File: pcgscomp.gi

package info (click to toggle)
gap 4.15.1-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 110,212 kB
  • sloc: ansic: 97,261; xml: 48,343; cpp: 13,946; sh: 4,900; perl: 1,650; javascript: 255; makefile: 252; ruby: 9
file content (221 lines) | stat: -rw-r--r-- 5,777 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
#############################################################################
##
##  This file is part of GAP, a system for computational discrete algebra.
##  This file's authors include Frank Celler.
##
##  Copyright of GAP belongs to its developers, whose names are too numerous
##  to list here. Please refer to the COPYRIGHT file for details.
##
##  SPDX-License-Identifier: GPL-2.0-or-later
##
##  This file  contains the methods  for polycyclic generating systems dealing
##  with or defined by a pc series.
##


#############################################################################
##
#M  PcgsByPcSequenceNC( <fam>, <pcs> )
##


#############################################################################
InstallMethod( PcgsByPcSequenceNC, "pc series", true,
    [ IsFamily, IsHomogeneousList ], 0,
function( efam, pcs )
    local   pcgs;

    # quick check
    if not IsIdenticalObj( efam, ElementsFamily(FamilyObj(pcs)) )  then
        Error( "elements family of <pcs> does not match <efam>" );
    fi;

    # construct a pcgs
    pcgs := PcgsByPcSequenceCons(
                IsPcgsDefaultRep,
                IsPcgs,
                efam,
                pcs,[] );

    # that it
    return pcgs;

end );


#############################################################################
InstallMethod( PcgsByPcSequenceNC, "pc series, empty sequence", true,
    [ IsFamily, IsList and IsEmpty ], 0,

function( efam, pcs )
    local   pcgs;

    # construct a pcgs
    pcgs := PcgsByPcSequenceCons(
                IsPcgsDefaultRep, IsPcgs, efam, pcs,[] );

    # that it
    return pcgs;

end );


#############################################################################
##
#M  PcgsByPcSequence( <fam>, <pcs> )
##


#############################################################################
InstallMethod( PcgsByPcSequence,
    true,
    [ IsFamily,
      IsHomogeneousList ],
    0,

function( efam, pcs )
    #T  96/09/26 fceller  do some checks
    return PcgsByPcSequenceNC( efam, pcs );
end );


#############################################################################
InstallMethod( PcgsByPcSequence,
    true,
    [ IsFamily,
      IsList and IsEmpty ],
    0,

function( efam, pcs )
    #T  96/09/26 fceller  do some checks
    return PcgsByPcSequenceNC( efam, pcs );
end );


#############################################################################
##
#M  Pcgs( <grp> ) . . . . . . . . . . . . . . . . . . . . . . pcgs for groups
##
InstallMethod( Pcgs,
    "generic method using CompositionSeries",
    true,
#T Why was 'IsFinite' required here? This gave this method a higher value it
#T deserved
    [ IsGroup],0,

function( grp )
    local   series,  pcgs,  orders,  i,  elm,  o;

    if HasIsFinite(grp) and not IsFinite(grp) then
      Error("requires group to be finite!");
    fi;

    series := CompositionSeries(grp);
    pcgs   := [];
    orders := [];
    for i  in [ 1 .. Length(series)-1 ]  do
        o := Index(series[i],series[i+1]);
        if not IsPrime(o)  then
            Error( "finite group <grp> is not polycyclic" );
        fi;
        Add( orders, o );
        repeat
            elm := Random(series[i]);
        until not elm in series[i+1];
        Add( pcgs, elm );
    od;
    pcgs := PcgsByPcSequenceNC( FamilyObj(One(grp)), pcgs );
    SetPcSeries(       pcgs, series   );
    SetOneOfPcgs(      pcgs, One(grp) );
    SetRelativeOrders( pcgs, orders   );
    SetGroupOfPcgs (pcgs, grp);
    return pcgs;
end );


#############################################################################
##
#M  ExponentsOfPcElement( <pcgs>, <elm> )
##
InstallMethod( ExponentsOfPcElement, "pc series", IsCollsElms,
    [ IsPcgs, IsObject ], 0,

function( pcgs, elm )
local   series,  exps,  id,  depth,  exp,ml;

    series := PcSeries(pcgs);
    exps   := ListWithIdenticalEntries(Length(pcgs),0);
    id     := OneOfPcgs(pcgs);
    depth  := 1;
    ml:=Length(pcgs)+1;

    while elm <> id  do
        while elm in series[depth]  do
          depth := depth + 1;
        od;
        exp := 0;
        repeat
            exp := exp+1;
            if depth<2 or depth>ml then
              return fail;
            fi;
            elm := LeftQuotient( pcgs[depth-1], elm );
        until elm in series[depth];
        exps[depth-1] := exp;
    od;

    return exps;

end );


#############################################################################
##
#M  RelativeOrders( <pcgs> )
##
InstallMethod( RelativeOrders, "pc series", true, [ IsPcgs ], 0,
function( pcgs )
    local   ord,  pcs,  i;

    ord := [];
    pcs := PcSeries(pcgs);
    for i  in [ 1 .. Length(pcs)-1 ]  do
        Add( ord, Size(pcs[i]) / Size(pcs[i+1]) );
    od;
    return ord;
end );


#############################################################################
##
#M  PcSeries( <pcgs> )
##
InstallMethod( PcSeries,"construct subgroups", true, [ IsPcgs ], 0,
function( pcgs )
local   grp,  series,  i,hasro;

    # construct the group generated by <pcgs>
    #T  1996/10/01 fceller something seems to break for Difference or Set
    #T  grp := GroupByGenerators( pcgs, One(pcgs) );
#T seems to work now, 1998/12/09 sam

    grp := GroupOfPcgs(pcgs);
    hasro:=HasRelativeOrders(pcgs);

    # construct the series
    series := [ grp ];
    for i  in [ 2 .. Length(pcgs)+1 ]  do
      if hasro then
        # pcgs is all in place -- use induced pcgs for generators to build
        # series after pcgs is at work
        Add( series, SubgroupByPcgs( grp,
          InducedPcgsByPcSequenceNC(pcgs,pcgs{[ i .. Length(pcgs) ]} ) ));
      else
        # pcgs is being built. Don't induce, but just use subgroup.
        Add( series, SubgroupNC( grp, pcgs{[ i .. Length(pcgs) ]} ) );
      fi;
    od;

    return series;

end );