this is essentially a type 3a test
    s:=Stabilizer(s1,Difference(dom,Union(ts[1],ts[f])),OnTuples);
    # embed into wnew
    p1:=Embedding(w,1);
    p2:=Embedding(w,f);
    en1:=Embedding(wnew,1);
    en2:=Embedding(wnew,2);
    emb:=List(GeneratorsOfGroup(s),i->
        Image(en1,PreImagesRepresentative(p1,RestrictedPerm(i,ts[1])))
       *Image(en2,PreImagesRepresentative(p2,RestrictedPerm(i,ts[f]))) );
    emb:=GroupHomomorphismByImages(s,wnew,GeneratorsOfGroup(s),emb);
    ma:=MaxesType3(wnew,Image(emb,s),a1,t1,2,false);
    for i in ma do
      i:=PreImage(emb,i);
      img:=i;
      for j in [2..n] do
        img:=ClosureGroup(img,i^reps[j]);
      od;
      if Size(img)=Size(t)^n then
        j:=MaxesCalcNormalizer(G,img);
        if Index(G,j)=Size(t)^n then;
          Add(max,j);
        fi;
      fi;
    od;
  od;
  return max;
end);

BindGlobal("MaxesType4bc",function(w,g,a,t,n)
local m, fact, fg, reps, ma, idx, nm, embs, proj, kproj, k, ag, agl, ug,
  bl, lb, u, uphi, ws, ew, ueg, r, i, emb, j, b,ue,scp,s,nlb,
  comp;

  m:=[];
  # factor action
  comp:=WreathProductInfo(w).components;
  fact:=ActionHomomorphism(w,comp,OnSets,"surjective");
  fg:=Image(fact,g);

  # type 4c
  reps:=List([1..n],
             i->PreImagesRepresentative(fact,RepresentativeAction(fg,1,i)));


  # get the maximal subgroups of A, intersect with t to get the socle part
  ma:=MaxesAlmostSimple(a);
  Info(InfoLattice,2,Length(ma)," maxclasses for almost simple");
  for i in ma do
    i:=Intersection(i,t);
    if Size(i)<Size(t) then
      # otherwise the socle is in the kernel
      idx:=Index(t,i)^n;
      nm:=i;
      for j in [2..n] do
        nm:=ClosureGroup(nm,i^reps[j]);
      od;
      nm:=MaxesCalcNormalizer(g,nm);
      Assert(1,Index(g,nm)=idx);
      Add(m,nm);
      Info(InfoLattice,3,"Type 4c maximal of index ",idx);
    fi;
  od;
  Info(InfoLattice,1,"Total ",Length(m)," type 4c maxes");

  #4b: Get minimal blocks on socle components

  bl:=RepresentativesMinimalBlocks(fg,[1..n]);
  bl:=Filtered(bl,i->Length(i)<n);
  if Length(bl)>0 then
    Info(InfoLattice,1,Length(bl)," minimal block systems");

    # preparation for mapping in smaller wreath
    embs:=List([1..n+1],i->Embedding(w,i));
    proj:=Projection(w);
    kproj:=[];
    k:=KernelOfMultiplicativeGeneralMapping(proj);
    ag:=GeneratorsOfGroup(a);
    agl:=Length(ag);
    ug:=List([1..n],i->List(ag,j->Image(embs[i],j)));
    for i in [1..n] do
      kproj[i]:=GroupHomomorphismByImages(k,a,Concatenation(ug),
              Concatenation(ListWithIdenticalEntries((i-1)*agl,One(a)),
                            ag,
                            ListWithIdenticalEntries((n-i)*agl,One(a))));
    od;

    for b in bl do
      Info(InfoLattice,2,"block system ",b);
      lb:=Length(b);
      nlb:=n/lb;
      u:=OrbitStabilizer(g,Union(comp{b}),OnSets);
      reps:=List(u.orbit,x->RepresentativeAction(g,Union(comp{b}),x,OnSets));
      u:=u.stabilizer;

      Assert(1,IsPrimitive(u,comp{b},OnSets));

