File: pcgsind.gi

package info (click to toggle)
gap 4.15.1-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 110,212 kB
  • sloc: ansic: 97,261; xml: 48,343; cpp: 13,946; sh: 4,900; perl: 1,650; javascript: 255; makefile: 252; ruby: 9
file content (1721 lines) | stat: -rw-r--r-- 48,871 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
#############################################################################
##
##  This file is part of GAP, a system for computational discrete algebra.
##  This file's authors include Frank Celler.
##
##  Copyright of GAP belongs to its developers, whose names are too numerous
##  to list here. Please refer to the COPYRIGHT file for details.
##
##  SPDX-License-Identifier: GPL-2.0-or-later
##
##  This  file  contains  the operations   for  induced polycyclic  generating
##  systems.
##


#############################################################################
##
#R  IsInducedPcgsRep
##
DeclareRepresentation(
    "IsInducedPcgsRep",
    IsPcgsDefaultRep, [ "depthsInParent", "depthMapFromParent" ] );


#############################################################################
##
#R  IsSubsetInducedPcgsRep
##
DeclareRepresentation(
    "IsSubsetInducedPcgsRep",
    IsInducedPcgsRep, ["parentZeroVector"] );


#############################################################################
##
#R  IsTailInducedPcgsRep
##
DeclareRepresentation(
    "IsTailInducedPcgsRep",
    IsSubsetInducedPcgsRep, [] );


#############################################################################
##
#M  InducedPcgsByPcSequenceNC( <pcgs>, <empty-list> )
##
InstallMethod( InducedPcgsByPcSequenceNC, "pcgs, empty list",
    true, [ IsPcgs, IsList and IsEmpty ], 0,
function( pcgs, pcs )
    local  efam,  igs;

    # get family
    efam := FamilyObj( OneOfPcgs( pcgs ) );

    # construct a pcgs from <pcs>
    igs := PcgsByPcSequenceCons(
               IsPcgsDefaultRep,
               IsPcgs and IsInducedPcgs and IsInducedPcgsRep,
               efam,
               pcs,[] );

    # we know the relative orders
    SetIsPrimeOrdersPcgs( igs, true );
    #AH implied by true method: SetIsFiniteOrdersPcgs( igs, true );
    SetRelativeOrders( igs, [] );

    # store the parent
    SetParentPcgs( igs, pcgs );

    # check for special pcgs
    if HasIsSpecialPcgs( pcgs ) and IsSpecialPcgs( pcgs ) then
        SetIsInducedPcgsWrtSpecialPcgs( igs, true );
    fi;

    # store depthMap
    igs!.depthMapFromParent := [];
    igs!.depthMapFromParent[Length(pcgs)+1] := 1;
    igs!.depthsInParent := [];
    igs!.tailStart := Length(pcgs)+1;
    SetLeadCoeffsIGS(igs,[]);

    # and return
    return igs;

end );

InstallOtherMethod( InducedPcgsByPcSequenceNC, "pcgs, empty list,depths",
    true, [ IsPcgs, IsList and IsEmpty,IsList ], 0,
function( pcgs, pcs,dep )
  return InducedPcgsByPcSequenceNC(pcgs,pcs);
end);


#############################################################################
##
#M  InducedPcgsByPcSequenceNC( <pcgs>, <pcs> )
##
BindGlobal("DoInducedPcgsByPcSequenceNC",
function(arg)
local   pcgs,pcs,depths,efam,  filter,  j,  l,  i,  m,  d,  igs,  tmp,
        susef,attl, igsdepthMapFromParent,igsdepthsInParent;

    pcgs:=arg[1];
    pcs:=arg[2];
    if Length(arg)>2 then
      depths:=arg[3];
    else
      depths:=fail;
    fi;
    # get the elements family
    efam := FamilyObj( OneOfPcgs( pcgs ) );

    # check which filter to use
    filter := IsPcgs and IsInducedPcgsRep and IsInducedPcgs;
    j := 1;
    l := Length(pcgs);
    i := 1;
    m := Length(pcs);
    d := [];
    while i <= m and j <= l  do
        if pcgs[j] = pcs[i]  then
            d[i] := j;
            j := j + 1;
            i := i + 1;
        else
            j := j + 1;
        fi;
    od;
    if m < i  then
        susef:=true;
        filter := filter and IsCanonicalPcgs and IsSubsetInducedPcgsRep;
        if 0 < Length(pcgs) and pcgs[Length(pcgs)-Length(pcs)+1]=pcs[1]  then
            filter := filter and IsTailInducedPcgsRep;
        fi;
    else
      susef:=false;
    fi;
    if HasIsFamilyPcgs(pcgs) and IsFamilyPcgs(pcgs)  then
        filter := filter and IsParentPcgsFamilyPcgs;
    fi;

    if HasIsPrimeOrdersPcgs(pcgs) and IsPrimeOrdersPcgs(pcgs)  then
        filter := filter and HasIsPrimeOrdersPcgs and IsPrimeOrdersPcgs
                         and HasIsFiniteOrdersPcgs and IsFiniteOrdersPcgs;
    elif HasIsFiniteOrdersPcgs(pcgs) and IsFiniteOrdersPcgs(pcgs)  then
        filter := filter and HasIsFiniteOrdersPcgs and IsFiniteOrdersPcgs;
    fi;

