File: monoid.gi

package info (click to toggle)
gap 4.15.1-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 110,212 kB
  • sloc: ansic: 97,261; xml: 48,343; cpp: 13,946; sh: 4,900; perl: 1,650; javascript: 255; makefile: 252; ruby: 9
file content (312 lines) | stat: -rw-r--r-- 8,891 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
#############################################################################
##
##  This file is part of GAP, a system for computational discrete algebra.
##  This file's authors include Thomas Breuer.
##
##  Copyright of GAP belongs to its developers, whose names are too numerous
##  to list here. Please refer to the COPYRIGHT file for details.
##
##  SPDX-License-Identifier: GPL-2.0-or-later
##
##  This file contains generic methods for monoids.
##


#############################################################################
##
#M  PrintObj( <M> ) . . . . . . . . . . . . . . . . . . . . .  print a monoid
##

InstallMethod( String,
    "for monoid",
    true,
    [ IsMonoid ], 0,
    function( M )
    return "Monoid( ... )";
    end );

InstallMethod( PrintObj,
    "for monoid with known generators",
    true,
    [ IsMonoid and HasGeneratorsOfMonoid ], 0,
    function( M )
    Print( "Monoid( ", GeneratorsOfMagmaWithOne( M ), " )" );
    end );

InstallMethod( String,
    "for monoid with known generators",
    true,
    [ IsMonoid and HasGeneratorsOfMonoid ], 0,
    function( M )
    return STRINGIFY( "Monoid( ", GeneratorsOfMagmaWithOne( M ), " )" );
    end );

InstallMethod( PrintString,
    "for monoid with known generators",
    true,
    [ IsMonoid and HasGeneratorsOfMonoid ], 0,
    function( M )
    return PRINT_STRINGIFY( "Monoid( ", GeneratorsOfMagmaWithOne( M ), " )" );
    end );

#############################################################################
##
#M  ViewObj( <M> )  . . . . . . . . . . . . . . . . . . . . . . view a monoid
##
InstallMethod( ViewString,
    "for a monoid",
    true,
    [ IsMonoid ], 0,
    function( M )
    return "<monoid>" ;
    end );

#############################################################################
##
#M  MonoidByGenerators( <gens> )  . . . . . . . .  monoid generated by <gens>
##

InstallOtherMethod(MonoidByGenerators, "for a collection",
[IsCollection],
function(gens)
  local M, pos;

  M := Objectify(NewType(FamilyObj(gens), IsMonoid
                                          and IsAttributeStoringRep), rec());
  gens := AsList(gens);

  if CanEasilyCompareElements(gens) and IsFinite(gens)
      and IsMultiplicativeElementWithOneCollection(gens) then
    SetOne(M, One(gens));
    pos := Position(gens, One(gens));
    if pos <> fail then
      SetGeneratorsOfMagma(M, gens);
      if Length(gens) = 1 then # Length(gens) <> 0 since One(gens) in gens
        SetIsTrivial(M, true);
      elif not IsPartialPermCollection(gens) or One(gens) =
          One(gens{Concatenation([1 .. pos - 1], [pos + 1 .. Length(gens)])}) then
        # if gens = [PartialPerm([1,2]), PartialPerm([1])], then removing the One
        # = gens[1] from this, it is not possible to recreate the semigroup using
        # Monoid(PartialPerm([1])) (since the One in this case is
        # PartialPerm([1]) not PartialPerm([1,2]) as it should be.
        gens := ShallowCopy(gens);
        Remove(gens, pos);
      fi;
    else
      SetGeneratorsOfMagma(M, Concatenation([One(gens)], gens));
    fi;
  fi;

  SetGeneratorsOfMagmaWithOne(M, gens);
  return M;
end);

InstallOtherMethod( MonoidByGenerators,
    "for collection and identity",
    IsCollsElms,
    [ IsCollection, IsMultiplicativeElementWithOne ], 0,
    function( gens, id )
    local M;
    M:= Objectify( NewType( FamilyObj( gens ),
                            IsMonoid and IsAttributeStoringRep ),
                   rec() );
    SetGeneratorsOfMagmaWithOne( M, AsList( gens ) );
    SetOne( M, Immutable( id ) );
    return M;
    end );

InstallOtherMethod( MonoidByGenerators,
    "for empty collection and identity",
    true,
    [ IsEmpty, IsMultiplicativeElementWithOne ], 0,
    function( gens, id )
    local M;
    M:= Objectify( NewType( CollectionsFamily( FamilyObj( id ) ),
                                IsMonoid
                            and IsTrivial
                            and IsAttributeStoringRep ),
                   rec() );
    SetGeneratorsOfMagmaWithOne( M, AsList( gens ) );
    SetOne( M, Immutable( id ) );
    return M;
    end );

InstallImmediateMethod( GeneratorsOfSemigroup,
IsMonoid and HasGeneratorsOfMonoid and IsAttributeStoringRep, 0,
function(M)

  if Length(GeneratorsOfMonoid(M)) = infinity then
    TryNextMethod();
  fi;

  if CanEasilyCompareElements(One(M)) and One(M) in GeneratorsOfMonoid(M) then
    return GeneratorsOfMonoid(M);
  fi;
  return Concatenation([One(M)], GeneratorsOfMonoid(M));
end);

