1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
|
#############################################################################
##
## This file is part of GAP, a system for computational discrete algebra.
## This file's authors include Thomas Breuer.
##
## Copyright of GAP belongs to its developers, whose names are too numerous
## to list here. Please refer to the COPYRIGHT file for details.
##
## SPDX-License-Identifier: GPL-2.0-or-later
##
## This file contains the declaration of operations for monoids.
##
#############################################################################
##
#P IsMonoid( <D> )
##
## <#GAPDoc Label="IsMonoid">
## <ManSection>
## <Filt Name="IsMonoid" Arg='D' Type='Synonym'/>
##
## <Description>
## A <E>monoid</E> is a magma-with-one (see <Ref Chap="Magmas"/>)
## with associative multiplication.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonymAttr( "IsMonoid", IsMagmaWithOne and IsAssociative );
#############################################################################
##
#F Monoid( <gen1>, <gen2> ... )
#F Monoid( <gens> )
#F Monoid( <gens>, <id> )
##
## <#GAPDoc Label="Monoid">
## <ManSection>
## <Heading>Monoid</Heading>
## <Func Name="Monoid" Arg='gen1, gen2 ...'
## Label="for various generators"/>
## <Func Name="Monoid" Arg='gens[, id]' Label="for a list"/>
##
## <Description>
## In the first form, <Ref Func="Monoid" Label="for various generators"/>
## returns the monoid generated by the arguments <A>gen1</A>, <A>gen2</A>,
## <M>\ldots</M>,
## that is, the closure of these elements under multiplication and taking
## the 0-th power.
## In the second form, <Ref Func="Monoid" Label="for a list"/> returns
## the monoid generated by the elements in the homogeneous list <A>gens</A>;
## a square matrix as only argument is treated as one generator,
## not as a list of generators.
## In the second form, the identity element <A>id</A> may be given as the
## second argument.
## <P/>
## It is <E>not</E> checked whether the underlying multiplication is
## associative, use <Ref Func="MagmaWithOne"/> and
## <Ref Prop="IsAssociative"/>
## if you want to check whether a magma-with-one is in fact a monoid.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "Monoid" );
#############################################################################
##
#F Submonoid( <M>, <gens> ) . . . . . . submonoid of <M> generated by <gens>
#F SubmonoidNC( <M>, <gens> )
##
## <#GAPDoc Label="Submonoid">
## <ManSection>
## <Func Name="Submonoid" Arg='M, gens'/>
## <Func Name="SubmonoidNC" Arg='M, gens'/>
##
## <Description>
## are just synonyms of <Ref Func="SubmagmaWithOne"/>
## and <Ref Func="SubmagmaWithOneNC"/>, respectively.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "Submonoid", SubmagmaWithOne );
DeclareSynonym( "SubmonoidNC", SubmagmaWithOneNC );
#############################################################################
##
#O MonoidByGenerators( <gens>[, <one>] ) . . . . monoid generated by <gens>
##
## <#GAPDoc Label="MonoidByGenerators">
## <ManSection>
## <Oper Name="MonoidByGenerators" Arg='gens[, one]'/>
##
## <Description>
## is the underlying operation of <Ref Func="Monoid" Label="for a list"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "MonoidByGenerators", [ IsCollection ] );
#############################################################################
##
#A AsMonoid( <C> ) . . . . . . . . . . . . collection <C> regarded as monoid
##
## <#GAPDoc Label="AsMonoid">
## <ManSection>
## <Oper Name="AsMonoid" Arg='C'/>
##
## <Description>
## If <A>C</A> is a collection whose elements form a monoid,
## then <Ref Oper="AsMonoid"/> returns this monoid.
## Otherwise <K>fail</K> is returned.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "AsMonoid", [IsCollection] );
#############################################################################
##
#O AsSubmonoid( <D>, <C> )
