File: orders.gi

package info (click to toggle)
gap 4.15.1-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 110,212 kB
  • sloc: ansic: 97,261; xml: 48,343; cpp: 13,946; sh: 4,900; perl: 1,650; javascript: 255; makefile: 252; ruby: 9
file content (1566 lines) | stat: -rw-r--r-- 47,728 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
#############################################################################
##
##  This file is part of GAP, a system for computational discrete algebra.
##  This file's authors include Isabel Araújo.
##
##  Copyright of GAP belongs to its developers, whose names are too numerous
##  to list here. Please refer to the COPYRIGHT file for details.
##
##  SPDX-License-Identifier: GPL-2.0-or-later
##
##


#############################################################################
##
#M  OrderingsFamily(<F>)
##
InstallMethod( OrderingsFamily,
  "for a family", true, [IsFamily], 0,
  function( fam)
    local ord_req, ord_imp;

    ord_req := IsOrdering;
    ord_imp := IsObject;
    return NewFamily( "OrderingsFamily(...)",ord_req,ord_imp);

end);


######################################################################
##
#M  ViewObj( <ord> )
##
InstallMethod( ViewObj,
  "for an ordering", true,
  [IsOrdering], 0,
  function(ord)
    Print("Ordering");
  end);


######################################################################
##
##  Creating orderings
##

######################################################################
##
#F  CreateOrderingByLtFunction( <fam>, <fun>, <list> )
##
##  creates an orderings for the elements of the family fam
##  with LessThan given by <fun>
##  and with the properties list in <list>
##
BindGlobal("CreateOrderingByLtFunction",
function( fam, fun, list)
    local ord,prop;

    if NumberArgumentsFunction(fun)<>2 then
      return Error("Function for orderings has to have two arguments");
    fi;

    ord := Objectify(
            NewType( OrderingsFamily( fam ),
            IsAttributeStoringRep),rec());

    SetFamilyForOrdering(ord, fam);
    SetLessThanFunction(ord, fun);

    # now set the properties in list to true
    for prop in list do
      Setter(prop)(ord,true);
    od;

    return ord;
end);


######################################################################
##
#F  CreateOrderingByLteqFunction( <fam>, <fun>, <list> )
##
##  creates an orderings for the elements of the family fam
##  with LessThanOrequal given by <fun>
##  and with the properties list in <list>
##
BindGlobal("CreateOrderingByLteqFunction",
function( fam, fun, list)
    local ord,prop;

    if NumberArgumentsFunction(fun)<>2 then
      return Error("Function for orderings has to have two arguments");
    fi;

    ord := Objectify(
            NewType( OrderingsFamily( fam ),
            IsAttributeStoringRep),rec());

    SetFamilyForOrdering(ord, fam);
    SetLessThanOrEqualFunction(ord, fun);

    # now set the properties in list to true
    for prop in list do
      Setter(prop)(ord,true);
    od;

    return ord;
end);


######################################################################
##
#M  OrderingByLessThanFunctionNC( <fam>, <fun> )
##
InstallMethod( OrderingByLessThanFunctionNC,
  "for a family and a function", true,
  [IsFamily, IsFunction], 0,
  function(fam, fun)
    return CreateOrderingByLtFunction(fam,fun,[]);
  end);



InstallOtherMethod( OrderingByLessThanFunctionNC,
  "for a family, a function, and a list of properties", true,
  [IsFamily,IsFunction,IsList], 0,
  function(fam,fun,list)
    return CreateOrderingByLtFunction( fam,fun,list );
  end);


######################################################################
##
#M  OrderingByLessThanOrEqualFunctionNC( <fam>, <fun> )
##
InstallMethod( OrderingByLessThanOrEqualFunctionNC,
  "for a family and a function", true,
  [IsFamily, IsFunction], 0,
  function(fam, fun)
    return CreateOrderingByLteqFunction(fam,fun,[]);
  end);


InstallOtherMethod( OrderingByLessThanOrEqualFunctionNC,
  "for a family, a function, and a list of properties", true,
  [IsFamily,IsFunction,IsList], 0,
  function(fam,fun,list)
    return CreateOrderingByLteqFunction( fam,fun,list );
  end);


#############################################################################
##
#A  LessThanOrEqualFunction( <ord> )
##
InstallMethod( LessThanOrEqualFunction,
  "for an ordering which has a LessThanFunction", true,
  [IsOrdering and HasLessThanFunction], 0,
  function( ord)
    local fun;

    fun := function(x,y)
      return x=y or LessThanFunction(ord)(x,y);
    end;

    return fun;
end);


#############################################################################
##
#A  LessThanFunction( <ord> )
##
InstallMethod( LessThanFunction,
  "for an ordering which has a LessThanOrEqualFunction", true,
  [IsOrdering and HasLessThanOrEqualFunction], 0,
  function( ord)
    local fun;

    fun := function(x,y)
      return x<>y and LessThanOrEqualFunction(ord)(x,y);
    end;

    return fun;
end);


#############################################################################
##
#A  IsLessThanUnder( <ord>, <obj1>, <obj2> )
##
InstallMethod( IsLessThanUnder,
  "for an ordering ", true,
  [IsOrdering, IsObject,IsObject], 0,
  function( ord, obj1, obj2 )
    local fun;

    if FamilyObj(obj1)<>FamilyObj(obj2) then
      Error("Can only compare objects belonging to the same family");
    fi;
    if FamilyObj(ord)<>OrderingsFamily(FamilyObj(obj1)) then
      Error(ord," and ",obj1,obj2," do not have compatible families");
    fi;
    fun := LessThanFunction(ord);
    return fun(obj1,obj2);

end);


#############################################################################
##
#A  IsLessThanOrEqualUnder( <ord>,<obj1>, <obj2> )
##
InstallMethod( IsLessThanOrEqualUnder,
  "for an ordering and two objects ", true,
  [IsOrdering,IsObject,IsObject], 0,
  function( ord, obj1, obj2 )
    local fun;

    fun := LessThanOrEqualFunction(ord);
    return fun(obj1,obj2);

  end);


#############################################################################
##
#A  IsIncomparableUnder( <ord>,<obj1>, <obj2> )
##
##  for an ordering <ord> on the elements of the family of <el1> and <el2>.
##  Returns true if $el1\neq el2$i and  `IsLessThanUnder'(<ord>,<el1>,<el2>),
##  `IsLessThanUnder'(<ord>,<el2>,<el1>) are both false.
##  Returns false otherwise.
##  Notice that if obj1=obj2 then they are comparable
##
InstallMethod( IsIncomparableUnder,
  "for an ordering", true,
  [IsOrdering,IsObject,IsObject], 0,
  function(ord,obj1,obj2)
    local lteqfun;

    if FamilyObj(obj1)<>FamilyObj(obj2) then
      Error("`obj1' and `obj2' must belong to same family");
    fi;
    if not (FamilyObj(ord)=OrderingsFamily(FamilyObj(obj1))) then
      Error("`ord' is not an ordering in `OrderingsFamily(obj1)'");
    fi;

