File: oprtperm.gi

package info (click to toggle)
gap 4.15.1-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 110,212 kB
  • sloc: ansic: 97,261; xml: 48,343; cpp: 13,946; sh: 4,900; perl: 1,650; javascript: 255; makefile: 252; ruby: 9
file content (1652 lines) | stat: -rw-r--r-- 52,479 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
#############################################################################
##
##  This file is part of GAP, a system for computational discrete algebra.
##  This file's authors include Heiko Theißen.
##
##  Copyright of GAP belongs to its developers, whose names are too numerous
##  to list here. Please refer to the COPYRIGHT file for details.
##
##  SPDX-License-Identifier: GPL-2.0-or-later
##


#############################################################################
##
#M  Orbit( <G>, <pnt>, <gens>, <acts>, <OnPoints> ) . . . . . . . on integers
##
InstallOtherMethod( OrbitOp,
        "G, int, gens, perms, act = `OnPoints'", true,
        [ IsPermGroup, IsInt,
          IsList,
          IsList,
          IsFunction ], 0,
    function( G, pnt, gens, acts, act )
    if gens <> acts  or  act <> OnPoints  then
        TryNextMethod();
    fi;
    if HasStabChainMutable( G )
       and IsInBasicOrbit( StabChainMutable( G ), pnt ) then
        return Immutable(StabChainMutable( G ).orbit);
    else
        return Immutable( OrbitPerms( acts, pnt ) );
    fi;
end );

#############################################################################
##
#M  OrbitStabilizer( <G>, <pnt>, <gens>, <acts>, <OnPoints> ) . . on integers
##
InstallOtherMethod( OrbitStabilizerOp, "permgroup", true,
        [ IsPermGroup, IsInt,
          IsList,
          IsList,
          IsFunction ], 0,
    function( G, pnt, gens, acts, act )
    local   S;

    if gens <> acts  or  act <> OnPoints  then
        TryNextMethod();
    fi;
    S := StabChainOp( G, [ pnt ] );
    if BasePoint( S ) = pnt  then
        return Immutable( rec( orbit := S.orbit,
                          stabilizer := GroupStabChain
                                        ( G, S.stabilizer, true ) ) );
    else
        return Immutable( rec( orbit := [ pnt ],
                          stabilizer := G ) );
    fi;
end );


#############################################################################
##
#M  Orbits( <G>, <D>, <gens>, <acts>, <OnPoints> )  . . . . . . . on integers
##
BindGlobal( "ORBS_PERMGP_PTS", function( G, D, gens, acts, act )
  if act <> OnPoints  then
      TryNextMethod();
  fi;
  return Immutable( OrbitsPerms( acts, D ) );
end );

InstallMethod( Orbits, "permgroup on points", true,
    [ IsGroup, IsList and IsCyclotomicCollection, IsList,
      IsList and IsPermCollection, IsFunction ], 0,ORBS_PERMGP_PTS);

InstallMethod( OrbitsDomain, "permgroup on points", true,
    [ IsGroup, IsList and IsCyclotomicCollection, IsList,
      IsList and IsPermCollection, IsFunction ], 0,ORBS_PERMGP_PTS);


#############################################################################
##
#M  Cycle( <g>, <pnt>, <OnPoints> ) . . . . . . . . . . . . . . . on integers
##
InstallOtherMethod( CycleOp,"perm, int, act", true,
  [ IsPerm, IsInt, IsFunction ], 0,
    function( g, pnt, act )
    if act <> OnPoints  then
        TryNextMethod();
    fi;
    return CycleOp( g, pnt );
end );

InstallOtherMethod( CycleOp,"perm, int", true,
  [ IsPerm and IsInternalRep, IsInt ], 0,
    function( g, pnt )
    return Immutable( CYCLE_PERM_INT( g, pnt ) );
end );

#############################################################################
##
#M  CycleLength( <g>, <pnt>, <OnPoints> ) . . . . . . . . . . . . on integers
##
InstallOtherMethod( CycleLengthOp, "perm, int, act", true,
        [ IsPerm, IsInt, IsFunction ], 0,
    function( g, pnt, act )
    if act <> OnPoints  then
        TryNextMethod();
    fi;
    return CycleLengthOp( g, pnt );
end );

InstallOtherMethod( CycleLengthOp, "perm, int", true,
  [ IsPerm and IsInternalRep, IsInt ],0, CYCLE_LENGTH_PERM_INT);

#############################################################################
##
#M  Blocks( <G>, <D>, <gens>, <acts>, <OnPoints> )  . . . . find block system
##
InstallMethod( BlocksOp, "permgroup on integers",
        [ IsGroup, IsList and IsCyclotomicCollection, IsList and IsEmpty,
          IsList,
          IsList and IsPermCollection,
          IsFunction ],
    function( G, D, noseed, gens, acts, act )
    local   one,        # identity of `G'
            blocks,     # block system of <G>, result
            orbit,      # orbit of 1 under <G>
            trans,      # factored inverse transversal for <orbit>
            eql,        # '<i> = <eql>[<k>]' means $\beta(i)  = \beta(k)$,
            next,       # the points that are equivalent are linked
            last,       # last point on the list linked through 'next'
            leq,        # '<i> = <leq>[<k>]' means $\beta(i) <= \beta(k)$
            gen,        # one generator of <G> or 'Stab(<G>,1)'
            rnd,        # random element of <G>
            pnt,        # one point in an orbit
            img,        # the image of <pnt> under <gen>
            cur,        # the current representative of an orbit
            rep,        # the representative of a block in the block system
            block,      # the block, result
            changed,    # number of random Schreier generators
            nrorbs,     # number of orbits of subgroup $H$ of $G_1$
            d1g,        # D[1]^gen
            tr,         # transversal element
            i;          # loop variable

    if act <> OnPoints  then
        TryNextMethod();
    fi;

    # handle trivial group
    if Length( acts ) = 0 and Length(D)>1  then
        Error("<G> must operate transitively on <D>");
    fi;

    # handle trivial domain
    if Length( D ) = 1  or IsPrimeInt( Length( D ) )  then
        return Immutable( [ D ] );
    fi;

    # compute the orbit of $G$ and a factored transversal
    one:= One( G );
    orbit := [ D[1] ];
    trans := [];
    trans[ D[1] ] := one;
    for pnt  in orbit  do
        for gen  in acts  do
            if not IsBound( trans[ pnt / gen ] )  then
                Add( orbit, pnt / gen );
                trans[ pnt / gen ] := gen;
            fi;
        od;
    od;