##
## <#GAPDoc Label="AsSubmonoid">
## <ManSection>
## <Oper Name="AsSubmonoid" Arg='D, C'/>
##
## <Description>
## Let <A>D</A> be a domain and <A>C</A> a collection.
## If <A>C</A> is a subset of <A>D</A> that forms a monoid then
## <Ref Oper="AsSubmonoid"/>
## returns this monoid, with parent <A>D</A>.
## Otherwise <K>fail</K> is returned.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "AsSubmonoid", [ IsDomain, IsCollection ] );
#############################################################################
##
#A GeneratorsOfMonoid( <M> ) . . . . . . . monoid generators of monoid <M>
##
## <#GAPDoc Label="GeneratorsOfMonoid">
## <ManSection>
## <Attr Name="GeneratorsOfMonoid" Arg='M'/>
##
## <Description>
## Monoid generators of a monoid <A>M</A> are the same as
## magma-with-one generators
## (see <Ref Attr="GeneratorsOfMagmaWithOne"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonymAttr( "GeneratorsOfMonoid", GeneratorsOfMagmaWithOne );
#############################################################################
##
#A TrivialSubmonoid( <M> ) . . . . . . . . . trivial submonoid of monoid <M>
##
## <#GAPDoc Label="TrivialSubmonoid">
## <ManSection>
## <Attr Name="TrivialSubmonoid" Arg='M'/>
##
## <Description>
## is just a synonym for <Ref Attr="TrivialSubmagmaWithOne"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonymAttr( "TrivialSubmonoid", TrivialSubmagmaWithOne );
#############################################################################
##
#F FreeMonoid( [<wfilt>,]<rank>[, <name>] )
#F FreeMonoid( [<wfilt>,][<name1>[, <name2>[, ...]]] )
#F FreeMonoid( [<wfilt>,]<names> )
#F FreeMonoid( [<wfilt>,]infinity[, <name>][, <init>] )