    # if we know that the ordering is total
    # then any pair of elements is comparable
    if HasIsTotalOrdering(ord) and IsTotalOrdering(ord) then
      return false;
    fi;

    lteqfun := LessThanOrEqualFunction( ord );
    # now check that neither obj1 is less than or equal to obj2
    # nor obj2 is less than or equal to obj1
    # Note that if obj1=obj2 then they are comparable!
    if (not lteqfun(obj1,obj2)) and (not lteqfun(obj2,obj1)) then
      return true;
    fi;
    return false;

end);


######################################################################
##
##  Orderings on families of associative words
##

#############################################################################
##
#M  LexicographicOrdering( <fam> )
#M  LexicographicOrdering( <fam>, <alphabet> )
#M  LexicographicOrdering( <fam>, <gensord> )
#M  LexicographicOrdering( <f> )
#M  LexicographicOrdering( <f>, <alphabet> )
#M  LexicographicOrdering( <f>, <gensord> )
#B  LexicographicOrderingNC( <fam>, <alphabet> )
##
##  LexicographicOrderingNC is the function that actually does the work
##
BindGlobal("LexicographicOrderingNC",
function(fam,alphabet)
    local ltfun,          # the less than function
          ord;            # the ordering

    ltfun := function(w1,w2)
      local i,x,y;

      for i in [1..Minimum(Length(w1),Length(w2))] do
        x := Subword(w1,i,i);
        y := Subword(w2,i,i);
        if Position(alphabet,x)< Position(alphabet,y) then
          return true;
        elif Position(alphabet,y)<Position(alphabet,x) then
          return false;
        fi;
      od;
      # at this time the shortest one is a prefix of the other one
      # or they are equal
      return Length(w1)<Length(w2);
    end;

    ord := OrderingByLessThanFunctionNC(fam,ltfun,[IsTotalOrdering,
        IsOrderingOnFamilyOfAssocWords]);
    SetIsTranslationInvariantOrdering(ord, false);
    SetOrderingOnGenerators(ord,alphabet);

    return ord;
end);


InstallOtherMethod( LexicographicOrdering,
  "for a family of words of a free semigroup or free monoid",
  true,
  [IsFamily and IsAssocWordFamily], 0,
  function(fam)
    local gens;         # the generating set

  # first find out if fam is a family of free semigroup or monoid
  # because we need to get a list of generators (in the default order)
  if IsBound(fam!.freeSemigroup) then
    gens := GeneratorsOfSemigroup(fam!.freeSemigroup);
  elif IsBound(fam!.freeMonoid) then
    gens := GeneratorsOfMonoid(fam!.freeMonoid);
  else
    TryNextMethod();
  fi;

  return LexicographicOrderingNC(fam,gens);

end);


InstallMethod( LexicographicOrdering,
  "for a family of words of a free semigroup or free monoid and a list of generators",
  true,
  [IsFamily and IsAssocWordFamily,IsList and IsAssocWordCollection], 0,
  function(fam,alphabet)
    local gens;

  # first find out if fam is a family of free semigroup or monoid
  # because we need to get a list of generators (in the default order)
  if IsBound(fam!.freeSemigroup) then
    gens := GeneratorsOfSemigroup(fam!.freeSemigroup);
  elif IsBound(fam!.freeMonoid) then
    gens := GeneratorsOfMonoid(fam!.freeMonoid);
  else
    TryNextMethod();
  fi;

  # now check that the elements of alphabet lie in the right family
  if ElementsFamily(FamilyObj(alphabet))<>fam then
    Error("Elements of `alphabet' should be in family `fam'");
  fi;

  # alphabet has to be a list of size Length(gens)
  # and all gens have to appear in the alphabet
  if Length(alphabet)<>Length(gens) or Set(alphabet)<>gens then
    Error("The list `alphabet' does not contain all generators");
  fi;

  return LexicographicOrderingNC(fam,alphabet);

end);


InstallOtherMethod( LexicographicOrdering,
  "for a family of words of a free semigroup or free monoid and a list",
  true,
  [IsFamily and IsAssocWordFamily,IsList], 0,
  function(fam,orderofgens)
    local gens,           # list of generators
          alphabet,       # list of gens in the appropriate ordering
          n;              # the size of the generating set

    # first find out if fam is a family of free semigroup or monoid
    if IsBound(fam!.freeSemigroup) then
      gens := GeneratorsOfSemigroup(fam!.freeSemigroup);
    elif IsBound(fam!.freeMonoid) then
      gens := GeneratorsOfMonoid(fam!.freeMonoid);
    else
      TryNextMethod();
    fi;

    # we have to do some checking
    # orderofgens has to be a list of size Length(gens)
    # and all indexed of gens have to appear in the list
    n := Length(gens);
    if Length(orderofgens)<>n or Set(orderofgens)<>[1..n] then
      Error("`list' is not compatible with `fam'");
    fi;

    # we have to turn the list giving the order of gens
    # in a list of gens
    alphabet := List([1..Length(gens)],i->gens[orderofgens[i]]);

    return LexicographicOrderingNC(fam,alphabet);
end);


InstallOtherMethod( LexicographicOrdering,
  "for a free semigroup",
  true,
  [IsFreeSemigroup], 0,
  function(f)
    return LexicographicOrderingNC(ElementsFamily(FamilyObj(f)),
                                   GeneratorsOfSemigroup(f));
end);


InstallOtherMethod( LexicographicOrdering,
  "for a free monoid",
  true,
  [IsFreeMonoid], 0,
  function(f)
    return LexicographicOrderingNC(ElementsFamily(FamilyObj(f)),
                                   GeneratorsOfMonoid(f));
end);


InstallOtherMethod( LexicographicOrdering,
  "for a free semigroup and a list of generators",
  IsElmsColls,
  [IsFreeSemigroup,IsList and IsAssocWordCollection], 0,
  function(f,alphabet)
    return LexicographicOrdering(ElementsFamily(FamilyObj(f)),alphabet);
end);