    # check that the group is transitive
    if Length( orbit ) <> Length( D )  then
        Error("<G> must operate transitively on <D>");
    fi;
    Info( InfoAction, 1, "BlocksNoSeed transversal computed" );
    nrorbs := Length( orbit );

    # since $i \in k^{G_1}$ implies $\beta(i)=\beta(k)$,  we initialize <eql>
    # so that the connected components are orbits of some subgroup  $H < G_1$
    eql := [];
    leq := [];
    next := [];
    last := [];
    for pnt  in orbit  do
        eql[pnt]  := pnt;
        leq[pnt]  := pnt;
        next[pnt] := 0;
        last[pnt] := pnt;
    od;

    # repeat until we have a block system
    changed := 0;
    cur := orbit[2];
    rnd := one;
    repeat

        # compute such an $H$ by taking random  Schreier generators  of $G_1$
        # and stop if 2 successive generators dont change the orbits any more
        while changed < 2  do

            # compute a random Schreier generator of $G_1$
            i := Length( orbit );
            while 1 <= i  do
                rnd := rnd * Random( acts );
                i   := QuoInt( i, 2 );
            od;
            gen := rnd;
            d1g:=D[1]^gen;
            while d1g <> D[1]  do
                tr:=trans[ d1g ];
                gen := gen * tr;
                d1g:=d1g^tr;
            od;
            changed := changed + 1;
            Info( InfoAction, 3, "Changed: ",changed );

            # compute the image of every point under <gen>
            for pnt  in orbit  do
                img := pnt ^ gen;

                # find the representative of the orbit of <pnt>
                while eql[pnt] <> pnt  do
                    pnt := eql[pnt];
                od;

                # find the representative of the orbit of <img>
                while eql[img] <> img  do
                    img := eql[img];
                od;

                # if the don't agree merge their orbits
                if   pnt < img  then
                    eql[img] := pnt;
                    next[ last[pnt] ] := img;
                    last[pnt] := last[img];
                    nrorbs := nrorbs - 1;
                    changed := 0;
                elif img < pnt  then
                    eql[pnt] := img;
                    next[ last[img] ] := pnt;
                    last[img] := last[pnt];
                    nrorbs := nrorbs - 1;
                    changed := 0;
                fi;

            od;

        od;
        Info( InfoAction, 1, "BlocksNoSeed ",
                       "number of orbits of <H> < <G>_1 is ",nrorbs );

        # take arbitrary point <cur>,  and an element <gen> taking 1 to <cur>
        while eql[cur] <> cur  do
            cur := eql[cur];
        od;
        gen := [];
        img := cur;
        while img <> D[1]  do
            Add( gen, trans[img] );
            img := img ^ trans[img];
        od;
        gen := Reversed( gen );

        # compute an alleged block as orbit of 1 under $< H, gen >$
        pnt := cur;
        while pnt <> 0  do

            # compute the representative of the block containing the image
            img := pnt;
            for i  in gen  do
                img := img / i;
            od;
            while eql[img] <> img  do
                img := eql[img];
            od;

            # if it is not our current block but a minimal block
            if   img <> D[1]  and img <> cur  and leq[img] = img  then

                # then try <img> as a new start
                leq[cur] := img;
                cur := img;
                gen := [];
                img := cur;
                while img <> D[1]  do
                    Add( gen, trans[img] );
                    img := img ^ trans[img];
                od;
                gen := Reversed( gen );
                pnt := cur;

            # otherwise if it is not our current block but contains it
            # by construction a nonminimal block contains the current block
            elif img <> D[1]  and img <> cur  and leq[img] <> img  then

                # then merge all blocks it contains with <cur>
                while img <> cur  do
                    eql[img] := cur;
                    next[ last[cur] ] := img;
                    last[ cur ] := last[ img ];
                    img := leq[img];
                    while img <> eql[img]  do
                        img := eql[img];
                    od;
                od;
                pnt := next[pnt];

            # go on to the next point in the orbit
            else

                pnt := next[pnt];

            fi;

        od;

        # make the alleged block
        block := [ D[1] ];
        pnt := cur;
        while pnt <> 0  do
            Add( block, pnt );
            pnt := next[pnt];
        od;
        block := Set( block );
        blocks := [ block ];
        Info( InfoAction, 1, "BlocksNoSeed ",
                       "length of alleged block is ",Length(block) );

        # quick test to see if the group is primitive
        if Length( block ) = Length( orbit )  then
            Info( InfoAction, 1, "BlocksNoSeed <G> is primitive" );
            return Immutable( [ D ] );
        fi;

        # quick test to see if the orbit can be a block
        if Length( orbit ) mod Length( block ) <> 0  then
            Info( InfoAction, 1, "BlocksNoSeed ",
                           "alleged block is clearly not a block" );
            changed := -1000;
        fi;

        # '<rep>[<i>]' is the representative of the block containing <i>
        rep := [];
        for pnt  in orbit  do
            rep[pnt] := 0;
        od;
        for pnt  in block  do
            rep[pnt] := 1;
        od;

        # compute the block system with an orbit algorithm
        i := 1;
        while 0 <= changed  and i <= Length( blocks )  do

            # loop over the generators
            for gen  in acts  do

                # compute the image of the block under the generator
                img := OnSets( blocks[i], gen );

                # if this block is new
                if rep[ img[1] ] = 0  then

                    # add the new block to the list of blocks
                    Add( blocks, img );

                    # check that all points in the image are new
                    for pnt  in img  do
                        if rep[pnt] <> 0  then
                            Info( InfoAction, 1, "BlocksNoSeed ",
                                           "alleged block is not a block" );
                            changed := -1000;
                        fi;
                        rep[pnt] := img[1];
                    od;

                # if this block is old
                else

                    # check that all points in the image lie in the block
                    for pnt  in img  do
                        if rep[pnt] <> rep[img[1]]  then
                           Info( InfoAction, 1, "BlocksNoSeed ",
                                           "alleged block is not a block" );
                            changed := -1000;
                        fi;
                    od;

                fi;

            od;

            # on to the next block in the orbit
            i := i + 1;
        od;

    until 0 <= changed;

    # force sortedness
    if Length(blocks[1])>0 and CanEasilySortElements(blocks[1][1]) then
      blocks:=AsSSortedList(List(blocks,i->Immutable(Set(i))));
      IsSSortedList(blocks);
    fi;
    # return the block system
    return Immutable( blocks );
end );