    # store the parent
    attl:=[ParentPcgs,pcgs];
    filter:=filter and HasParentPcgs;

    # check for special pcgs
    if HasIsSpecialPcgs( pcgs ) and IsSpecialPcgs( pcgs ) then
      filter:=filter and IsInducedPcgsWrtSpecialPcgs;
    fi;

    # construct a pcgs from <pcs>
    igs := PcgsByPcSequenceCons(
               IsPcgsDefaultRep,
               filter,
               efam,
               pcs,attl );

    # store other useful information
    igsdepthMapFromParent := [];
    igsdepthsInParent := [];
    if susef then
        igsdepthsInParent := d;
        for i  in [ 1 .. Length(pcs) ]  do
            igsdepthMapFromParent[d[i]] := i;
        od;
    else
      for i  in [ 1 .. Length(pcs) ]  do
        if depths=fail then
          tmp := DepthOfPcElement( pcgs, pcs[i] );
        else
          tmp:=depths[i];
        fi;
        igsdepthsInParent[i] := tmp;
        igsdepthMapFromParent[tmp] := i;
      od;
    fi;
    igsdepthMapFromParent[Length(pcgs)+1] := Length(pcs)+1;

    # the depth must be compatible with the parent
    tmp := 0;
    for i  in [ 1 .. Length(igsdepthsInParent) ]  do
        if tmp >= igsdepthsInParent[i]  then
            Error( "depths are not compatible with parent pcgs" );
        fi;
        tmp := igsdepthsInParent[i];
    od;

    # if we know the relative orders use them
    if HasRelativeOrders(pcgs)  then
      tmp := RelativeOrders(pcgs);
      tmp := tmp{igsdepthsInParent};
      SetRelativeOrders(igs,tmp);
      #Add(attl,RelativeOrders);
      #Add(attl,tmp);
      #filter:=filter and HasRelativeOrders;
    fi;

    igs!.depthMapFromParent := igsdepthMapFromParent;
    igs!.depthsInParent := igsdepthsInParent;
    if susef then
      igs!.parentZeroVector:= pcgs!.zeroVector;
    fi;

    # store tail start
    if IsTailInducedPcgsRep(igs)  then
        igs!.tailStart := d[1];
    else
        i := Length(igs!.depthMapFromParent);
        while 2 <= i and IsBound(igs!.depthMapFromParent[i-1])  do
            i := i-1;
        od;
        igs!.tailStart := i;
    fi;

    # and return
    return igs;

end );

InstallMethod( InducedPcgsByPcSequenceNC, "pcgs, homogeneous list",
    IsIdenticalObj, [ IsPcgs, IsCollection and IsHomogeneousList ], 0,
    DoInducedPcgsByPcSequenceNC);

InstallOtherMethod(InducedPcgsByPcSequenceNC,"pcgs, homogeneous list, depths",
    IsFamFamX, [ IsPcgs, IsCollection and IsHomogeneousList,
      IsList ], 0,
    DoInducedPcgsByPcSequenceNC);

#############################################################################
##
#M  LeadCoeffsIGS( <igs> )
##
InstallMethod(LeadCoeffsIGS,"generic",true,
  [IsInducedPcgs and IsInducedPcgsRep and IsPrimeOrdersPcgs],0,
function(igs)
local i,lc;
  lc := [];
  for i in [1..Length(ParentPcgs(igs))] do
    if IsBound(igs!.depthMapFromParent[i]) then
      lc[i] := LeadingExponentOfPcElement(ParentPcgs(igs),
                                      igs[igs!.depthMapFromParent[i]]);
    fi;
  od;
  return lc;
end);

#############################################################################
##
#M  InducedPcgsByPcSequence( <pcgs>, <empty-list> )
##
InstallMethod( InducedPcgsByPcSequence,
    true,
    [ IsPcgs,
      IsList and IsEmpty ],
    0,

function( pcgs, pcs )
    #T 1996/09/26 fceller do some checks
    return InducedPcgsByPcSequenceNC( pcgs, pcs );
end );


#############################################################################
##
#M  InducedPcgsByPcSequence( <pcgs>, <pcs> )
##
InstallMethod( InducedPcgsByPcSequence,
    true,
    [ IsPcgs,
      IsCollection and IsHomogeneousList ],
    0,

function( pcgs, pcs )
    #T 1996/09/26 fceller do some checks
    return InducedPcgsByPcSequenceNC( pcgs, pcs );
end );