InstallOtherMethod( LexicographicOrdering,
  "for a free monoid and a list of generators",
  IsElmsColls,
  [IsFreeMonoid,IsList and IsAssocWordCollection], 0,
  function(f,alphabet)
    return LexicographicOrdering(ElementsFamily(FamilyObj(f)),alphabet);
end);


InstallOtherMethod( LexicographicOrdering,
  "for a free semigroup and a list",
  true,
  [IsFreeSemigroup,IsList], 0,
  function(f,gensord)
    return LexicographicOrdering(ElementsFamily(FamilyObj(f)),gensord);
end);


InstallOtherMethod( LexicographicOrdering,
  "for a free monoid and a list",
  true,
  [IsFreeMonoid,IsList], 0,
  function(f,gensord)
    return LexicographicOrdering(ElementsFamily(FamilyObj(f)),gensord);
end);


#############################################################################
##
#M  ShortLexOrdering( <fam> )
#M  ShortLexOrdering( <fam>, <alphabet> )
#M  ShortLexOrdering( <fam>, <gensorder> )
#M  ShortLexOrdering( <f> )
#M  ShortLexOrdering( <f>, <alphabet> )
#M  ShortLexOrdering( <f>, <gensorder> )
#B  ShortLexOrderingNC ( <fam>, <alphabet> )
##
##  We implement these for families of elements of free smg and monoids
##  In the first form returns the ShortLexOrdering for the elements of fam
##  with the generators of the freeSmg (or freeMonoid) in the default order.
##  In the second form returns the ShortLexOrdering for the elements of fam
##  with the generators of the freeSmg (or freeMonoid) in the following order:
##  gens[i]<gens[j] if and only if orderofgens[i]<orderofgens[j]
##
BindGlobal("ShortLexOrderingNC",
function(fam,alphabet)
local ltfun, ord;

  # the less than function
  ltfun := function(w1,w2)

    # if w1=w2 then w1 is certainly not less than w2
    if w1=w2 then
      return false;
    fi;

    if Length(w1)<Length(w2) then
      return true;
    elif Length(w1)=Length(w2) then
      return IsLessThanUnder(LexicographicOrdering(fam,alphabet),w1,w2);
    fi;
    return false;
  end;

  ord := OrderingByLessThanFunctionNC(fam,ltfun,[IsTotalOrdering,
            IsReductionOrdering, IsShortLexOrdering,
            IsOrderingOnFamilyOfAssocWords]);
  SetOrderingOnGenerators(ord,alphabet);

  alphabet:=MakeImmutable(List(alphabet,i->GeneratorSyllable(i,1)));
  ord!.alphnums:=alphabet;
  if IsSSortedList(alphabet) then
    SetLetterRepWordsLessFunc(ord,function(a,b)
      if Length(a)<Length(b) then
        return true;
      elif Length(a)>Length(b) then
        return false;
      else
        return a<b;
      fi;
    end);
  else
    ord!.alphpos:=MakeImmutable(List([1..Maximum(alphabet)],i->Position(alphabet,i)));
    SetLetterRepWordsLessFunc(ord,function(a,b)
      if Length(a)<Length(b) then
        return true;
      elif Length(a)>Length(b) then
        return false;
      else
        return List(a,i->SignInt(i)*ord!.alphpos[AbsInt(i)])<
               List(b,i->SignInt(i)*ord!.alphpos[AbsInt(i)]);
      fi;
    end);
  fi;

  return ord;

end);


InstallOtherMethod( ShortLexOrdering,
  "for a family of words of a free semigroup or free  monoid", true,
  [IsFamily and IsAssocWordFamily], 0,
  function(fam)
    local gens;

    # first find out if fam is a family of free semigroup or monoid
    # because we need to get a list of generators (in the default order)
    if IsBound(fam!.freeSemigroup) then
      gens := GeneratorsOfSemigroup(fam!.freeSemigroup);
    elif IsBound(fam!.freeMonoid) then
      gens := GeneratorsOfMonoid(fam!.freeMonoid);
    else
      TryNextMethod();
    fi;

    return ShortLexOrderingNC(fam,gens);
end);


InstallMethod( ShortLexOrdering,
  "for a family of words of a free semigroup or free monoid and a list of generators",
  true,
  [IsFamily and IsAssocWordFamily,IsList and IsAssocWordCollection], 0,
  function(fam,alphabet)

    local x,            # loop variable
          gens,         # the generators of the semigroup or monoid
          ltfun,        # the less than function of the ordering being built,
          ord;          # the ordering

    # first find out if fam is a family of free semigroup or monoid
    if IsBound(fam!.freeSemigroup) then
      gens := GeneratorsOfSemigroup(fam!.freeSemigroup);
    elif IsBound(fam!.freeMonoid) then
      gens := GeneratorsOfMonoid(fam!.freeMonoid);
    else
      TryNextMethod();
    fi;

    # now check that the elements of alphabet lie in the right family
    if ElementsFamily(FamilyObj(alphabet))<>fam then
      Error("Elements of `alphabet' should be in family `fam'");
    fi;

    # alphabet has to be a list of size Length(gens)
    # and all gens have to appear in the alphabet
    if Length(alphabet)<>Length(gens) or Set(alphabet)<>gens then
      Error("`fam' and `alphabet' are not compatible");
    fi;

    # now build the ordering
    return ShortLexOrderingNC(fam,alphabet);

end);


InstallOtherMethod( ShortLexOrdering,
  "for a family of free words of a free semigroup or free  monoid and a list",
  true, [IsFamily and IsAssocWordFamily,IsList], 0,
  function(fam,orderofgens)

    local i,            # loop variable
          gens,         # the generators of the semigroup or monoid
          n,            # the length of the generators list
          alphabet;     # the gens in the desired order

    # first find out if fam is a family of free semigroup or monoid
    if IsBound(fam!.freeSemigroup) then
      gens := GeneratorsOfSemigroup(fam!.freeSemigroup);
    elif IsBound(fam!.freeMonoid) then
      gens := GeneratorsOfMonoid(fam!.freeMonoid);
    else
      TryNextMethod();
    fi;

    # we have to do some checking
    # orderofgens has to be a list of size Length(gens)
    # and all gens have to appear in the list
    n := Length(gens);
    if Length(orderofgens)<>n or Set(orderofgens)<>[1..n] then
      Error("`fam' and `orderofgens' are not compatible");
    fi;

    # we have to turn the list giving the order of gens
    # in a list of gens
    alphabet := List([1..Length(gens)],i->gens[orderofgens[i]]);

    return ShortLexOrderingNC(fam,alphabet);
end);