#############################################################################
##
#M  Blocks( <G>, <D>, <seed>, <gens>, <acts>, <OnPoints> )   blocks with seed
##
InstallMethod( BlocksOp, "integers, with seed", true,
        [ IsGroup, IsList and IsCyclotomicCollection,
          IsList and IsCyclotomicCollection,
          IsList,
          IsList and IsPermCollection,
          IsFunction ], 0,
    function( G, D, seed, gens, acts, act )
    local   blks,       # list of blocks, result
            rep,        # representative of a point
            siz,        # siz[a] of the size of the block with rep <a>
            fst,        # first point still to be merged into another block
            nxt,        # next  point still to be merged into another block
            lst,        # last  point still to be merged into another block
            gen,        # generator of the group <G>
            nrb,        # number of blocks so far
            a, b, c, d; # loop variables for points

    if act <> OnPoints  then
        TryNextMethod();
    fi;

    nrb := Length(D) - Length(seed) + 1;

    # in the beginning each point <d> is in a block by itself
    rep := [];
    siz := [];
    for d  in D  do
        rep[d] := d;
        siz[d] := 1;
    od;

    # except the points in <seed>, which form one block with rep <seed>[1]
    fst := 0;
    nxt := siz;
    lst := 0;
    c   := seed[1];
    for d  in seed  do
        if d <> c  then
            rep[d] := c;
            siz[c] := siz[c] + siz[d];
            if fst = 0  then
                fst      := d;
            else
                nxt[lst] := d;
            fi;
            lst      := d;
            nxt[lst] := 0;
        fi;
    od;

    # while there are points still to be merged into another block
    while fst <> 0  do

        # get this point <a> and its repesentative <b>
        a := fst;
        b := rep[fst];

        # for each generator <gen> merge the blocks of <a>^<gen>, <b>^<gen>
        for gen  in acts  do
            c := a^gen;
            while rep[c] <> c  do
                c := rep[c];
            od;
            d := b^gen;
            while rep[d] <> d  do
                d := rep[d];
            od;
            if c <> d  then
                if Length(D) < 2*(siz[c] + siz[d])  then
                    return Immutable( [ D ] );
                fi;
                nrb := nrb - 1;
                if siz[d] <= siz[c]  then
                    rep[d]   := c;
                    siz[c]   := siz[c] + siz[d];
                    nxt[lst] := d;
                    lst      := d;
                    nxt[lst] := 0;
                else
                    rep[c]   := d;
                    siz[d]   := siz[d] + siz[c];
                    nxt[lst] := c;
                    lst      := c;
                    nxt[lst] := 0;
                fi;
            fi;
        od;

        # on to the next point still to be merged into another block
        fst := nxt[fst];
    od;

    # turn the list of representatives <rep> into a list of blocks <blks>
    blks := [];
    for d  in D  do
        c := d;
        while rep[c] <> c  do
           c := rep[c];
        od;
        if IsInt( nxt[c] )  then
            nxt[c] := [ d ];
            Add( blks, nxt[c] );
        else
            AddSet( nxt[c], d );
        fi;
    od;

    # return the set of blocks <blks>
    # force sortedness
    if Length(blks[1])>0 and CanEasilySortElements(blks[1][1]) then
      blks:=AsSSortedList(List(blks,i->Immutable(Set(i))));
      IsSSortedList(blks);
    fi;
    return Immutable( Set( blks ) );
end );

#############################################################################
##
#M  RepresentativesMinimalBlocks( <G>, <D>, <gens>, <acts>, <OnPoints> )
## Adaptation of the code for BlocksNoSeed to return _all_ minimal blocks
## containing D[1].
## By Graham Sharp (Oxford), August 1997
##
InstallOtherMethod( RepresentativesMinimalBlocksOp,
        "permgrp on points", true,
        [ IsGroup, IsList and IsCyclotomicCollection,
          IsList,
          IsList and IsPermCollection,
          IsFunction ], 0,
function( G, D, gens, acts, act )
local   blocks,   # block system of <G>, result
      orbit,    # orbit of 1 under <G>
      trans,    # factored inverse transversal for <orbit>
      eql,    # '<i> = <eql>[<k>]' means $\beta(i)  = \beta(k)$,
      next,     # the points that are equivalent are linked
      last,     # last point on the list linked through 'next'
      leq,    # '<i> = <leq>[<k>]' means $\beta(i) <= \beta(k)$
      gen,    # one generator of <G> or 'Stab(<G>,1)'
      rnd,    # random element of <G>
      pnt,    # one point in an orbit
      img,    # the image of <pnt> under <gen>
      cur,    # the current representative of an orbit
      rep,    # the representative of a block in the block system
      block,    # the block, result
      changed,  # number of random Schreier generators
      nrorbs,   # number of orbits of subgroup $H$ of $G_1$
      i,      # loop variable
      minblocks,  # set of minimal blocks, result
      poss,     # flag to indicate whether we might have a block
      iter,     # which points we've checked when
      start;    # index of first cur for this iteration (non-dec)

  if act<>OnPoints then
    TryNextMethod();
  fi;

  # handle trivial domain
  if Length( D ) = 1  or IsPrime( Length( D ) )  then
    return Immutable([ D ]);
  fi;

  # handle trivial group
  if Length( acts )=0  then
    Error( "<G> must act transitively on <D>" );
  fi;

  # compute the orbit of $G$ and a factored transversal
  orbit := [ D[1] ];
  trans := [];
  trans[ D[1] ] := One( acts[1] );  # note that `acts' is nonempty
  for pnt  in orbit  do
    for gen  in acts  do
      if not IsBound( trans[ pnt / gen ] )  then
        Add( orbit, pnt / gen );
        trans[ pnt / gen ] := gen;
      fi;
    od;
  od;

  # check that the group is transitive
  if Length( orbit ) <> Length( D )  then
    Error( "<G> must act transitively on <D>" );
  fi;
  Info(InfoAction,1,"RepresentativesMinimalBlocks transversal computed");
  nrorbs := Length( orbit );

  # since $i \in k^{G_1}$ implies $\beta(i)=\beta(k)$,  we initialize <eql>
  # so that the connected components are orbits of some subgroup  $H < G_1$
  eql := [];
  leq := [];
  next := [];
  last := [];
  iter := [];
  for pnt  in orbit  do
    eql[pnt]  := pnt;
    leq[pnt]  := pnt;
    next[pnt] := 0;
    last[pnt] := pnt;
    iter[pnt] := 0;
  od;