#############################################################################
##
#M  InducedPcgsByPcSequenceAndGenerators( <pcgs>, <ind>, <gens> )
##
InstallMethod( InducedPcgsByPcSequenceAndGenerators,
    true,
    [ IsPcgs and IsPrimeOrdersPcgs,
      IsList,
      IsList ],
    0,

function( pcgs, sub, gens )
    local   max,  id,  wseen,  igs,  chain,  new,  seen,  old,
            u,  uw,  up,  x,  c,  cw,  i,  j,  ro;

    # do family checks here to avoid problems with the empty list
    if not IsEmpty(sub)  then
        if not IsIdenticalObj( FamilyObj(pcgs), FamilyObj(sub) )  then
            Error( "<pcgs> and <gens> have different families" );
        fi;
    fi;
    if not IsEmpty(gens)  then
        if not IsIdenticalObj( FamilyObj(pcgs), FamilyObj(gens) )  then
            Error( "<pcgs> and <gens> have different families" );
        fi;
    fi;

    # get relative orders and composition length
    ro  := RelativeOrders(pcgs);
    max := Length(pcgs);

    # get the identity
    id := OneOfPcgs(pcgs);

    # and keep a list of seen weights
    wseen := BlistList( [ 1 .. max ], [] );

    # the induced generating sequence will be collected into <igs>
    igs := List( [ 1 .. max ], x -> id );
    for i  in sub  do
        igs[DepthOfPcElement(pcgs,i)] := i;
    od;

    # <chain> gives a chain of trailing weights
    chain := max+1;
    while 1 < chain and igs[chain-1] <> id  do
        chain := chain-1;
    od;

    # <new> contains a list of generators
    new := Reversed( Difference( Set(gens), [id] ) );
    # <seen> holds a list of words already seen
    seen := Union( new, [id] );

    # start putting <new> into <igs>
    while 0 < Length(new)  do
        old := Reversed(new);
        new := [];
        for u  in old  do
            uw := DepthOfPcElement( pcgs, u );

            # if <uw> has reached <chain>, we can ignore <u>
            if uw < chain  then
                up := [];
                repeat
                    if igs[uw] <> id  then
                        if chain <= uw+1  then
                            u := id;
                        else
                            u := u / igs[uw] ^ ( (
                                 LeadingExponentOfPcElement(pcgs,u)
                                 / LeadingExponentOfPcElement(pcgs,igs[uw]) )
                                 mod ro[uw] );
                        fi;
                    else
                        AddSet( seen, u );
                        wseen[uw] := true;
                        Add( up, u );
                        if chain <= uw+1  then
                            u := id;
                        else
                            u := u ^ ro[uw];
                        fi;
                    fi;
                    if u <> id  then
                        uw := DepthOfPcElement( pcgs, u );
                    fi;
                until u = id or chain <= uw;

                # add the commutators with the powers of <u>
                for u  in up  do
                    for x  in igs  do
                        if     x <> id
                           and ( DepthOfPcElement(pcgs,x) + 1 < chain
                              or DepthOfPcElement(pcgs,u) + 1 < chain )
                        then
                            c := Comm( u, x );
                            if not c in seen  then
                                cw := DepthOfPcElement( pcgs, c );
                                wseen[cw] := true;
                                AddSet( new, c );
                                AddSet( seen, c );
                            fi;
                        fi;
                    od;
                od;

                # enter the generators <up> into <igs>
                for x  in up  do
                    igs[DepthOfPcElement(pcgs,x)] := x;
                od;

                # update the chain
                while 1 < chain and wseen[chain-1]  do
                    chain := chain-1;
                od;

                for i  in [ chain .. max ]  do
                    if igs[i] = id  then
                        igs[i] := pcgs[i];
                        for j  in [ 1 .. chain-1 ]  do
                            c := Comm( igs[i], igs[j] );
                            if not c in seen  then
                                AddSet( seen, c );
                                AddSet( new, c );
                                wseen[DepthOfPcElement(pcgs,c)] := true;
                            fi;
                        od;
                    fi;
                od;
            fi;
        od;
    od;

    # if <chain> has reached one, we have the whole group
    for i  in [ chain .. max ]  do
        igs[i] := pcgs[i];
    od;
    if chain = 1  then
        igs := List( [ 1 .. max ], x -> pcgs[x] );
    else
        igs := Filtered( igs, x -> x <> id );
    fi;
    pcgs:=InducedPcgsByPcSequenceNC( pcgs, igs );
    return pcgs;

end );

#############################################################################
##
#M  InducedPcgsByGeneratorsWithImages( <pcgs>, <gens>, <imgs> )
##
InstallMethod( InducedPcgsByGeneratorsWithImages,
    true,
    [ IsPcgs and IsPrimeOrdersPcgs,
      IsCollection,
      IsCollection ],
    0,

function( pcgs, gens, imgs )
    local  ro, max, id, igs, chain, new, seen, old, u, uw, up, e, x, c,
           d, i, j, f,nonab;

    # do family check here to avoid problems with the empty list
    if not IsIdenticalObj( FamilyObj(pcgs), FamilyObj(gens) )  then
        Error( "<pcgs> and <gens> have different families" );
    fi;
    if Length( gens ) <> Length( imgs ) then
        Error( "<gens> and <imgs> must have equal length");
    fi;