InstallOtherMethod( ShortLexOrdering,
  "for a free semigroup", true,
  [IsFreeSemigroup], 0,
  f -> ShortLexOrderingNC(ElementsFamily(FamilyObj(f)),
        GeneratorsOfSemigroup(f)));


InstallOtherMethod( ShortLexOrdering,
  "for a free monoid", true,
  [IsFreeMonoid], 0,
  f -> ShortLexOrderingNC(ElementsFamily(FamilyObj(f)),GeneratorsOfMonoid(f)));


InstallOtherMethod( ShortLexOrdering,
  "for a free semigroup and a list of generators in the required order",
  IsElmsColls,
  [IsFreeSemigroup, IsList and IsAssocWordCollection], 0,
  function(f,alphabet)
    return ShortLexOrdering( ElementsFamily(FamilyObj(f)),alphabet);
  end);


InstallOtherMethod( ShortLexOrdering,
  "for a free monoid and a list of generators in the required order ",
  IsElmsColls,
  [IsFreeMonoid,IsList and IsAssocWordCollection], 0,
  function(f,alphabet)
    return ShortLexOrdering( ElementsFamily(FamilyObj(f)),alphabet);
  end);


InstallOtherMethod( ShortLexOrdering,
  "for a free semigroup and a list", true,
  [IsFreeSemigroup, IsList], 0,
  function(f,gensorder)
    return ShortLexOrdering( ElementsFamily(FamilyObj(f)),gensorder);
  end);


InstallOtherMethod( ShortLexOrdering,
  "for a free monoid and a list", true,
  [IsFreeMonoid,IsList], 0,
  function(f,gensorder)
    return ShortLexOrdering( ElementsFamily(FamilyObj(f)),gensorder);
  end);


#############################################################################
##
#F  IsShortLexLessThanOrEqual( <u>, <v> )
##
##  for two associative words <u> and <v>.
##  It returns true if <u> is less than or equal to <v>, with
##  respect to the shortlex ordering.
##  (the shortlex ordering is the default one given by u<=v)
##  (we have this function here to assure compatibility with gap4.2).
##
InstallGlobalFunction( IsShortLexLessThanOrEqual,
function( u, v )
  local fam,ord;

  fam := FamilyObj(u);
  ord := ShortLexOrdering(fam);

  return IsLessThanOrEqualUnder(ord,u,v);
end);


#############################################################################
##
#M  WeightLexOrdering( <fam>,<alphabet>,<wt>)
#M  WeightLexOrdering( <fam>,<gensord>,<wt>)
#M  WeightLexOrdering( <f>,<wt>,<alphabet>)
#M  WeightLexOrdering( <f>,<wt>,<gensord>)
#B  WeightLexOrderingNC( <fam>,<alphabet>,<wt>)
##
BindGlobal("WeightLexOrderingNC",
function(fam,alphabet,wt)
  local wordwt,       # function that given a word returns its weight
        ltfun,        # the less than function
        auxalph,
        ord;          # the ordering

  #########################################################
  # this is a function that given a word returns its weight
  wordwt := function(w)
    local i, sum;
    sum := 0;
    for i in [1..Length(alphabet)] do
      sum := sum + ExponentSumWord(w,alphabet[i])*wt[i];
    od;
    return sum;
  end;

  # the less than function
  ltfun := function(w1,w2)
    local w1wt,w2wt;        # the weights of words w1 and w2, resp

    # if w1=w2 then w1 is certainly not less than w2
    if w1=w2 then
      return false;
    fi;

    # then if the sum of the weights of w1 is less than
    # the sum of the weight of w2 then returns true
    # so we calculate the weight of w1
    w1wt := wordwt(w1);
    w2wt := wordwt(w2);
    if w1wt<w2wt then
      return true;
    elif w1wt=w2wt then
      return IsLessThanUnder(LexicographicOrdering(fam,alphabet),w1,w2);
    fi;
    return false;
  end;

  ord := OrderingByLessThanFunctionNC(fam,ltfun,[IsTotalOrdering,
            IsReductionOrdering, IsWeightLexOrdering,
            IsOrderingOnFamilyOfAssocWords]);
  SetOrderingOnGenerators(ord,alphabet);
  SetWeightOfGenerators(ord,wt);

  auxalph := ShallowCopy(alphabet);
  auxalph := List(auxalph,i->GeneratorSyllable(i,1));
  ord!.alphnums:=auxalph;
  if IsSSortedList(auxalph) then
    SetLetterRepWordsLessFunc(ord,function(a,b)
      local wa,wb;
      wa:=Sum(a,i->wt[i]);
      wb:=Sum(b,i->wt[i]);
      if wa<wb then
        return true;
      elif wa>wb then
        return false;
      else
        return a<b;
      fi;
    end);
  else
    ord!.alphpos:=List([1..Maximum(auxalph)],i->Position(auxalph,i));
    SetLetterRepWordsLessFunc(ord,function(a,b)
      local wa,wb;
      wa:=Sum(a,i->wt[i]);
      wb:=Sum(b,i->wt[i]);
      if wa<wb then
        return true;
      elif wa>wb then
        return false;
      else
        return List(a,i->SignInt(i)*ord!.alphpos[AbsInt(i)])<
               List(b,i->SignInt(i)*ord!.alphpos[AbsInt(i)]);
      fi;
    end);
  fi;

  return ord;

end);


InstallMethod( WeightLexOrdering,
  "for a family of words of a free semigroup or free monoid, a list of generators and a list of weights",
  true,
  [IsFamily and IsAssocWordFamily,IsList and IsAssocWordCollection, IsList], 0,
  function(fam,alphabet,wt)

    local x,            # loop variable
          gens,         # the generators of the semigroup or monoid
          ltfun,        # the less than function of the ordering being built,
          w1wt,w2wt,    # the weights of w1 and w2, resp
          ord;          # the ordering

    # first find out if fam is a family of free semigroup or monoid
    if IsBound(fam!.freeSemigroup) then
      gens := GeneratorsOfSemigroup(fam!.freeSemigroup);
    elif IsBound(fam!.freeMonoid) then
      gens := GeneratorsOfMonoid(fam!.freeMonoid);
    else
      TryNextMethod();
    fi;

    # now check that the elements of alphabet lie in the right family
    if ElementsFamily(FamilyObj(alphabet))<>fam then
      Error("Elements of `alphabet' should be in family `fam'");
    fi;

    # alphabet and wt both have to be lists of size Length(gens)
    # and all gens have to appear in the alphabet
    if Length(alphabet)<>Length(gens) or Length(wt)<>Length(gens)
          or Set(alphabet)<> gens then
      Error("`alphabet' and `wt' are not compatible with `fam'");
    fi;

    return WeightLexOrderingNC(fam,alphabet,wt);
end);