  # repeat until we run out of points
  minblocks := [];
  changed := 0;
  rnd := One( acts[1] );

  for start in orbit{[2..Length(D)]} do

    # repeat until we have a block system
    cur := start;
    # unless this is a new point, ignore and go on to the next
    # -we could do this by a linked list to avoid these checks but the
    #  O(n) overheads involved in setting it up are greater than those saved
    if iter[cur] = 0 then

    repeat

      # compute such an $H$ by taking random Schreier generators of $G_1$
      # and stop if 2 successive generators dont change the orbits any
      # more
      while changed < 2  do

        # compute a random Schreier generator of $G_1$
        i := Length( orbit );
        while 1 <= i  do
          rnd := rnd * Random( acts );
          i   := QuoInt( i, 2 );
        od;
        gen := rnd;
        while D[1] ^ gen <> D[1]  do
          gen := gen * trans[ D[1] ^ gen ];
        od;
        changed := changed + 1;

        # compute the image of every point under <gen>
        for pnt  in orbit  do
          img := pnt ^ gen;

          # find the representative of the orbit of <pnt>
          while eql[pnt] <> pnt  do
            pnt := eql[pnt];
          od;

          # find the representative of the orbit of <img>
          while eql[img] <> img  do
            img := eql[img];
          od;

          # if the don't agree merge their orbits
          if   pnt < img  then
            eql[img] := pnt;
            next[ last[pnt] ] := img;
            last[pnt] := last[img];
            nrorbs := nrorbs - 1;
            changed := 0;
          elif img < pnt  then
            eql[pnt] := img;
            next[ last[img] ] := pnt;
            last[img] := last[pnt];
            nrorbs := nrorbs - 1;
            changed := 0;
          fi;

        od;

      od;
      Info(InfoAction,1,"RepresentativesMinimalBlocks ",
               "number of orbits of <H> < <G>_1 is ",nrorbs);

      # take arbitrary point <cur>,  and an element <gen> taking 1 to <cur>
      while eql[cur] <> cur  do
        cur := eql[cur];
      od;
      # Mark the points in this new H-orbit as visited
      if iter[cur] <> start then
        img := cur;
        while img <> 0 do
        iter[img] := start;
        img := next[img];
        od;
      fi;
      gen := [];
      img := cur;
      while img <> D[1]  do
        Add( gen, trans[img] );
        img := img ^ trans[img];
      od;
      gen := Reversed( gen );

      # compute an alleged block as orbit of 1 under $< H, gen >$
      pnt := cur;
      poss := true;
      while pnt <> 0  do

        # compute the representative of the block containing the image
        img := pnt;
        for i  in gen  do
          img := img / i;
        od;
        while eql[img] <> img  do
          img := eql[img];
        od;

        # if it is not our current block but a new block
        if   img <> D[1]  and img <> cur and leq[img] = img
            and (iter[img] = 0 or iter[img] = start) then

          # then try <img> as a new start
          leq[cur] := img;
          cur := img;
          if iter[cur] <> start then
            img := cur;
            while img <> 0 do
            iter[img] := start;
            img := next[img];
            od;
          fi;
          gen := [];
          img := cur;
          while img <> D[1]  do
            Add( gen, trans[img] );
            img := img ^ trans[img];
          od;
          gen := Reversed( gen );
          pnt := cur;

        # otherwise if it is not our current block but contains it
        # by construction a nonminimal block contains the current block
        # - not any more it doesn't! Now we also have to check whether
        # the block appeared this time or earlier.
        elif img <> D[1]  and img <> cur
               and leq[img] <> img  and iter[img] = start then

          # then merge all blocks it contains with <cur>
          while img <> cur  do
            eql[img] := cur;
            next[ last[cur] ] := img;
            last[ cur ] := last[ img ];
            img := leq[img];
            while img <> eql[img]  do
              img := eql[img];
            od;
          od;
          pnt := next[pnt];

        # else if the block appeared in a previous iteration
        elif iter[img] <> start and iter[img] <> 0 then

           # then end this iteration as this is not a minimal block
          pnt := 0;
          poss := false;

        # otherwise go on to the next point in the orbit
        else

          pnt := next[pnt];

        fi;

      od;

      # Skip this bit if we know we haven't got a block
      if poss = true then
      # make the alleged block
      block := [ D[1] ];
      pnt := cur;
      while pnt <> 0  do
        Add( block, pnt );
        pnt := next[pnt];
      od;
      block := Set( block );
      blocks := [ block ];
      Info(InfoAction,1,"RepresentativesMinimalBlocks ",
               "length of alleged block is ",Length(block));

      # quick test to see if the group is primitive
      if Length( block ) = Length( orbit )  then
        Info(InfoAction,1,"RepresentativesMinimalBlocks <G> is primitive");
        return Immutable([ D ]);
      fi;

      # quick test to see if the orbit can be a block
      if Length( orbit ) mod Length( block ) <> 0  then
        Info(InfoAction,1,"RepresentativesMinimalBlocks ",
                 "alleged block is clearly not a block");
        changed := -1000;
      fi;

      # '<rep>[<i>]' is the representative of the block containing <i>
      rep := [];
      for pnt  in orbit  do
        rep[pnt] := 0;
      od;
      for pnt  in block  do
        rep[pnt] := 1;
      od;

      # compute the block system with an orbit algorithm
      i := 1;
      while 0 <= changed  and i <= Length( blocks )  do

        # loop over the generators
        for gen  in acts  do

          # compute the image of the block under the generator
          img := OnSets( blocks[i], gen );

          # if this block is new
          if rep[ img[1] ] = 0  then

            # add the new block to the list of blocks
            Add( blocks, img );

            # check that all points in the image are new
            for pnt  in img  do
              if rep[pnt] <> 0  then
                Info(InfoAction,1,
                "RepresentativesMinimalBlocks, alleged block is not a block");
                changed := -1000;
              fi;
              rep[pnt] := img[1];
            od;

          # if this block is old
          else

            # check that all points in the image lie in the block
            for pnt  in img  do
              if rep[pnt] <> rep[img[1]]  then
                Info(InfoAction,1,
                 "RepresentativesMinimalBlocks , alleged block is not a block");
                changed := -1000;
              fi;
            od;

          fi;

        od;