    # get the trivial case first
    if gens = AsList( pcgs ) then return [pcgs, imgs]; fi;

    #catch special case: abelian
    f:=ValueOption("abeliandomain");
    if not (f in [true,false]) then
      f:=IsAbelian(Group(pcgs,OneOfPcgs(pcgs)));
    fi;
    nonab:=not f;

    # get relative orders and composition length
    ro  := RelativeOrders(pcgs);
    max := Length(pcgs);

    # get the identity
    id := [gens[1]^0, imgs[1]^0];

    # the induced generating sequence will be collected into <igs>
    igs := List( [ 1 .. max ], x -> id );

    # <chain> gives a chain of trailing weights
    chain := max+1;

    # <new> contains a list of generators and images
    new := List( [1..Length(gens)], i -> [gens[i], imgs[i]]);
    f   := function( x, y ) return DepthOfPcElement( pcgs, x[1] )
                                   < DepthOfPcElement( pcgs, y[1] ); end;
    Sort( new, f );

    # <seen> holds a list of words already seen
    seen := Union( Set( gens ), [id[1]] );

    # start putting <new> into <igs>
    while 0 < Length(new)  do
        old := Reversed( new );
        new := [];
        for u in old do
            uw := DepthOfPcElement( pcgs, u[1] );

            # if <uw> has reached <chain>, we can ignore <u>
            if uw < chain  then
                up := [];
                repeat
                    if igs[uw][1] <> id[1]  then
                        if chain <= uw+1  then
                            u := id;
                        else
                            e := LeadingExponentOfPcElement(pcgs,u[1])
                                / LeadingExponentOfPcElement(pcgs,igs[uw][1])
                                mod ro[uw];
                            u[1] := u[1] / igs[uw][1] ^ e;
                            u[2] := u[2] / igs[uw][2] ^ e;
                        fi;
                    else
                        AddSet( seen, u[1] );
                        Add( up, ShallowCopy( u ) );
                        if chain <= uw+1  then
                            u := id;
                        else
                            u[1] := u[1] ^ ro[uw];
                            u[2] := u[2] ^ ro[uw];
                        fi;
                    fi;
                    if u[1] <> id[1]  then
                        uw := DepthOfPcElement( pcgs, u[1] );
                    fi;
                until u[1] = id[1] or chain <= uw;

                # add the commutators with the powers of <u>
                for u in up do
                    for x in igs do
                        if nonab and x[1] <> id[1]
                           and ( DepthOfPcElement(pcgs,x[1]) + 1 < chain
                              or DepthOfPcElement(pcgs,u[1]) + 1 < chain )
                        then
                            c := Comm( u[1], x[1] );
                            if not c in seen  then
                                AddSet( new, [c, Comm( u[2], x[2] )] );
                                AddSet( seen, c );
                            fi;
                        fi;
                    od;
                od;

                # enter the generators <up> into <igs>
                for u in up do
                    d := DepthOfPcElement( pcgs, u[1] );
                    igs[d] := u;
                od;

                # update the chain
                while 1 < chain and igs[chain-1][1] <> id[1] do
                    chain := chain-1;
                od;

                if nonab then
                  for i  in [ chain .. max ]  do
                    for j  in [ 1 .. chain-1 ]  do
                        c := Comm( igs[i][1], igs[j][1] );
                        if not c in seen  then
                            AddSet( seen, c );
                            AddSet( new, [c, Comm( igs[i][2], igs[j][2] )] );
                        fi;
                    od;
                  od;
                fi;
            fi;
        od;
    od;

    # now return
    igs := Filtered( igs, x -> x <> id );
    igs := [List( igs, x -> x[1] ), List( igs, x -> x[2] )];
    igs[1] := InducedPcgsByPcSequenceNC( pcgs, igs[1] );
    return igs;
end );

InstallOtherMethod( InducedPcgsByGeneratorsWithImages,
    true,
    [ IsPcgs and IsPrimeOrdersPcgs,
      IsList and IsEmpty,
      IsList and IsEmpty ],
    0,

function( pcgs, gens, imgs )
    local igs;
    igs := InducedPcgsByPcSequenceNC( pcgs, gens );
    return [igs, imgs];
end );

#############################################################################
##
#M  CanonicalPcgsByGeneratorsWithImages( <pcgs>, <gens>, <imgs> )
##
InstallMethod( CanonicalPcgsByGeneratorsWithImages,
    true,
    [ IsPcgs and IsPrimeOrdersPcgs,
      IsCollection,
      IsCollection ],
    0,

function( pcgs, gens, imgs )
    local new, ros, cgs, img, i, exp, j;

    # in most cases we are mapping the pcgs itself
    if gens=pcgs then
      # nothing needs to be done
      return [pcgs,imgs];
    fi;