InstallOtherMethod( WeightLexOrdering,
  "for a family of words of a free semigroup or free monoid, and two lists",
  true, [IsFamily and IsAssocWordFamily,IsList,IsList], 0,
  function(fam,orderofgens,wt)

  local gens,         # the generators of the semigroup or monoid
        alphabet;     # the gens in the desired order

  # first find out if fam is a family of free semigroup or monoid
  if IsBound(fam!.freeSemigroup) then
    gens := GeneratorsOfSemigroup(fam!.freeSemigroup);
  elif IsBound(fam!.freeMonoid) then
    gens := GeneratorsOfMonoid(fam!.freeMonoid);
  else
    TryNextMethod();
  fi;

  # alphabet and wt both have to be lists of size Length(gens)
  # and all gens have to appear in the alphabet
  if Length(orderofgens)<>Length(gens) or Length(wt)<>Length(gens)
    or Set(orderofgens)<> [1..Length(gens)] then
    Error("`orderofgens' and `wt' are not compatible with `fam'");
  fi;

  # we have to turn the list giving the order of gens
  # in a list of gens
  alphabet := List([1..Length(gens)],i->gens[orderofgens[i]]);

  return WeightLexOrderingNC(fam,alphabet,wt);
end);


InstallOtherMethod( WeightLexOrdering,
  "for a free semigroup, a list of generators and a list of weights",
  true,
  [IsFreeSemigroup,IsList and IsAssocWordCollection,IsList], 0,
  function(f,alphabet,wt)
    return WeightLexOrdering( ElementsFamily(FamilyObj(f)),alphabet,wt);
  end);


InstallOtherMethod( WeightLexOrdering,
  "for a free monoid, a list of generators and a list of weights",
  true,
  [IsFreeMonoid,IsList and IsAssocWordCollection,IsList], 0,
  function(f,alphabet,wt)
    return WeightLexOrdering( ElementsFamily(FamilyObj(f)),alphabet,wt);
  end);


InstallOtherMethod( WeightLexOrdering,
  "for a free semigroup, a list giving ordering on generators and a list of weights",
  true,
  [IsFreeSemigroup,IsList,IsList], 0,
  function(f,orderofgens,wt)
    return WeightLexOrdering( ElementsFamily(FamilyObj(f)),orderofgens,wt);
  end);

InstallOtherMethod( WeightLexOrdering,
  "for a free monoid, a list giving ordering on generators and a list of weights",
  true,
  [IsFreeMonoid,IsList,IsList], 0,
  function(f,orderofgens,wt)
    return WeightLexOrdering( ElementsFamily(FamilyObj(f)),orderofgens,wt);
  end);


#############################################################################
##
#M  BasicWreathProductOrdering( <fam> )
#M  BasicWreathProductOrdering( <fam>, <alphabet>)
#M  BasicWreathProductOrdering( <fam>, <gensord>)
#M  BasicWreathProductOrdering( <f>)
#M  BasicWreathProductOrdering( <f>, <alphabet>)
#M  BasicWreathProductOrdering( <f>, <gensord>)
#B  BasicWreathProductOrderingNC( <fam>, <alphabet>)
##
##  We implement these for families of elements of free smg and monoids
##  In the first form returns the BasicWreathProductOrdering for the
##  elements of fam with the generators of the freeSmg (or freeMonoid)
##  in the default order.
##  In the second form returns the BasicWreathProductOrdering for the
##  elements of fam with the generators of the freeSmg (or freeMonoid)
##  in the following order:
##  gens[i]<gens[j] if and only if orderofgens[i]<orderofgens[j]
##
##  So with the given order on the generators
##  u<v if u'<v' where u=xu'y and v=xv'y
##  So, if u and v have no common prefix, u is less than v wrt this ordering if
##    (i) maxletter(v) > maxletter(u); or
##   (ii) maxletter(u) = maxletter(v) and
##        #maxletter(u) < #maxletter(v); or
##  (iii) maxletter(u) = maxletter(v) =b and
##        #maxletter(u) = #maxletter(v) and
##        if u = u1 * b * u2 * b ... b * uk
##           v = v1 * b * v2 * b ... b * vk
##        then u1<v1 in the basic wreath product ordering.
##
BindGlobal("BasicWreathProductOrderingNC",
function(fam,alphabet)
  local ltfun,            # the less than function
        oltfun,
        nltfun,
        alphpos,
        ord;              # the ordering

  nltfun := function(u,v)
    local l,eu,ev,mp,np,me,ne;

    eu:=ExtRepOfObj(u);
    ev:=ExtRepOfObj(v);
    if eu=ev then
      return false;
    fi;
    # find the longest common prefix
    l:=1;
    while l<=Length(eu) and l<=Length(ev) and eu[l]=ev[l] do
      l:=l+1;
    od;
    l:=l-1;

    if l<>0 or (l=0 and (IsEmpty(eu) or IsEmpty(ev))) then
      if IsEvenInt(l) then
        # disagree on generator or ran out
        # if u is a proper prefix of v (ie l=|u|) then u<v
        if Length(eu)=l then
          return true;
        # but if v is a proper prefix of u then u>v
        elif Length(ev)=l then
          return false;
        fi;
        eu:=eu{[l+1..Length(eu)]};
        ev:=ev{[l+1..Length(ev)]};
      elif SignInt(eu[l+1])=SignInt(ev[l+1]) then
        # disagree on exponent
        # if u is a proper prefix of v (ie l=|u|) then u<v
        if Length(eu)=l+1 and AbsInt(eu[l+1])<AbsInt(ev[l+1]) then
          return true;
        # but if v is a proper prefix of u then u>v
        elif Length(ev)=l+1 and AbsInt(eu[l+1])>AbsInt(ev[l+1]) then
          return false;
        fi;
        if AbsInt(eu[l+1])<AbsInt(ev[l+1]) then
          ev:=ev{[l..Length(ev)]};
          ev[2]:=ev[2]-eu[l+1];
          eu:=eu{[l+2..Length(eu)]};
        else
          eu:=eu{[l..Length(eu)]};
          eu[2]:=eu[2]-ev[l+1];
          ev:=ev{[l+2..Length(ev)]};
        fi;
      else
        eu:=eu{[l..Length(eu)]};
        ev:=ev{[l..Length(ev)]};
      fi;
    fi;
    # now eu and ev don't have a common prefix.