      #u:=OrbitStabilizer(fg,b,OnSets);
      #phi:=ActionHomomorphism(fg,u.orbit,OnSets);
      #ue:=Image(phi,fg);
      #reps:=List([1..nlb],i->RepresentativeAction(ue,1,i));
      #reps:=List(reps,i->PreImagesRepresentative(phi,i));
      #reps:=List(reps,i->PreImagesRepresentative(fact,i));
      #u:=u.stabilizer;
      uphi:=ActionHomomorphism(Image(fact,u),b);

      uphi:=RestrictedMapping(fact,
              PreImage(fact,Stabilizer(Image(fact),b,OnSets)) )*uphi;
      # build smaller wreath
      ws:=WreathProduct(a,Image(uphi,u));
      ew:=List([1..lb+1],i->Embedding(ws,i));
      # embed
      ug:=GeneratorsOfGroup(u);
      ueg:=[];
      for i in ug do
        r:=Image(embs[n+1],Image(proj,i));
        i:=i/r;
        i:=Product([1..lb],j->Image(ew[j],Image(kproj[b[j]],i)));
        i:=i*Image(ew[lb+1],Image(uphi,r));
        Add(ueg,i);
      od;
      emb:=GroupHomomorphismByImages(u,ws,ug,ueg);
      ue:=Image(emb,u);
      Info(InfoLattice,2,"Try type 3b for size ",Size(ue));

      # the socle part
      s:=Image(embs[b[1]],t);
      for i in [2..lb] do
        s:=ClosureGroup(s,Image(embs[b[i]],t));
      od;
      scp:=List(GeneratorsOfGroup(s),i->Image(emb,i));
      scp:=GroupHomomorphismByImages(s,ue,GeneratorsOfGroup(s),scp);

      # get type 3b maxes
      ma:=MaxesType3(ws,ue,a,t,lb,true);
      Info(InfoLattice,1,Length(ma)," type 3b maxes in projection");
      for i in ma do
        idx:=Index(ue,i)^nlb;
        # get the socle part
        i:=Intersection(Socle(ws),i);
        i:=PreImage(scp,i);
        nm:=i;
        for j in [2..nlb] do
          nm:=ClosureGroup(nm,i^reps[j]);
        od;
        nm:=MaxesCalcNormalizer(g,nm);
        Assert(1,Index(g,nm)=idx);
        Add(m,nm);
      od;

    od;
  else
    Info(InfoLattice,1,"Component action primitive: No 4b maxes");
  fi;

  return m;
end);

InstallGlobalFunction(DoMaxesTF,function(arg)
local G,types,ff,maxes,lmax,q,d,dorb,dorbt,i,dorbc,dorba,dn,act,comb,smax,soc,
  a1emb,a2emb,anew,wnew,e1,e2,emb,a1,a2,mm;

  G:=arg[1];

  # which kinds of maxes do we want to get
  if Length(arg)>1 then
    types:=ShallowCopy(arg[2]);
    if IsString(types) and Length(types)>0 then
      types:=[types];
    fi;
  else
    types:=[1,2,"3a","3b","4a","4b","4c",5];
  fi;
  for i in [1..Length(types)] do
    if not IsString(types[i]) then types[i]:=String(types[i]);fi;
  od;

  ff:=FittingFreeLiftSetup(G);
  if Size(SolvableRadical(Image(ff.factorhom)))>1 then
    # we can't use an inherited setup
    q:=Size(G);
    G:=Group(GeneratorsOfGroup(G));
    SetSize(G,q);
    ff:=FittingFreeLiftSetup(G);
  fi;

  if "1" in types and Length(ff.pcgs)>0 then
    smax:=MaximalSubgroupClassesSol(G);
    Info(InfoLattice,1,Length(smax),
      " maximal subgroups intersecting in radical");
  else
    smax:=[];
  fi;

  maxes:=[];
  q:=ImagesSource(ff.factorhom);
  soc:=Socle(q);
  if Size(soc)<Size(q) then
    act:=NaturalHomomorphismByNormalSubgroup(q,Socle(q));
    if IsSolvableGroup(ImagesSource(act)) then
      lmax:=MaximalSubgroupClassReps(ImagesSource(act));
    else
      lmax:=DoMaxesTF(ImagesSource(act),types);
    fi;
    List(lmax,Size);
    Info(InfoLattice,1,Length(lmax)," socle factor maxes");
    # special case: p factor
    if Length(lmax)=1 and Size(lmax[1])=1 then
      lmax:=[Socle(q)];
    else
      lmax:=List(lmax,x->PreImage(act,x));
    fi;
    for mm in lmax do mm!.type:="1";od;
    Append(maxes,lmax);