    # get the induced one first
    new := InducedPcgsByGeneratorsWithImages( pcgs, gens, imgs );

    # normalize leading exponents
    ros := RelativeOrders(new[1]);
    cgs := [];
    img := [];
    for i  in [ 1 .. Length(new[1]) ]  do
        exp := LeadingExponentOfPcElement( pcgs, new[1][i] );
        cgs[i] := new[1][i] ^ (1/exp mod ros[i]);
        img[i] := new[2][i] ^ (1/exp mod ros[i]);
    od;

    # make zeros above the diagonal
    for i  in [ 1 .. Length(cgs)-1 ]  do
        for j  in [ i+1 .. Length(cgs) ]  do
            exp := ExponentOfPcElement( pcgs, cgs[i], DepthOfPcElement(
                pcgs, cgs[j] ) );
            if exp <> 0  then
                cgs[i] := cgs[i] * cgs[j] ^ ( ros[j] - exp );
                img[i] := img[i] * img[j] ^ ( ros[j] - exp );
            fi;
        od;
    od;

    # construct the cgs
    cgs := InducedPcgsByPcSequenceNC( pcgs, cgs );
    SetIsCanonicalPcgs( cgs, true );

    # and return
    return [cgs, img];
end );

InstallOtherMethod( CanonicalPcgsByGeneratorsWithImages,
    true,
#   [ IsPcgs and IsPrimeOrdersPcgs,
#     IsList and IsEmpty,
#     IsList and IsEmpty ],
#   0,
#T this caused problems when one of the lists did not know that it is empty
#T (this happened for example if the list `gens' is a pcgs)
    [ IsPcgs, IsList, IsList ], 0,
function( pcgs, gens, imgs )
    local igs;

    if IsPrimeOrdersPcgs( pcgs ) and IsEmpty( gens ) and IsEmpty( imgs ) then
      igs := InducedPcgsByPcSequenceNC( pcgs, gens );
      return [igs, imgs];
    else
      TryNextMethod();
    fi;
end );


#############################################################################
##
#M  InducedPcgsByGeneratorsNC( <pcgs>, <gen> )
##


#############################################################################
InstallOtherMethod( InducedPcgsByGeneratorsNC,"pcgs, empty list",
    true, [ IsPcgs, IsList and IsEmpty ], 0,
function( pcgs, gens )
    return InducedPcgsByPcSequenceNC( pcgs, [] );
end );


#############################################################################
InstallMethod( InducedPcgsByGeneratorsNC,"prime order pcgs, collection",
    function( p, l )
        return IsIdenticalObj( ElementsFamily(p), ElementsFamily(l) );
    end,
    [ IsPcgs and IsPrimeOrdersPcgs, IsCollection ], 0,
function( pcgs, gens )
local l;
  # test the (apparently frequent) case of generators that are a subset of
  # the pcgs. This test requires only to compare elements, so it should be
  # comparatively cheap. AH
  if IsSubset(pcgs!.pcSequence,gens) then
    l:=List(gens,i->Position(pcgs!.pcSequence,i));
    # ordered, duplicate-free?
    if l=Set(l) and IsSubset(l,[l[1]..Length(pcgs!.pcSequence)]) then
      return InducedPcgsByPcSequenceNC( pcgs, gens );
    fi;
  fi;
  return InducedPcgsByPcSequenceAndGenerators( pcgs, [], gens );
end );

RedispatchOnCondition( InducedPcgsByGeneratorsNC, true,
    [ IsPcgs,IsCollection ], [ IsPrimeOrdersPcgs ], 0 );



#############################################################################
##
#M  InducedPcgsByGenerators( <pcgs>, <gen> )
##


#############################################################################
InstallOtherMethod( InducedPcgsByGenerators, true,
    [ IsPcgs, IsList and IsEmpty ], 0,

function( pcgs, gens )
    return InducedPcgsByPcSequenceNC( pcgs, [] );
end );


#############################################################################
InstallMethod( InducedPcgsByGenerators,"pcgs, collection",
    function( p, l )
        return IsIdenticalObj( ElementsFamily(p), ElementsFamily(l) );
    end,
    [ IsPcgs,
      IsCollection ],
    0,

function( pcgs, gens )
    #T 1996/09/26 fceller do some checks
    return InducedPcgsByGeneratorsNC( pcgs, gens );
end );


#############################################################################
##
#M  AsInducedPcgs( <parent>, <pcgs> )
##
InstallMethod( AsInducedPcgs,
    true,
    [ IsPcgs,
      IsEmpty and IsList ],
    0,

function( parent, pcgs )
    return InducedPcgsByGeneratorsNC( parent, [] );
end );


InstallMethod( AsInducedPcgs,
    IsIdenticalObj,
    [ IsPcgs,
      IsHomogeneousList ],
    0,

function( parent, pcgs )
    return HomomorphicInducedPcgs( parent, pcgs );
end );


#############################################################################
##
#F  HOMOMORPHIC_IGS( <pcgs>, <list> )
##
BindGlobal( "HOMOMORPHIC_IGS", function( arg )
    local   pcgs,  list,  id,  pag,  g,  dg,  obj;