    #T the code now assumes that all exponents are positive. If we use free
    #T groups, this needs to be cleaned up
    mp:=Length(eu)-1;
    np:=Length(ev)-1;
    me:=eu[mp+1];
    ne:=ev[np+1];
    while mp>0 and np>0 do
      if ord!.alphpos[ev[np]]<ord!.alphpos[eu[mp]] then
        ne:=ne-1;
        if ne=0 then
          np:=np-2;
          if np>0 then
            ne:=ev[np+1];
          fi;
        fi;
      elif ord!.alphpos[eu[mp]]<ord!.alphpos[ev[np]] then
        me:=me-1;
        if me=0 then
          mp:=mp-2;
          if mp>0 then
            me:=eu[mp+1];
          fi;
        fi;
      else
        ne:=ne-1;
        if ne=0 then
          np:=np-2;
          if np>0 then
            ne:=ev[np+1];
          fi;
        fi;
        me:=me-1;
        if me=0 then
          mp:=mp-2;
          if mp>0 then
            me:=eu[mp+1];
          fi;
        fi;
      fi;
    od;

    return mp<=0 and np<>0;
  end;

  ########
  #
  # this is obsolete but for tests

  oltfun := function(u,v)
    local l,m,n,ltgens;

    # we start by building the function that gives the order on the alphabet
    ltgens := function(x,y)
      return Position(alphabet,x)< Position(alphabet,y);
    end;

    if u=v then
      return false;
    fi;

    l := LengthOfLongestCommonPrefixOfTwoAssocWords( u, v);
    if l<>0 then
      # if u is a proper prefix of v (ie l=|u|) then u<v
      # but if v is a proper prefix of u then u>v
      if l=Length(u) then
        return true;
      elif l=Length(v) then
        return false;
      fi;

      # at this stage none of the words is a proper prefix of the other one
      # so remove the common prefix from both words
      u := Subword( u, l+1, Length(u) );
      v := Subword( v, l+1, Length(v) );
    fi;

    m := Length( u );
    n := Length( v );

    # so now u and v have no common prefixes
    # (in particular they are not equal)

    while m>0 and n>0 do
      if ltgens(Subword( v, n, n),Subword( u, m, m)) then
        n := n - 1;
      elif ltgens(Subword( u, m, m),Subword( v, n, n)) then
        m := m - 1;
      else
        m := m - 1;
        n := n - 1;
      fi;
    od;

    return m =0 and n<>0;
  end;

  ltfun:=function(u,v)
  local x,y;
    x:=oltfun(u,v);
    y:=nltfun(u,v);
    if x=y then
      return x;
    else
      Error("disagree");
    fi;
  end;

  if AssertionLevel()=0 then
    ltfun:=nltfun;
  fi;


  ord := OrderingByLessThanFunctionNC(fam,ltfun,[IsTotalOrdering,
            IsBasicWreathProductOrdering,
            IsOrderingOnFamilyOfAssocWords, IsReductionOrdering]);
  SetOrderingOnGenerators(ord,alphabet);

  alphpos:=List(alphabet,i->GeneratorSyllable(i,1));
  ord!.alphpos:=List([1..Maximum(alphpos)],i->Position(alphpos,i));

  return ord;

end);


InstallOtherMethod(BasicWreathProductOrdering,
  "for a family of words of a free semigroup or free monoid and a list",
  true, [IsAssocWordFamily and IsFamily], 0,
  function(fam)
    local gens;       # the generators list

    # first find out if fam is a family of free semigroup or monoid
    if IsBound(fam!.freeSemigroup) then
      gens := GeneratorsOfSemigroup(fam!.freeSemigroup);
    elif IsBound(fam!.freeMonoid) then
      gens := GeneratorsOfMonoid(fam!.freeMonoid);
    else
      TryNextMethod();
    fi;

    return BasicWreathProductOrderingNC(fam,gens);
end);


InstallMethod(BasicWreathProductOrdering,
  "for a family of words of a free semigroup or free monoid and a list of generators",
  true, [IsAssocWordFamily and IsFamily, IsList and IsAssocWordCollection], 0,
  function(fam,alphabet)
    local gens;       # the generators of the semigroup or monoid

    # first find out if fam is a family of free semigroup or monoid
    if IsBound(fam!.freeSemigroup) then
      gens := GeneratorsOfSemigroup(fam!.freeSemigroup);
    elif IsBound(fam!.freeMonoid) then
      gens := GeneratorsOfMonoid(fam!.freeMonoid);
    else
      TryNextMethod();
    fi;

    # we have to do some checking
    # alphabet has to be a list of size Length(gens)
    # all gens have to appear in the list
    if Length(alphabet)<>Length(gens) or Set(alphabet)<>gens then
      Error("`alphabet' is not compatible with `fam'");
    fi;

    return BasicWreathProductOrderingNC(fam,alphabet);

end);


InstallMethod(BasicWreathProductOrdering,
  "for a family of words of a free semigroup or free monoid and a list",
  true, [IsAssocWordFamily and IsFamily, IsList], 0,
  function(fam,orderofgens)
    local gens,       # the generators of the semigroup or monoid
          n,          # the length of the generators list
          alphabet;   # the generators in the appropriate order

    # first find out if fam is a family of free semigroup or monoid
    if IsBound(fam!.freeSemigroup) then
      gens := GeneratorsOfSemigroup(fam!.freeSemigroup);
    elif IsBound(fam!.freeMonoid) then
      gens := GeneratorsOfMonoid(fam!.freeMonoid);
    else
      TryNextMethod();
    fi;

    # we have to do some checking
    # orderofgens has to be a list of size Length(gens)
    # all gens have to appear in the list
    n := Length(gens);
    if Length(orderofgens)<>n or Set(orderofgens)<>[1..n] then
      Error("`orderofgens' is not compatible with `fam'");
    fi;

    # we have to turn the list giving the order of gens
    # in a list of gens
    alphabet := List([1..Length(gens)],i->gens[orderofgens[i]]);

    return BasicWreathProductOrderingNC(fam,alphabet);

end);


InstallOtherMethod(BasicWreathProductOrdering,
  "for a free semigroup", true,
  [IsFreeSemigroup], 0,
  f-> BasicWreathProductOrderingNC(ElementsFamily(FamilyObj(f)),
          GeneratorsOfSemigroup(f)));


InstallOtherMethod(BasicWreathProductOrdering,
  "for a free monoid", true,
  [IsFreeMonoid], 0,
  f-> BasicWreathProductOrderingNC(ElementsFamily(FamilyObj(f)),
          GeneratorsOfMonoid(f)));