        # on to the next block in the orbit
        i := i + 1;
      od;
      fi;

    until 0 <= changed;
    if poss = true then AddSet(minblocks, block); fi;

    # loop back to get another minimal block
    fi;
  od;

  # return the block system
  return Immutable(minblocks);
end);

InstallOtherMethod( RepresentativesMinimalBlocksOp,
        "G, domain, noseed, gens, perms, act", true,
        [ IsGroup, IsList and IsCyclotomicCollection,IsEmpty,
          IsList,
          IsList and IsPermCollection,
          IsFunction ], 0,
function(G,D,noseed,gens,acts,act)
  return RepresentativesMinimalBlocksOp(G,D,gens,acts,act);
end);

InstallOtherMethod( RepresentativesMinimalBlocksOp,
        "general case: translate", true,
        [ IsGroup, IsList,
          IsList,
          IsList,
          IsFunction ],
          # lower ranked than perm method
          -1,
function( G, D, gens, acts, act )
local hom,r;
  hom:=ActionHomomorphism(G,D,gens,acts,act);
  G:=Image(hom,G);
  r:=RepresentativesMinimalBlocksOp(G,[1..Length(D)],
        GeneratorsOfGroup(G),GeneratorsOfGroup(G),OnPoints);
  return List(r,i->D{i});
end);

#############################################################################
##
#M  Earns( <G>, <D> ) . . . . . . . . . . . . earns of affine primitive group
##
InstallMethod( Earns, "G, ints, gens, perms, act", true,
    [ IsPermGroup, IsList,
      IsList,
      IsList,
      IsFunction ], 0,
    function( G, D, gens, acts, act )
    local   n,  fac,  p,  d,  alpha,  beta,  G1,  G2,  orb,
            Gamma,  M,  C,  f,  P,  Q,  Q0,  R,  R0,  pre,  gen,  g,
            ord,  pa,  a,  x,  y,  z;

    if gens <> acts  or  act <> OnPoints  then
        TryNextMethod();
    fi;

    n := Length( D );
    if not IsPrimePowerInt( n )  then
        return [];
    elif not IsPrimitive( G, D )  then
        TryNextMethod();
    fi;

#    # Try a shortcut for solvable groups (or if a solvable normal subgroup is
#    # found).
#    if DefaultStabChainOptions.tryPcgs  then
#        pcgs := TryPcgsPermGroup( G, false, false, true );
#        if not IsPcgs( pcgs )  then
#            pcgs := pcgs[ 1 ];
#        fi;
#T why do we know, that this will give us the EARNS and not just a smaller
# one? AH
#        if not IsEmpty( pcgs )  then
#            return ElementaryAbelianSeries( pcgs )
#                   [ Length( ElementaryAbelianSeries( pcgs ) ) - 1 ];
#        fi;
#    fi;

    fac := Factors(Integers, n );  p := fac[ 1 ];  d := Length( fac );
    alpha := BasePoint( StabChainMutable( G ) );
    G1 := Stabilizer( G, alpha );

    # If <G> is regular, it must be cyclic of prime order.
    if IsTrivial( G1 )  then
        return [G];
    fi;

    # If <G> is not a Frobenius group ...
    for orb  in OrbitsDomain( G1, D )  do
        beta := orb[ 1 ];
        if beta <> alpha  then
            G2 := Stabilizer( G1, beta );
            if not IsTrivial( G2 )  then
                Gamma := Filtered( D, p -> ForAll( GeneratorsOfGroup( G2 ),
                                 g -> p ^ g = p ) );
                if PrimeDivisors( Length( Gamma ) ) <> [ p ]  then
                    return [];
                fi;
                C := Centralizer( G, G2 );
                f := ActionHomomorphism( C, Gamma,"surjective" );
                P := PCore( ImagesSource( f ), p );
                if not IsTransitive( P, [ 1 .. Length( Gamma ) ] )  then
                    return [];
                fi;
                gens := [  ];
                for gen  in GeneratorsOfGroup( Centre( P ) )  do
                    pre := PreImagesRepresentative( f, gen );
                    ord := Order( pre );  pa := 1;
                    while ord mod p = 0  do
                        ord := ord / p;
                        pa := pa * p;
                    od;
                    pre := pre ^ ( ord * Gcdex( pa, ord ).coeff2 );
                    for g  in GeneratorsOfGroup( C )  do
                        z := Comm( g, pre );
                        if z <> One( C )  then
                            M := SolvableNormalClosurePermGroup( G, [ z ] );
                            if M <> fail  and  Size( M ) = n  then
                                return [M];
                            else
                                return [];
                            fi;
                        fi;
                    od;
                    Add( gens, pre );
                od;
                Q := SylowSubgroup( Centre( G2 ), p );

                # This is unnecessary  if   you trust the   classification of
                # finite simple groups.
                if Size( Q ) > p ^ ( d - 1 )  then
                    return [];
                fi;

                R := ClosureGroup( Q, gens );
                R0 := OmegaOp( R, p, 1 );
                y := First( GeneratorsOfGroup( R0 ),
                            y -> not # y in Q = Centre(G2)_p
                            (     alpha ^ y = alpha
                              and beta  ^ y = beta
                              and ForAll( GeneratorsOfGroup( G2 ),
                                      gen -> gen ^ y = gen ) ) );
                Q0 := OmegaOp( Q, p, 1 );
                for z  in Q0  do
                    M := SolvableNormalClosurePermGroup( G, [ y * z ] );
                    if M <> fail  and  Size( M ) = n  then
                        return [M];
                    fi;
                od;
                return [];
            fi;
        fi;
    od;

    # <G> is a Frobenius group.
    a := GeneratorsOfGroup( Centre( G1 ) )[ 1 ];
    x := First( GeneratorsOfGroup( G ), gen -> alpha ^ gen <> alpha );
    z := Comm( a, a ^ x );
    M := SolvableNormalClosurePermGroup( G, [ z ] );
    return [M];

end );


#############################################################################
##
#M  Transitivity( <G>, <D>, <gens>, <acts>, <act> ) . . . . . . . on integers
##
InstallMethod( Transitivity, "permgroup on numbers", true,
    [ IsPermGroup, IsList and IsCyclotomicCollection,
      IsList,
      IsList,
      IsFunction ], 0,
    function( G, D, gens, acts, act )
    if gens <> acts  or  act <> OnPoints  then
        TryNextMethod();

    elif not IsTransitive( G, D, gens, acts, act )  then
        return 0;
    else
        G := Stabilizer( G, D[ 1 ], act );
        gens := GeneratorsOfGroup( G );
        return Transitivity( G, D{ [ 2 .. Length( D ) ] },
                       gens, gens, act ) + 1;
    fi;
end );