    Info(InfoWarning,1,"HOMOMORPHIC_IGS is potentially wrong! Do not use!");

    pcgs := arg[1];
    list := arg[2];
    id   := OneOfPcgs(pcgs);
    pag  := [];
    if Length(arg) = 2  then
        for g  in Reversed(list)  do
            dg := DepthOfPcElement( pcgs, g );
            while g <> id  and IsBound(pag[dg])  do
                g  := ReducedPcElement( pcgs, g, pag[dg] );
                dg := DepthOfPcElement( pcgs, g );
            od;
            if g <> id  then
                pag[dg] := g;
            fi;
        od;
    elif IsFunction(arg[3])  then
        obj := arg[3];
        for g  in Reversed(list)  do
            g  := obj(g);
            dg := DepthOfPcElement( pcgs, g );
            while g <> id  and IsBound(pag[dg])  do
                g  := ReducedPcElement( pcgs, g, pag[dg] );
                dg := DepthOfPcElement( pcgs, g );
            od;
            if g <> id  then
                pag[dg] := g;
            fi;
        od;
    else
        obj := arg[3];
        for g  in Reversed(list)  do
            g  := g^obj;
            dg := DepthOfPcElement( pcgs, g );
            while g <> id  and IsBound(pag[dg])  do
                g  := ReducedPcElement( pcgs, g, pag[dg] );
                dg := DepthOfPcElement( pcgs, g );
            od;
            if g <> id  then
                pag[dg] := g;
            fi;
        od;
    fi;
    return Compacted(pag);

end );


#############################################################################
##
#F  NORMALIZE_IGS( <pcgs>, <list> )
##
InstallGlobalFunction(NORMALIZE_IGS,function( pcgs, list )
    local   ros,  dep,  i,  j,  exp;

    Info(InfoWarning,1,"NORMALIZE_IGS is potentially wrong! Do not use!");

    # normalize the leading exponents to one
    ros := RelativeOrders(pcgs);
    dep := List( list, x -> DepthOfPcElement( pcgs, x ) );
    for i  in [ 1 .. Length(list) ]  do
        list[i] := list[i] ^ ( 1 / LeadingExponentOfPcElement(pcgs,list[i])
                   mod ros[dep[i]] );
    od;

    # make zeros above the diagonal
    for i  in [ 1 .. Length(list) - 1 ]  do
        for j  in [ i+1 .. Length(list) ]  do
            exp := ExponentOfPcElement( pcgs, list[i], dep[j] );
            if exp <> 0  then
                list[i] := list[i] * list[j] ^ ( ros[j] - exp );
            fi;
        od;
    od;

end);


#############################################################################
##
#M  CanonicalPcgs( <igs> )
##
InstallMethod( CanonicalPcgs,
    "induced prime orders pcgs",
    true,
    [ IsInducedPcgs and IsPrimeOrdersPcgs ],
    0,

function( pcgs )
    local   pa,  ros,  cgs,  i,  exp,  j;

    # normalize leading exponent to one
    pa  := ParentPcgs(pcgs);
    ros := RelativeOrders(pcgs);
    cgs := [];
    for i  in [ 1 .. Length(pcgs) ]  do
        exp := LeadingExponentOfPcElement( pa, pcgs[i] );
        cgs[i] := pcgs[i] ^ (1/exp mod ros[i]);
    od;

    # make zeros above the diagonal
    for i  in [ 1 .. Length(cgs)-1 ]  do
        for j  in [ i+1 .. Length(cgs) ]  do
            exp := ExponentOfPcElement( pa, cgs[i], DepthOfPcElement(
                pa, cgs[j] ) );
            if exp <> 0  then
                cgs[i] := cgs[i] * cgs[j] ^ ( ros[j] - exp );
            fi;
        od;
    od;

    # construct the cgs
    cgs := InducedPcgsByPcSequenceNC( pa, cgs );
    SetIsCanonicalPcgs( cgs, true );

    # and return
    return cgs;

end );

RedispatchOnCondition( CanonicalPcgs, true,
    [ IsInducedPcgs],[IsPrimeOrdersPcgs ], 0 );


#############################################################################
##
#M  CanonicalPcgs( <cgs> )
##
InstallOtherMethod( CanonicalPcgs,"of a canonical pcgs",
    true, [ IsCanonicalPcgs ],
    SUM_FLAGS, # the best we can do
    x -> x );


#############################################################################
##
#M  HomomorphicCanonicalPcgs( <pcgs>, <imgs> )
##
InstallMethod( HomomorphicCanonicalPcgs,
    "pcgs, list",
    true,
    [ IsPcgs,
      IsList ],
    0,

function( pcgs, imgs )
    return CanonicalPcgs( HomomorphicInducedPcgs( pcgs, imgs ) );
end );