InstallOtherMethod(BasicWreathProductOrdering,
  "for a free semigroup and a list of generators", true,
  [IsFreeSemigroup,IsList and  IsAssocWordCollection], 0,
  function(f,alphabet)
    return BasicWreathProductOrdering(ElementsFamily(FamilyObj(f)),alphabet);
  end);


InstallOtherMethod(BasicWreathProductOrdering,
  "for a free monoid and a list of generators", true,
  [IsFreeMonoid,IsList and IsAssocWordCollection], 0,
  function(f,alphabet)
    return BasicWreathProductOrdering(ElementsFamily(FamilyObj(f)),alphabet);
  end);


InstallOtherMethod(BasicWreathProductOrdering,
  "for a free semigroup and a list", true,
  [IsFreeSemigroup,IsList], 0,
  function(f,gensorder)
    return BasicWreathProductOrdering(ElementsFamily(FamilyObj(f)),gensorder);
  end);


InstallOtherMethod(BasicWreathProductOrdering,
  "for a free monoid and a list", true,
  [IsFreeMonoid,IsList], 0,
  function(f,gensorder)
    return BasicWreathProductOrdering(ElementsFamily(FamilyObj(f)),gensorder);
  end);


#############################################################################
##
#F  IsBasicWreathLessThanOrEqual( <u>, <v> )
##
##  for two associative words <u> and <v>.
##  It returns true if <u> is less than or equal to <v>, with
##  respect to the basic wreath product ordering.
##  (we have this function here to assure compatibility with gap4.2).
##
InstallGlobalFunction( IsBasicWreathLessThanOrEqual,
function( u, v )
  local fam,ord;

  fam := FamilyObj(u);
  ord := BasicWreathProductOrdering(fam);

  return IsLessThanOrEqualUnder(ord,u,v);
end);


#############################################################################
##
#M  WreathProductOrdering( <fam>, <levels> )
#M  WreathProductOrdering( <fam>, <gensord>, <levels>)
#M  WreathProductOrdering( <f>, <levels>)
#M  WreathProductOrdering( <f>, <gensord>, <levels>)
##
##  We implement these for families of elements of free smg and monoids
##  In the first form returns the WreathProductOrdering for the
##  elements of fam with the generators of the freeSmg (or freeMonoid)
##  in the default order.
##  In the second form returns the WreathProductOrdering for the
##  elements of fam with the generators of the freeSmg (or freeMonoid)
##  in the following order:
##  gens[i]<gens[j] if and only if orderofgens[i]<orderofgens[j]
##
##  <levels> is a list of length equal to the number of generators,
##  specifying the levels of the generators IN THEIR NEW ORDERING,
##  That is, levels[i] is the level of the generator that comes i-th
##  in the new ordering.
##
##  So with the given order on the generators
##  u<v if u'<v' where u=xu'y and v=xv'y
##  So, if u and v have no common prefix, u is less than v wrt this ordering if
##    (i) u_max < v_max in the shortlex ordering, where u_max, v_max are
##        the words obtained from u, v by removing all letters that do not
##        the highest level, or
##   (ii) u_max = v_max and
##        if u = u1 * u_m1 * u2 * u_m2 ... b * u_mk
##           v = v1 * v_m1 * v2 * v_m2 ... b * v_mk
##           where u_mi, v_mi are the maximal subwords of u, v containing
##           only the letters of maximal weight
##           (so u_max = u_m1 * u_m2 * ... * u_mk = v_m1 * v_m2 * ... * v_mk),
##           then u1<v1 in the wreath product ordering.
##
InstallOtherMethod(WreathProductOrdering,
  "for a family of words of a free semigroup or free monoid and a list",
  true, [IsAssocWordFamily and IsFamily,IsList], 0,
  function(fam, levels)
    local gens;

    # first find out if fam is a family of free semigroup or monoid
    if IsBound(fam!.freeSemigroup) then
      gens := GeneratorsOfSemigroup(fam!.freeSemigroup);
    elif IsBound(fam!.freeMonoid) then
      gens := GeneratorsOfMonoid(fam!.freeMonoid);
    else
      TryNextMethod();
    fi;

    return WreathProductOrdering(fam,[1..Length(gens)],levels);
end);

InstallMethod(WreathProductOrdering,
  "for a family of words of a free semigroup or free monoid and a list",
  true, [IsAssocWordFamily and IsFamily, IsList, IsList], 0,
  function(fam,orderofgens,levels)
    local i,  # loop variable
       gens,  # the generators of the semigroup or monoid
     ltgens,  # the function giving the order on the alphabet
      ltfun,  # the less than function
        ord;  # the ordering

    # first find out if fam is a family of free semigroup or monoid
    if IsBound(fam!.freeSemigroup) then
      gens := GeneratorsOfSemigroup(fam!.freeSemigroup);
    elif IsBound(fam!.freeMonoid) then
      gens := GeneratorsOfMonoid(fam!.freeMonoid);
    else
      TryNextMethod();
    fi;

    # we have to do some checking
    # orderofgens has to be a list of size Length(gens)
    if Length(orderofgens)<>Length(gens) then
      TryNextMethod();
    fi;
    # all gens have to appear in the list
    for i in [1..Length(orderofgens)] do
      if not i in orderofgens then
        TryNextMethod();
      fi;
    od;

  # now we build the less than function for the ordering
  ltfun := function(u,v)
    local l,  #length of common prefix of u,v
          m,  #current position in scan of u (from right)
          n,  #current position in scan of v (from right)
       ug, vg,  #Current generators of u, v
   ug_lev, vg_lev,  #levels of urrent generators of u, v
     sl_lev,  #level at which one of the words  u,v  is
        #smaller in the shortlex ordering
                     sl,  #sl=1 or 2 if u or v, resp., is
        #smaller in the shortlex ordering at level sl_lev.
        #note sl=0 <=> sl_lev=0.
          levgens;  #functions on generators

    # we start by building the function that gives the order on
    # the alphabet
    # we construct it from the list <orderofgens>
    ltgens := function(x,y)
      return Position(orderofgens,Position(gens,x))<
          Position(orderofgens,Position(gens,y));
    end;

    #and similarly for the level function on the alphabet
    levgens := function(x)
      return levels[Position(orderofgens,Position(gens,x))];
    end;

    if u=v then
      return false;
    fi;

    if Length(u)=0 then
      return true;
    fi;
    if Length(v)=0 then
      return false;
    fi;

    l := LengthOfLongestCommonPrefixOfTwoAssocWords( u, v);
    if l<>0 then
      # if u is a proper prefix of v (ie l=|u|) then u<v
      # but if v is a proper prefix of u then u>v
      if l=Length(u) then
        return true;
      elif l=Length(v) then
        return false;
      fi;