#############################################################################
##
#M  AsMonoid( <D> ) . . . . . . . . . . . . . .  domain <D>, viewed as monoid
##
InstallMethod( AsMonoid,
    "for a monoid",
    true,
    [ IsMonoid ], 100,
    IdFunc );

#

InstallMethod(AsMonoid,
"for a semigroup with known generators",
[IsSemigroup and HasGeneratorsOfSemigroup],
function(S)
  local gens, pos;

  if not (IsMultiplicativeElementWithOneCollection(S)
          and One(S) <> fail and One(S) in S) then
    return fail;
  fi;

  gens := GeneratorsOfSemigroup(S);

  if CanEasilyCompareElements(gens) then
    pos := Position(gens, One(S));
    if pos <> fail then
      gens := ShallowCopy(gens);
      Remove(gens, pos);
    fi;
  fi;
  return Monoid(gens);
end);

#

InstallMethod( AsMonoid,
    "generic method for a collection",
    true,
    [ IsCollection ], 0,
    function ( D )
    local   M,  L;

    D := AsSSortedList( D );
    L := ShallowCopy( D );
    M := TrivialSubmagmaWithOne( MonoidByGenerators( D ) );
    SubtractSet( L, AsSSortedList( M ) );
    while not IsEmpty(L)  do
        M := ClosureMagmaDefault( M, L[1] );
        SubtractSet( L, AsSSortedList( M ) );
    od;
    if Length( AsSSortedList( M ) ) <> Length( D )  then
        return fail;
    fi;
    M := MonoidByGenerators( GeneratorsOfMonoid( M ), One( D[1] ) );
    SetAsSSortedList( M, D );
    SetIsFinite( M, true );
    SetSize( M, Length( D ) );

    # return the monoid
    return M;
    end );


#############################################################################
##
#M  AsSubmonoid( <G>, <U> )
##
InstallMethod( AsSubmonoid,
    "generic method for a domain and a collection",
    IsIdenticalObj,
    [ IsDomain, IsCollection ], 0,
    function( G, U )
    local S;
    if not IsSubset( G, U ) then
      return fail;
    fi;
    if IsMagmaWithOne( U ) then
      if not IsAssociative( U ) then
        return fail;
      fi;
      S:= SubmonoidNC( G, GeneratorsOfMagmaWithOne( U ) );
    else
      S:= SubmagmaWithOneNC( G, AsList( U ) );
      if not IsAssociative( S ) then
        return fail;
      fi;
    fi;
    UseIsomorphismRelation( U, S );
    UseSubsetRelation( U, S );
    return S;
    end );


#############################################################################
##
#M  IsCommutative( <M> ) . . . . . . . . . .  test if a monoid is commutative
##
InstallMethod( IsCommutative,
    "for associative magma-with-one",
    true,
    [ IsMagmaWithOne and IsAssociative ], 0,
    IsCommutativeFromGenerators( GeneratorsOfMagmaWithOne ) );


#############################################################################
##
#F  Monoid( <gen>, ... )
#F  Monoid( <obj> )
#F  Monoid( <gens>, <id> )
##

InstallGlobalFunction(Monoid,
function( arg )
  local out, i;

  if Length(arg) = 0 or (Length(arg) = 1 and HasIsEmpty(arg[1])
      and IsEmpty(arg[1])) then
    ErrorNoReturn("Usage: cannot create a monoid with no generators,");
  fi;

  out := [];
  for i in [1 .. Length(arg)] do
    if i = Length(arg) and IsRecord(arg[i]) then
      if not IsGeneratorsOfSemigroup(out) then
        ErrorNoReturn("Usage: Monoid(<gen>,...), Monoid(<gens>), ",
                      "Monoid(<D>)," );
      fi;
      return MonoidByGenerators(out, arg[i]);
    elif IsMultiplicativeElementWithOne(arg[i]) or IsMatrix(arg[i]) then
      Add(out, arg[i]);
    elif IsListOrCollection(arg[i]) then
      if IsGeneratorsOfSemigroup(arg[i]) then
        if HasGeneratorsOfSemigroup(arg[i]) or IsMagmaIdeal(arg[i]) then
          Append(out, GeneratorsOfSemigroup(arg[i]));
        elif IsList(arg[i]) then
          Append(out, arg[i]);
        else
          Append(out, AsList(arg[i]));
        fi;
      elif not IsEmpty(arg[i]) then
        ErrorNoReturn("Usage: Monoid(<gen>,...), Monoid(<gens>), ",
                      "Monoid(<D>)," );
      fi;
    else
      ErrorNoReturn("Usage: Monoid(<gen>,...), Monoid(<gens>), ",
                    "Monoid(<D>)," );
    fi;
  od;
  if not IsGeneratorsOfSemigroup(out) then
    ErrorNoReturn("Usage: Monoid(<gen>,...), Monoid(<gens>), ",
    "Monoid(<D>),");
  fi;
  return MonoidByGenerators(out);
end);

InstallMethod( IsFinitelyGeneratedMonoid, "for a monoid",
               [ IsMonoid and HasGeneratorsOfMonoid ],
function(M)
    if IsFinite(GeneratorsOfMonoid(M)) then
      return true;
    fi;
    TryNextMethod();
end);