#############################################################################
##
#M  HomomorphicCanonicalPcgs( <pcgs>, <imgs>, <obj> )
##
InstallOtherMethod( HomomorphicCanonicalPcgs,
    "pcgs, list, object",
    true,
    [ IsPcgs,
      IsList,
      IsObject ],
    0,

function( pcgs, imgs, obj )
    return CanonicalPcgs( HomomorphicInducedPcgs( pcgs, imgs, obj ) );
end );


#############################################################################
##
#M  HomomorphicInducedPcgs( <pcgs>, <imgs> )
##
##  It  is important that  <imgs>  are the images of  in  induced  generating
##  system  in their natural order, ie.  they must not be sorted according to
##  their  depths in the new group,  they must be  sorted according to  their
##  depths in the old group.
##
InstallMethod( HomomorphicInducedPcgs,
    true,
    [ IsPcgs,
      IsEmpty and IsList ],
    0,

function( pcgs, imgs )
    return InducedPcgsByPcSequenceNC( pcgs, [] );
end );


InstallMethod( HomomorphicInducedPcgs,
    IsIdenticalObj,
    [ IsPcgs and IsPrimeOrdersPcgs,
      IsHomogeneousList ],
    0,

function( pcgs, imgs )
    return InducedPcgsByPcSequenceNC(
        pcgs,
        HOMOMORPHIC_IGS( pcgs, imgs ) );
end );


#############################################################################
##
#M  HomomorphicInducedPcgs( <pcgs>, <imgs>, <func> )
##
InstallOtherMethod( HomomorphicInducedPcgs,
    true,
    [ IsPcgs,
      IsEmpty and IsList,
      IsFunction ],
    0,

function( pcgs, imgs, func )
    return InducedPcgsByPcSequenceNC( pcgs, [] );
end );


InstallOtherMethod( HomomorphicInducedPcgs,
    function(a,b,c) return IsIdenticalObj(a,b); end,
    [ IsPcgs and IsPrimeOrdersPcgs,
      IsHomogeneousList,
      IsFunction ],
    0,

function( pcgs, imgs, func )
    return InducedPcgsByPcSequenceNC(
        pcgs,
        HOMOMORPHIC_IGS( pcgs, imgs, func ) );
end );


#############################################################################
##
#M  HomomorphicInducedPcgs( <pcgs>, <imgs>, <obj> )
##
InstallOtherMethod( HomomorphicInducedPcgs,
    true,
    [ IsPcgs,
      IsEmpty and IsList,
      IsObject ],
    0,

function( pcgs, imgs, obj )
    return InducedPcgsByPcSequenceNC( pcgs, [] );
end );


InstallOtherMethod( HomomorphicInducedPcgs,
    function(a,b,c) return IsIdenticalObj(a,b); end,
    [ IsPcgs and IsPrimeOrdersPcgs,
      IsHomogeneousList,
      IsObject ],
    0,

function( pcgs, imgs, obj )
    return InducedPcgsByPcSequenceNC(
        pcgs,
        HOMOMORPHIC_IGS( pcgs, imgs, obj ) );
end );


#############################################################################
##
#M  ElementaryAbelianSubseries( <pcgs> )
##
InstallMethod( ElementaryAbelianSubseries,
    "generic method",
    true,
    [ IsPcgs ],
    0,

function( pcgs )
    local   id,  coms,  lStp,  eStp,  minSublist,  ros,  k,  l,  i,
            z,  j;

    # try to construct an elementary abelian series through the agseries
    id := OneOfPcgs(pcgs);
    coms := List( [ 1 .. Length(pcgs) ],
              x -> List( [ 1 .. x-1 ],
                y -> DepthOfPcElement( pcgs, Comm(pcgs[x],pcgs[y])) ) );

    # make a list with step of the composition we can take
    lStp := Length(pcgs) + 1;
    eStp := [ lStp ];

    # as we do not want to generate a mess of sublist:
    minSublist := function( list, upto )
        local min, i;
        if upto = 0  then return 1;  fi;
        min := list[ 1 ];
        for i  in [ 2 .. upto ]  do
            if min > list[ i ]  then min := list[ i ];  fi;
        od;
        return min;
    end;

    # if <lStp> reaches 1, we are can stop
    ros := RelativeOrders(pcgs);
    repeat

        # look for a normal composition subgroup
        k := lStp;
        l := k - 1;
        repeat
            k := k - 1;
            l := Minimum( l, minSublist( coms[k], k-1 ) );
        until l = k;

        # we have found a normal composition subgroup
        for i  in [ k .. lStp-1 ]  do
            z := pcgs[i] ^ ros[i];
            if z <> id and DepthOfPcElement(pcgs,z) < lStp  then
                return fail;
            fi;
        od;
        for i  in [ k .. lStp-2 ]  do
            for j  in [ i+1 .. lStp-1 ]  do
                if coms[j][i] < lStp  then
                    return fail;
                fi;
            od;
        od;

        # ok, we have an elementary normal step
        Add( eStp, k );
        lStp := k;
    until k = 1;

    # return the list found
    eStp := List( Reversed(eStp), x -> pcgs{[x..Length(pcgs)]} );
    l := [];
    for i  in eStp  do
        k := InducedPcgsByPcSequenceNC( pcgs, i );
        SetIsCanonicalPcgs( k, true );
        Add( l, k );
    od;
    return l;

end );