    # at this stage none of the words is a proper prefix of the
    # other one so remove the common prefix from both words
      u := Subword( u, l+1, Length(u) );
      v := Subword( v, l+1, Length(v) );
    fi;

    # so now u and v have no common prefixes
    # (in particular they are not equal)

    m := Length( u );
      n := Length( v );
    sl_lev := 0;
    sl := 0;

    #We now start scanning u,v from right to left.
    #sl_lev denotes the level of the block of generators
    #which is currently distinguishing between u,v.
    #sl = 1 or 2 if u or v is smaller, respectively, in this block.
    #Initially sl_lev=sl=0. This can also occur later if either
    # (i) we read two equal generators in u,v at a higher level
    #     than sl_lev. Then everything to the right of these
    #     equal generators becomes irrelevant.
    #(ii) we read a generator in u or v at a higher level than
    #     sl_lev that is not matched by a generator at the same
    #     level in the other word. We keep scanning backwards
    #     along the other word until we find a generator of the
    #     corresponding level or higher, but keep sl_lev=sl=0
    #     while we are doing this.
    while m>0 or n>0 do
                        #Print(m,n,sl,sl_lev,"\n");
      if m<>0 then
          ug := Subword(u,m,m);
          ug_lev := levgens(ug);
      fi;
      if n<>0 then
          vg := Subword(v,n,n);
          vg_lev := levgens(vg);
      fi;
        if m = 0 then
          #we have reached the beginning of u, but
          #u might be ahead in shortlex at sl_lev
            if  sl <> 2 or vg_lev >= sl_lev then
        #u is certainly smaller
        return true;
          fi;
          #u is ahead in shortlex at sl_lev, so keep
          #scanning v
          n := n-1;
        elif n = 0 then
          #we have reached the beginning of v, but
          #v might be ahead in shortlex at sl_lev
            if  sl <> 1 or ug_lev >= sl_lev then
        #v is certainly smaller
        return false;
          fi;
          #v is ahead in shortlex at sl_lev, so keep
          #scanning u.
          m := m-1;
      elif vg_lev < ug_lev and sl_lev <= ug_lev then
          #u is now at a higher level than v
          n := n - 1;
          if sl_lev < ug_lev then
        #we are in situation (ii) (see above)
            sl_lev := 0;
            sl := 0;
          fi;
      elif ug_lev < vg_lev and sl_lev <= vg_lev  then
          #v is now at a higher level than u
          m := m - 1;
          if sl_lev < vg_lev then
        #we are in situation (ii) (see above)
            sl_lev := 0;
            sl := 0;
          fi;
      elif ug_lev = vg_lev and sl_lev <= vg_lev  then
          #u and v are at same level so use shortlex
          if ltgens(ug,vg) then
        sl := 1;
            sl_lev := ug_lev;
          elif ltgens(vg,ug) then
        sl := 2;
            sl_lev := ug_lev;
          elif sl_lev < ug_lev then
              #u and v are equal at this higher level.
        #everything to the right of u,v is now
        #irrelevant we are in situation (i) above.
        sl := 0;
            sl_lev := 0;
          fi;
          m := m - 1;
          n := n - 1;
      else
          #ug and vg are both at a lower level than sl_lev,
          #so can be ignored.
          m := m-1;
          n := n-1;
      fi;
    od;

    #We have reached the ends of both words, so sl tells us
    #which is the smaller.
    if sl = 1 then
      return true;
    elif sl = 2 then
      return false;
    else
      Error("There is a bug in WreathProductOrdering!");
    fi;
  end;

    ord := OrderingByLessThanFunctionNC(fam,ltfun,[IsTotalOrdering,
              IsWreathProductOrdering,
      IsOrderingOnFamilyOfAssocWords, IsReductionOrdering]);
    SetOrderingOnGenerators(ord,orderofgens);
    SetLevelsOfGenerators(ord,List([1..Length(gens)],j->
        levels[Position(orderofgens,j)]) );

    return ord;

end);

InstallOtherMethod(WreathProductOrdering,
  "for a family of associative words, a list of generators and a list with the levels of the generators", true,
  [IsAssocWordFamily,IsList and IsAssocWordCollection,IsList], 0,
  function(fam,alphabet,levels)
    local gens,gensord,n;

    # first find out if fam is a family of free semigroup or monoid
    if IsBound(fam!.freeSemigroup) then
      gens := GeneratorsOfSemigroup(fam!.freeSemigroup);
    elif IsBound(fam!.freeMonoid) then
      gens := GeneratorsOfMonoid(fam!.freeMonoid);
    else
      TryNextMethod();
    fi;

    # we have to do some checking
    # alphabet has to be a list of size Length(gens)
    # all gens have to appear in the list
    n := Length(gens);
    if Length(alphabet)<>n or Set(alphabet)<>gens then
      Error("`alphabet' is not compatible with `fam'");
    fi;

    # we have to turn the `alphabet' to a list giving the order of gens
    gensord := List([1..Length(gens)],i-> Position(gens,alphabet[i]));

    return WreathProductOrdering(fam,gensord,levels);
  end);

InstallOtherMethod(WreathProductOrdering,
  "for a free monoid and a list", true,
  [IsFreeMonoid,IsList,IsList], 0,
  function(f,gensorder,levels)
    return WreathProductOrdering(ElementsFamily(FamilyObj(f)),gensorder,levels);
  end);

InstallOtherMethod(WreathProductOrdering,
  "for a free semigroup", true,
  [IsFreeSemigroup,IsList], 0,
  function(f,levels)
        return WreathProductOrdering(ElementsFamily(FamilyObj(f)),levels);
  end);

InstallOtherMethod(WreathProductOrdering,
  "for a free monoid", true,
  [IsFreeMonoid,IsList], 0,
  function(f,levels)
        return WreathProductOrdering(ElementsFamily(FamilyObj(f)),levels);
  end);

InstallOtherMethod(WreathProductOrdering,
  "for a free semigroup and a list", true,
  [IsFreeSemigroup,IsList,IsList], 0,
  function(f,gensorder,levels)
    return WreathProductOrdering(ElementsFamily(FamilyObj(f)),gensorder,levels);
  end);

InstallOtherMethod(WreathProductOrdering,
  "for a free monoid and a list", true,
  [IsFreeMonoid,IsList,IsList], 0,
  function(f,gensorder,levels)
    return WreathProductOrdering(ElementsFamily(FamilyObj(f)),gensorder,levels);
  end);