#############################################################################
##
#M  IsTransitive( <G> )
#M  Transitivity( <G> )
##
##  For a group with known order, we use that the number of moved points
##  of a transitive permutation group divides the group order.
##  If this is not the case then this check avoids computing an orbit or of
##  a point stabilizer.
##  Note that the GAP library defines transitivity also on partial orbits.
##  (If this would be changed then also the five argument method that is
##  installed in the call of `OrbitsishOperation' could take advantage of
##  the divisibility criterion.)
##
InstallOtherMethod( IsTransitive,
    "for a permutation group (use shortcuts)",
    [ IsPermGroup ], 1,
    function( G )
    local n, gens;

    n:= NrMovedPoints( G );
    if n = 0 then
      return true;
    elif HasSize( G ) and Size( G ) mod n <> 0 then
      # Avoid computing an orbit if the (known) group order
      # is not divisible by the (known) number of points.
      return false;
    else
      # Avoid the `IsSubset' test that occurs in the generic method,
      # checking the orbit length suffices.
      # (And do not call `Orbit'!)
      gens:= GeneratorsOfGroup( G );
      return n = Length( OrbitOp( G, SmallestMovedPoint( G ), gens, gens,
                                  OnPoints ) );
    fi;
    end );

InstallOtherMethod( Transitivity,
    "for a permutation group with known size",
    [ IsPermGroup and HasSize ],
    function( G )
    local n, t, size;

    n:= NrMovedPoints( G );
    if n = 0 then
      # The trivial group is transitive on the empty set,
      # but has transitivity zero.
      return 0;
    elif IsNaturalSymmetricGroup( G ) then
      return n;
    elif IsNaturalAlternatingGroup( G ) then
      return n - 2;
    fi;
    t:= 0;
    size:= Size( G );
    while IsTransitive( G ) do
      t:= t + 1;
      size:= size / n;
      n:= n-1;
      if size mod n <> 0 then
        break;
      fi;
      G:= Stabilizer( G, SmallestMovedPoint( G ) );
      if NrMovedPoints( G ) <> n then
        if n = 1 then
          # The trivial group is transitive on a singleton set,
          # with transitivity one.
          t:= t + 1;
        fi;
        break;
      fi;
    od;
    return t;
    end );


#############################################################################
##
#M  IsSemiRegular( <G>, <D>, <gens>, <acts>, <act> )  . . . . for perm groups
##
InstallMethod( IsSemiRegular, "permgroup on numbers", true,
    [ IsGroup, IsList and IsCyclotomicCollection,
      IsList,
      IsList and IsPermCollection,
      IsFunction ], 0,
    function( G, D, gens, acts, act )
    local   used,       #
            perm,       #
            orbs,       # orbits of <G> on <D>
            gen,        # one of the generators of <G>
            orb,        # orbit of '<D>[1]'
            pnt,        # one point in the orbit
            new,        # image of <pnt> under <gen>
            img,        # image of '<prm>[<i>][<pnt>]' under <gen>
            p, n,       # loop variables
            i, l;       # loop variables

    if act <> OnPoints  then
        TryNextMethod();
    fi;

    # compute the orbits and check that they all have the same length
    orbs := OrbitsDomain( G, D, gens, acts, OnPoints );
    if Length( Set( orbs, Length ) ) <> 1  then
        return false;
    fi;

    # initialize the permutations that act like the generators
    used := [];
    perm := [];
    for i  in [ 1 .. Length( acts ) ]  do
        used[i] := [];
        perm[i] := [];
        for pnt  in orbs[1]  do
            used[i][pnt] := false;
        od;
        perm[i][ orbs[1][1] ] := orbs[1][1] ^ acts[i];
        used[i][ orbs[1][1] ^ acts[i] ] := true;
    od;

    # initialize the permutation that permutes the orbits
    l := Length( acts ) + 1;
    used[l] := [];
    perm[l] := [];
    for orb  in orbs  do
        for pnt  in orb  do
            used[l][pnt] := false;
        od;
    od;
    for i  in [ 1 .. Length(orbs)-1 ]  do
        perm[l][orbs[i][1]] := orbs[i+1][1];
        used[l][orbs[i+1][1]] := true;
    od;
    perm[l][Last(orbs)[1]] := orbs[1][1];
    used[l][orbs[1][1]] := true;

    # compute the orbit of the first representative
    orb := [ orbs[1][1] ];
    for pnt  in orb  do
        for gen  in acts  do

            # if the image is new
            new := pnt ^ gen;
            if not new in orb  then

                # add the new element to the orbit
                Add( orb, new );

                # extend the permutations that act like the generators
                for i  in [ 1 .. Length( acts ) ]  do
                    img := perm[i][pnt] ^ gen;
                    if used[i][img]  then
                        return false;
                    else
                        perm[i][new] := img;
                        used[i][img] := true;
                    fi;
                od;

                # extend the permutation that permutates the orbits
                p := pnt;
                n := new;
                for i  in [ 1 .. Length( orbs ) ]  do
                    img := perm[l][p] ^ gen;
                    if used[l][img]  then
                        return false;
                    else
                        perm[l][n] := img;
                        used[l][img] := true;
                    fi;
                    p := perm[l][p];
                    n := img;
                od;

            fi;

        od;
    od;

    # check that the permutations commute with the generators
    for i  in [ 1 .. Length( acts ) ]  do
        for gen  in acts  do
            for pnt  in orb  do
                if perm[i][pnt] ^ gen <> perm[i][pnt ^ gen]  then
                    return false;
                fi;
            od;
        od;
    od;

    # check that the permutation commutes with the generators
    for gen  in acts  do
        for orb  in orbs  do
            for pnt  in orb  do
                if perm[l][pnt] ^ gen <> perm[l][pnt ^ gen]  then
                    return false;
                fi;
            od;
        od;
    od;

    # everything is ok, the representation is semiregular
    return true;

end );

#############################################################################
##
#F  IsRegular(permgp)
##
InstallOtherMethod( IsRegular,"permgroup",true,[IsPermGroup],0,
function(G)
  if IsTransitive(G) and IsSemiRegular(G) then
    SetSize(G,NrMovedPoints(G));
    return true;
  else
    return false;
  fi;
end);