  fi;

  if "brute" in types then
    maxes:=MaxesByLattice(q);
  elif IsSimpleGroup(soc) and Size(Centralizer(q,soc))=1
    and HasSolvableFactorGroup(q,soc) then
    # Almost simple
    SetPerfectResiduum(q,soc);
    if "2" in types then
      lmax:=MaxesAlmostSimple(q);
      lmax:=Filtered(lmax,x->not x in maxes); # radical factor already there
      Append(maxes,lmax);
    fi;

  elif ForAny(types,x->x<>"1") then # we want other types as well, decompose
    d:=DirectFactorsFittingFreeSocle(q);
    dorb:=Orbits(q,d); # fuse under q-action -> get normal subgroups in socle

    dorb:=List(dorb,x->List(x,y->Position(d,y))); # as numbers
    # isomorphism types (to see about pairings)
    dorbt:=List(dorb,x->IsomorphismTypeInfoFiniteSimpleGroup(d[x[1]]));
    dorbc:=List(dorb,x->NormalClosure(q,d[x[1]]));
    dorba:=[];

    # run through actions on each individual
    for dn in [1..Length(dorb)] do
      act:=WreathActionChiefFactor(q,dorbc[dn],TrivialSubgroup(q));
      dorba[dn]:=act;
      if Length(dorb[dn])=1 and "2" in types then
        # type 2: almost simple
        a1:=ImagesSource(act[2]);
        lmax:=MaxesAlmostSimple(a1);
        lmax:=List(lmax,x->PreImage(act[2],x));
        # eliminate those containing the socle
        lmax:=Filtered(lmax,x->not IsSubset(x,soc));
        Info(InfoLattice,1,Length(lmax)," type 2 maxes");
        for mm in lmax do mm!.type:="2";od;
        Append(maxes,lmax);
      fi;

      if Length(dorb[dn])>1 then
        if "3" in types or "3b" in types then
          # Diagonal, Socle is minimal normal. (SD)
          lmax:=MaxesType3(act[1],Image(act[2],q),act[3],act[4],act[5],true);
          Info(InfoLattice,1,Length(lmax)," type 3b maxes");
          lmax:=List(lmax,x->PreImage(act[2],x));
          for mm in lmax do mm!.type:="3b";od;
          Append(maxes,lmax);
        fi;

        if "4" in types or "4b" in types or "4c" in types then
          # Product action with the first factor primitive of type 3b. (CD)
          # Product action with the first factor primitive of type 2. (PA)
          lmax:=MaxesType4bc(act[1],Image(act[2],q),act[3], act[4],act[5]);
          Info(InfoLattice,1,Length(lmax)," type 4bc maxes");
          lmax:=List(lmax,x->PreImage(act[2],x));
          for mm in lmax do mm!.type:="4bc";od;
          Append(maxes,lmax);
        fi;


        if Length(dorb[dn])>5
           and not IsSolvableGroup(Action(q,d{dorb[dn]}))
           and "5" in types then
          # Twisted wreath product (TW)
          if not ValueOption("cheap")=true then
            Error("Type 5 not yet implemented");
          fi;
        fi;

      fi;

    od;

    # run through actions on pairs of isomorphic socles
    comb:=Combinations([1..Length(dorb)],2);
    comb:=Filtered(comb,x->dorbt[x[1]]=dorbt[x[2]]
                   and Length(dorb[x[1]])=Length(dorb[x[2]]));
    for dn in comb do
      a1:=dorba[dn[1]];
      a2:=dorba[dn[2]];

      if Size(a1[3])>Size(a2[3]) then
        anew:=EmbedAutomorphisms(a1[3],a2[3],a1[4],a2[4]);
        a1emb:=anew[2];
        a2emb:=anew[3];
      else
        anew:=EmbedAutomorphisms(a2[3],a1[3],a2[4],a1[4]);
        a2emb:=anew[2];
        a1emb:=anew[3];
      fi;
      anew:=anew[1];

      wnew:=WreathProduct(anew,SymmetricGroup(a1[5]+a2[5]));
      e1:=EmbeddingWreathInWreath(wnew,a1[1],a1emb,1);
      e2:=EmbeddingWreathInWreath(wnew,a2[1],a2emb,a1[5]+1);
      emb:=GroupHomomorphismByImages(q,wnew,GeneratorsOfGroup(q),
              List(GeneratorsOfGroup(q),i->
              Image(e1,ImageElm(a1[2],i))*Image(e2,ImageElm(a2[2],i))));