##
## <#GAPDoc Label="FreeMonoid">
## <ManSection>
## <Heading>FreeMonoid</Heading>
## <Func Name="FreeMonoid" Arg='[wfilt, ]rank[, name]'
## Label="for given rank"/>
## <Func Name="FreeMonoid" Arg='[wfilt, ][name1[, name2[, ...]]]'
## Label="for various names"/>
## <Func Name="FreeMonoid" Arg='[wfilt, ]names'
## Label="for a list of names"/>
## <Func Name="FreeMonoid" Arg='[wfilt, ]infinity[, name][, init]'
## Label="for infinitely many generators"/>
##
## <Description>
## <C>FreeMonoid</C> returns a free monoid. The number of
## generators, and the labels given to the generators, can be specified in
## several different ways.
## Warning: the labels of generators are only an aid for printing,
## and do not necessarily distinguish generators;
## see the examples at the end of
## <Ref Func="FreeSemigroup" Label="for given rank"/>
## for more information.
## <List>
## <Mark>
## 1: For a given rank, and an optional generator name prefix
## </Mark>
## <Item>
## Called with a nonnegative integer <A>rank</A>,
## <Ref Func="FreeMonoid" Label="for given rank"/> returns
## a free monoid on <A>rank</A> generators.
## The optional argument <A>name</A> must be a string;
## its default value is <C>"m"</C>. <P/>
##
## If <A>name</A> is not given but the <C>generatorNames</C> option is,
## then this option is respected as described in
## Section <Ref Sect="Generator Names"/>. <P/>
##
## Otherwise, the generators of the returned free monoid are labelled
## <A>name</A><C>1</C>, ..., <A>name</A><C>k</C>,
## where <C>k</C> is the value of <A>rank</A>. <P/>
## </Item>
## <Mark>2: For given generator names</Mark>
## <Item>
## Called with various nonempty strings,
## <Ref Func="FreeMonoid" Label="for various names"/> returns
## a free monoid on as many generators as arguments, which are labelled
## <A>name1</A>, <A>name2</A>, etc.
## </Item>
## <Mark>3: For a given list of generator names</Mark>
## <Item>
## Called with a finite list <A>names</A> of
## nonempty strings,
## <Ref Func="FreeMonoid" Label="for a list of names"/> returns
## a free monoid on <C>Length(<A>names</A>)</C> generators, whose
## <C>i</C>-th generator is labelled <A>names</A><C>[i]</C>.
## </Item>
## <Mark>
## 4: For the rank <K>infinity</K>,
## an optional default generator name prefix,
## and an optional finite list of generator names
## </Mark>
## <Item>
## Called in the fourth form,
## <Ref Func="FreeMonoid" Label="for infinitely many generators"/>
## returns a free monoid on infinitely many generators.
## The optional argument <A>name</A> must be a string; its default value is
## <C>"m"</C>,
## and the optional argument <A>init</A> must be a finite list of
## nonempty strings; its default value is an empty list.
## The generators are initially labelled according to the list <A>init</A>,
## followed by
## <A>name</A><C>i</C> for each <C>i</C> in the range from
## <C>Length(<A>init</A>)+1</C> to <K>infinity</K>.
## </Item>
## </List>
##
## If the optional first argument <A>wfilt</A> is given, then it must be either
## <C>IsSyllableWordsFamily</C>, <C>IsLetterWordsFamily</C>,
## <C>IsWLetterWordsFamily</C>, or <C>IsBLetterWordsFamily</C>.
## This filter specifies the representation used for the elements of
## the free monoid
## (see <Ref Sect="Representations for Associative Words"/>).
## If no such filter is given, a letter representation is used.
## <P/>
## For more on associative words see
## Chapter <Ref Chap="Associative Words"/>.
##
## <Example><![CDATA[
## gap> FreeMonoid(5);
## <free monoid on the generators [ m1, m2, m3, m4, m5 ]>
## gap> FreeMonoid(4, "gen");
## <free monoid on the generators [ gen1, gen2, gen3, gen4 ]>
## gap> FreeMonoid(3 : generatorNames := "turbo");
## <free monoid on the generators [ turbo1, turbo2, turbo3 ]>
## gap> FreeMonoid(2 : generatorNames := ["u", "v", "w"]);
## <free monoid on the generators [ u, v ]>
## gap> FreeMonoid(); FreeMonoid(0); FreeMonoid([]);
## <free monoid of rank zero>
## <free monoid of rank zero>
## <free monoid of rank zero>
## gap> FreeMonoid("a", "b", "c");
## <free monoid on the generators [ a, b, c ]>
## gap> FreeMonoid(["x", "y"]);
## <free monoid on the generators [ x, y ]>
## gap> FreeMonoid(infinity);
## <free monoid with infinity generators>
## gap> F := FreeMonoid(infinity, "g", ["a", "b"]);
## <free monoid with infinity generators>
## gap> GeneratorsOfMonoid(F){[1..4]};
## [ a, b, g3, g4 ]
## gap> GeneratorsOfMonoid(FreeMonoid(infinity, "gen")){[1..3]};
## [ gen1, gen2, gen3 ]
## gap> GeneratorsOfMonoid(FreeMonoid(infinity, [ "f", "g" ])){[1..3]};
## [ f, g, m3 ]
## gap> FreeMonoid(IsSyllableWordsFamily, 50);
## <free monoid with 50 generators>
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "FreeMonoid" );
#############################################################################
##
#P IsFinitelyGeneratedMonoid( <M> )
##
## <#GAPDoc Label="IsFinitelyGeneratedMonoid">
## <ManSection>
## <Prop Name="IsFinitelyGeneratedMonoid" Arg='M'/>
##
## <Description>
## tests whether the monoid <A>M</A> can be generated by a finite number of
## generators. (This property is mainly used to obtain finiteness
## conditions.)
## <P/>
## Note that this is a pure existence statement. Even if a monoid is known
## to be generated by a finite number of elements, it can be very hard or
## even impossible to obtain such a generating set if it is not known.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsFinitelyGeneratedMonoid", IsMonoid );
InstallTrueMethod( IsMonoid, IsFinitelyGeneratedMonoid );
# make IsFinitelyGeneratedMonoid equivalent to IsMonoid and IsFinitelyGeneratedMagma
InstallTrueMethod( IsFinitelyGeneratedMonoid, IsMonoid and IsFinitelyGeneratedMagma );
InstallTrueMethod( HasIsFinitelyGeneratedMonoid, IsMonoid and HasIsFinitelyGeneratedMagma );
InstallTrueMethod( IsFinitelyGeneratedMagma, IsFinitelyGeneratedMonoid );
InstallTrueMethod( HasIsFinitelyGeneratedMagma, HasIsFinitelyGeneratedMonoid );
|