InstallOtherMethod( IsRegular,"permgroup with known size",true,
  [IsPermGroup and HasSize],0,
  G->Size(G)=NrMovedPoints(G) and IsTransitive(G));

# implications with regularity for permgroups.
InstallTrueMethod(IsSemiRegular,IsPermGroup and IsRegular);
InstallTrueMethod(IsTransitive,IsPermGroup and IsRegular);
InstallTrueMethod(IsRegular,IsPermGroup and IsSemiRegular and IsTransitive);

#############################################################################
##
#M  RepresentativeAction( <G>, <d>, <e>, <act> ) . . . . . for perm groups
##
InstallOtherMethod( RepresentativeActionOp, "permgrp",true, [ IsPermGroup,
        IsObject, IsObject, IsFunction ],
  # the objects might be group elements: rank up
  {} -> 2*RankFilter(IsMultiplicativeElementWithInverse),
    function ( G, d, e, act )
    local   rep,                # representative, result
            S,                  # stabilizer of <G>
            rep2,               # representative in <S>
            sel,
            dp,ep,              # point copies
            i,  f;              # loop variables

    # standard action on points, make a basechange and trace the rep
    if act = OnPoints and IsInt( d ) and IsInt( e )  then
        d := [ d ];  e := [ e ];
        S := true;
    elif     ( act = OnPairs or act = OnTuples )
         and IsPositionsList( d ) and IsPositionsList( e )  then
        S := true;
    fi;
    if IsBound( S )  then
        if d = e  then
            rep := One( G );
        elif Length( d ) <> Length( e ) then
            rep:= fail;
        else
            # can we use the current stab chain? (try to avoid rebuilding
            # one if called frequently)
            S:=StabChainMutable(G);
            # move the points already in the base in front
            sel:=List(BaseStabChain(S),i->Position(d,i));
            sel:=Filtered(sel,i->i<>fail);
            if Length(sel)>0 then
              # rearrange
              sel:=Concatenation(sel,Difference([1..Length(d)],sel));
              dp:=d{sel};
              ep:=e{sel};
              rep := S.identity;
              for i  in [ 1 .. Length( dp ) ]  do
                  if BasePoint( S ) = dp[ i ]  then
                      f := ep[ i ] / rep;
                      if not IsInBasicOrbit( S, f )  then
                          rep := fail;
                          break;
                      else
                          rep := LeftQuotient( InverseRepresentative( S, f ),
                                        rep );
                      fi;
                      S := S.stabilizer;
                  elif ep[ i ] <> dp[ i ] ^ rep  then
                      rep := fail;
                      break;
                  fi;
              od;
            else
              rep:=fail; # we did not yet get anything
            fi;

            if rep=fail then
              # did not work with the existing stabchain - do again
              S := StabChainOp( G, d );
              rep := S.identity;
              for i  in [ 1 .. Length( d ) ]  do
                  if BasePoint( S ) = d[ i ]  then
                      f := e[ i ] / rep;
                      if not IsInBasicOrbit( S, f )  then
                          rep := fail;
                          break;
                      else
                          rep := LeftQuotient( InverseRepresentative( S, f ),
                                        rep );
                      fi;
                      S := S.stabilizer;
                  elif e[ i ] <> d[ i ] ^ rep  then
                      rep := fail;
                      break;
                  fi;
              od;
            fi;

        fi;

    # action on (lists of) permutations, use backtrack
    elif act = OnPoints and IsPerm( d ) and IsPerm( e )  then
        rep := RepOpElmTuplesPermGroup( true, G, [ d ], [ e ],
                       TrivialSubgroup( G ), TrivialSubgroup( G ) );
    elif     ( act = OnPairs or act = OnTuples )
         and IsList( d ) and IsPermCollection( d )
         and IsList( e ) and IsPermCollection( e )  then
        rep := RepOpElmTuplesPermGroup( true, G, d, e,
                       TrivialSubgroup( G ), TrivialSubgroup( G ) );

    # action on permgroups, use backtrack
    elif act = OnPoints and IsPermGroup( d ) and IsPermGroup( e )  then

      if Size(G)<10^5 or NrMovedPoints(G)<500
        # cyclic is handled special by backtrack
        or IsCyclic(d) or IsCyclic(e) or
        # does the group have many short orbits? If so the cluster test
        # would do a lot of checking
        Length(Orbits(d,MovedPoints(G)))^2>NrMovedPoints(G)
        # Do not test for same orbit lengths -- this will be done by next
        # level routine
        then

        rep:=ConjugatorPermGroup(G,d,e);
      else
        S:=ClusterConjugacyPermgroups(G,[e,d]);
        if Length(S.clusters)>1 then return fail;fi;
        if S.gps[1]=S.gps[2] then
          rep:=One(G);
        else
          rep:=ConjugatorPermGroup(S.actors[1],S.gps[2],S.gps[1]);
        fi;
        if rep<>fail then
          rep:=S.conjugators[2]*rep;
        fi;
      fi;

    # action on pairs or tuples of other objects, iterate
    elif act = OnPairs  or act = OnTuples  then
        rep := One( G );
        S   := G;
        i   := 1;
        while i <= Length(d)  and rep <> fail  do
            if e[i] = fail  then
                rep := fail;
            else
                rep2 := RepresentativeActionOp( S, d[i], e[i]^(rep^-1),
                                OnPoints );
                if rep2 <> fail  then
                    rep := rep2 * rep;
                    S   := Stabilizer( S, d[i], OnPoints );
                else
                    rep := fail;
                fi;
            fi;
            i := i + 1;
        od;

    # action on sets of points, use backtrack
    elif act = OnSets and IsPositionsList( d ) and IsPositionsList( e )  then
      if Length(d)<>Length(e) then
        return fail;
      fi;
      if Length(d)=1 then
        rep:=RepresentativeActionOp(G,d[1],e[1],OnPoints);
      else
        rep := RepOpSetsPermGroup( G, d, e );
      fi;

    # action on tuples of sets
    elif act = OnTuplesSets
      and IsList(d) and ForAll(d,i->ForAll(i,IsInt))
      and IsList(e) and ForAll(e,i->ForAll(i,IsInt)) then

      if List(d,Length)<>List(e,Length) then return fail;fi;