      if Length(dorb[dn[1]])=1 then
        if "3a" in types then
          lmax:=MaxesType3(wnew,Image(emb,q),anew,Image(a1emb,a1[4]),2,true);
          Info(InfoLattice,1,Length(lmax)," type 3a maxes");
          lmax:=List(lmax,i->PreImage(emb,i));
for mm in lmax do mm!.type:="3a";od;
          Append(maxes,lmax);
        fi;
      else
        if "4a" in types then
          lmax:=MaxesType4a(wnew,Image(emb,q),anew,Image(a1emb,a1[4]),
                          Length(dorb[dn[1]]));
          Info(InfoLattice,1,Length(lmax)," type 4a maxes");
          lmax:=List(lmax,i->PreImage(emb,i));
for mm in lmax do mm!.type:="4a";od;
          Append(maxes,lmax);
        fi;
      fi;

    od;

  fi;

  # the factorhom should be able to take preimages of subgroups OK
  #maxes:=List(maxes,x->PreImage(ff.factorhom,x));
  lmax:=[];
  d:=Size(KernelOfMultiplicativeGeneralMapping(ff.factorhom))>1;
  for i in maxes do
    a2:=PreImage(ff.factorhom,i);
    if d then
      SetSolvableRadical(a2,PreImage(ff.factorhom,SolvableRadical(i)));
    fi;
    Add(lmax,a2);
  od;

  return Concatenation(smax,lmax);
end);

#############################################################################
##
#F  MaximalSubgroupClassReps(<G>) . . . . TF method
##
InstallMethod(MaximalSubgroupClassReps,"TF method",true,
  [IsGroup and IsFinite and CanComputeFittingFree],OverrideNice,DoMaxesTF);

InstallMethod(CalcMaximalSubgroupClassReps,"TF method",true,
  [IsGroup and IsFinite and CanComputeFittingFree],OverrideNice,
function(G)
  return DoMaxesTF(G);
end);

#InstallMethod(MaximalSubgroupClassReps,"perm group",true,
#  [IsPermGroup and IsFinite],0,DoMaxesTF);

BindGlobal("NextLevelMaximals",function(g,l)
local m;
  if Length(l)=0 then return [];fi;
  m:=Concatenation(List(l,MaximalSubgroupClassReps));
  if Length(l)>1 then
    m:=Unique(m);
  fi;
  if Length(l)>1 or Size(l[1])<Size(g) then
    m:=List(SubgroupsOrbitsAndNormalizers(g,m,false),x->x.representative);
  fi;
  return m;
end);

InstallGlobalFunction(MaximalPropertySubgroups,function(g,prop)
local all,m,sel,i,new,containedconj;

  containedconj:=function(g,u,v)
  local m,n,dc,i;
    if not IsInt(Size(u)/Size(v)) then
      return false;
    fi;
    m:=Normalizer(g,u);
    n:=Normalizer(g,v);
    dc:=DoubleCosetRepsAndSizes(g,n,m);
    for i in dc do
      if ForAll(GeneratorsOfGroup(v),x->x^i[1] in u) then
        return true;
      fi;
    od;
    return false;
  end;

  all:=[];
  m:=MaximalSubgroupClassReps(g);
  while Length(m)>0 do
    sel:=Filtered([1..Length(m)],x->prop(m[x]));

    # eliminate those that are contained in a conjugate of a subgroup of all
    new:=m{sel};
    SortBy(new,x->Size(g)/Size(x)); # small indices first to deal with
                                    # conjugate inclusion here
    for i in new do
      if not ForAny(all,x->containedconj(g,x,i)) then
        Add(all,i);
      fi;
    od;

    #Append(all,Filtered(m{sel},
    #  x->ForAll(all,y->Size(x)<>Size(y) or not IsSubset(y,x))));
    m:=NextLevelMaximals(g,m{Difference([1..Length(m)],sel)});

  od;
  # there could be conjugates after all by different routes
  #all:=List(SubgroupsOrbitsAndNormalizers(g,all,false),x->x.representative);
  return all;
end);

InstallGlobalFunction(MaximalSolvableSubgroups,
  g->MaximalPropertySubgroups(g,IsSolvableGroup));