      # conjugate one by one
      rep:=One(G);
      S:=G;
      for i in [1..Length(d)] do
        rep2:=RepresentativeAction(S,d[i],e[i],OnSets);
        if rep2=fail then return fail;fi;
        d:=List(d,x->OnSets(x,rep2));
        S:=Stabilizer(S,e[i],OnSets);
        rep:=rep*rep2;
      od;
      return rep;

    # other action, fall back on default representative
    else
        TryNextMethod();
    fi;

    # return the representative
    return rep;
end );

#############################################################################
##
#M  Stabilizer( <G>, <d>, <gens>, <gens>, <act> ) . . . . . . for perm groups
##

BindGlobal( "PermGroupStabilizerOp", function(arg)
    local   K,          # stabilizer <K>, result
            S,  base,
            G,d,gens,acts,act;

 # get arguments, ignoring a given domain
 G:=arg[1];
 K:=Length(arg);
 act:=arg[K];
 acts:=arg[K-1];
 gens:=arg[K-2];
 d:=arg[K-3];

    if gens <> acts  then
        #TODO: Check whether  acts is permutations and one could work in the
        #permutation image (even if G is not permgroups)
        TryNextMethod();
    fi;

    # standard action on points, make a stabchain beginning with <d>
    if act = OnPoints and IsInt( d )  then
        base := [ d ];
    elif     ( act = OnPairs or act = OnTuples )
         and IsPositionsList( d )  then
        base := d;
    fi;
    if IsBound( base )  then
        K := StabChainOp( G, base );
        S := K;
        while IsBound( S.orbit )  and  S.orbit[ 1 ] in base  do
            S := S.stabilizer;
        od;
        if IsIdenticalObj( S, K )  then  K := G;
                                else  K := GroupStabChain( G, S, true );  fi;

    # standard action on (lists of) permutations, take the centralizer
    elif act = OnPoints  and IsPerm( d )  then
        K := Centralizer( G, d );
    elif     ( act = OnPairs or act = OnTuples )
         and IsList( d ) and IsPermCollection( d )  then
        K := RepOpElmTuplesPermGroup( false, G, d, d,
                     TrivialSubgroup( G ), TrivialSubgroup( G ) );

    # standard action on a permutation group, take the normalizer
    elif act = OnPoints  and IsPermGroup(d)  then
        K := Normalizer( G, d );

    # action on sets of points, use a backtrack
    elif act = OnSets  and ForAll( d, IsInt )  then
      if Length(d)=1 then
        K:=Stabilizer(G,d[1]);
      else
        K := RepOpSetsPermGroup( G, d );
      fi;

    # action on sets of pairwise disjoint sets
    elif     act = OnSetsDisjointSets
         and IsList(d) and ForAll(d,i->ForAll(i,IsInt)) then
        K := PartitionStabilizerPermGroup( G, d );

    #T OnSetTuples? is hard

    # action on tuples of sets
    elif act = OnTuplesSets
      and IsList(d) and ForAll(d,i->ForAll(i,IsInt)) then
        K:=G;
        for S in d do
          K:=Stabilizer(K,S,OnSets);
        od;

    # action on tuples of tuples
    elif act = OnTuplesTuples
      and IsList(d) and ForAll(d,i->ForAll(i,IsInt)) then
        K:=G;
        for S in d do
          K:=Stabilizer(K,S,OnTuples);
        od;

    # other action
    else
        TryNextMethod();
    fi;

    # enforce size computation (unless the stabilizer did not cause a
    # StabChain to be computed.
    if HasStabChainMutable(K) then
      Size(K);
    fi;

    # return the stabilizer
    return K;
end );

InstallOtherMethod( StabilizerOp, "permutation group with generators list",
       true,
        [ IsPermGroup, IsObject,
          IsList,
          IsList,
          IsFunction ],
  # the objects might be a group element: rank up
  {} -> RankFilter(IsMultiplicativeElementWithInverse)
  # and we are better even if the group is solvable
  +RankFilter(IsSolvableGroup),
  PermGroupStabilizerOp);

InstallOtherMethod( StabilizerOp, "permutation group with domain",true,
        [ IsPermGroup, IsObject,
          IsObject,
          IsList,
          IsList,
          IsFunction ],
  # the objects might be a group element: rank up
  {} -> RankFilter(IsMultiplicativeElementWithInverse)
  # and we are better even if the group is solvable
  +RankFilter(IsSolvableGroup),
  PermGroupStabilizerOp);

#############################################################################
##
#F  StabilizerOfBlockNC( <G>, <B> )  . . . . block stabilizer for perm groups
##
InstallGlobalFunction( StabilizerOfBlockNC, function(G,B)
local S,j;
  S:=StabChainOp(G,rec(base:=[B[1]],reduced:=false));
  S:=StructuralCopy(S);

  # Make <S> the stabilizer of the block <B>.
  InsertTrivialStabilizer(S.stabilizer,B[1]);
  j := 1;
  while                                j < Length( B )
        and Length( S.stabilizer.orbit ) < Length( B )  do
      j := j + 1;
      if IsBound( S.translabels[ B[ j ] ] )  then
          AddGeneratorsExtendSchreierTree( S.stabilizer,
                  [ InverseRepresentative( S, B[ j ] ) ] );
      fi;
  od;
  return GroupStabChain(G,S.stabilizer,true);
end );


#############################################################################
##
#F  OnSetsSets( <set>, <g> )
##
InstallGlobalFunction( OnSetsSets, function( e, g )
    return Set( e, i -> OnSets( i, g ) );
end );


#############################################################################
##
#F  OnSetsDisjointSets( <set>, <g> )
##
##  `OnSetsDisjointSets' does the same as `OnSetsSets',
##  but since this special case is treated in a special way for example by
##  `StabilizerOp',
##  the function must be an object different from `OnSetsSets'.
##
InstallGlobalFunction( OnSetsDisjointSets, function( e, g )
    return Set( e, i -> OnSets( i, g ) );
end );


#############################################################################
##
#F  OnSetsTuples( <set>, <g> )
##
InstallGlobalFunction( OnSetsTuples, function(e,g)
  return Set(e,i->OnTuples(i,g));
end );

#############################################################################
##
#F  OnTuplesSets( <set>, <g> )
##
InstallGlobalFunction( OnTuplesSets, function(e,g)
  return List(e,i->OnSets(i,g));
end );

#############################################################################
##
#F  OnTuplesTuples( <set>, <g> )
##
InstallGlobalFunction( OnTuplesTuples, function(e,g)
  return List(e,i->OnTuples(i,g));
end );