#############################################################################
##
#M  IntersectionSumPcgs( <parent-pcgs>, <tail-pcgs>, <u> )
##
InstallMethod( IntersectionSumPcgs,
    "prime orders pcgs, tail-pcgs, list",IsFamFamFam,
    [ IsPcgs and IsPrimeOrdersPcgs,
      IsInducedPcgs and IsTailInducedPcgsRep,
      IsList ],
    0,

function( pcgs, n, u )
    local   first,  sum,  int,  pos,  len;

    # the parent must match
    if pcgs <> ParentPcgs(n)  then
        TryNextMethod();
    fi;

    # get first depth of <n>
    first := n!.tailStart;

    # smaller depth elems of <u> yield the sum, the other the intersection
    sum := [];
    int := [];
    pos := 1;
    len := Length(u);
    while pos <= len and DepthOfPcElement(pcgs,u[pos]) < first  do
        Add( sum, u[pos] );
        pos := pos+1;
    od;
    while pos <= len  do
        Add( int, u[pos] );
        pos := pos+1;
    od;
    Append( sum, n );

    sum := InducedPcgsByPcSequenceNC( pcgs, sum );
    int := InducedPcgsByPcSequenceNC( pcgs, int );
    return rec( sum := sum, intersection := int );

end );


#############################################################################
##
#M  NormalIntersectionPcgs( <parent-pcgs>, <tail-pcgs>, <u> )
##
InstallMethod( NormalIntersectionPcgs,
    "prime orders pcgs, tail-pcgs, list",IsFamFamFam,
    [ IsPcgs and IsPrimeOrdersPcgs,
      IsInducedPcgs and IsTailInducedPcgsRep,
      IsList ],
    0,

function( pcgs, n, u )
    local   first,  len,  pos;

    # the parent must match
    if pcgs <> ParentPcgs(n)  then
        TryNextMethod();
    fi;

    # if <u> is empty return it
    len := Length(u);
    if 0 = len  then
        if IsInducedPcgs(u) and ParentPcgs(u) = pcgs  then
            return u;
        else
            return InducedPcgsByPcSequenceNC( pcgs, ShallowCopy(u) );
        fi;
    fi;

    # get first depth of <n> (tail induced is never trivial!)
    first := n!.tailStart;

    # smaller depth elems of <u> yield the sum, the other the intersection
    pos := 1;
    while pos <= len and DepthOfPcElement(pcgs,u[pos]) < first  do
        pos := pos+1;
    od;
    return InducedPcgsByPcSequenceNC( pcgs, u{[pos..len]} );

end );


#############################################################################
##
#M  NormalIntersectionPcgs( <parent-pcgs>, <tail-pcgs>, <induced-pcgs> )
##
InstallMethod( NormalIntersectionPcgs,
    "prime orders pcgs, tail-pcgs, induced-pcgs",IsFamFamFam,
    [ IsPcgs and IsPrimeOrdersPcgs,
      IsInducedPcgs and IsTailInducedPcgsRep,
      IsInducedPcgs and IsInducedPcgsRep ],
    0,

function( pcgs, n, u )
    local   len,  first,  pos,  dep;

    # the parent must match
    if pcgs <> ParentPcgs(n) or pcgs <> ParentPcgs(u)
      # and the depthsInParent given
      or not IsBound(u!.depthsInParent) then
        TryNextMethod();
    fi;

    # if <u> is empty return it
    len := Length(u);
    if 0 = len  then
        return u;
    fi;

    # get first depth of <n> (tail induced is never trivial)
    first := n!.tailStart;

    # smaller depth elems of <u> yield the sum, the other the intersection
    pos := 1;
    dep := u!.depthsInParent;
    while pos <= len and dep[pos] < first  do
        pos := pos+1;
    od;
    return InducedPcgsByPcSequenceNC( pcgs, u{[pos..len]} );

end );


#############################################################################
##
#M  CanonicalPcElement( <igs>, <elm> )
##
BindGlobal( "CANONICAL_PC_ELEMENT", function( pcgs, elm )
    local   pa,  ros,  tal,  g,  d,  ll,  lr;

    # catch empty case
    if IsEmpty(pcgs) then
      return elm;
    fi;
    pa  := ParentPcgs(pcgs);
    ros := RelativeOrders(pa);
    tal := pcgs!.tailStart;
    for g  in pcgs  do
        d := DepthOfPcElement( pa, g );
        if tal <= d  then
            return HeadPcElementByNumber( pa, elm, tal );
        fi;
        ll := ExponentOfPcElement( pa, elm, d );
        if ll <> 0  then
            lr  := LeadingExponentOfPcElement( pa, g );
            elm := elm / g^( ll / lr mod ros[d] );
        fi;
    od;
    if elm = OneOfPcgs(pa)  then
        return elm;
    else
        d := DepthOfPcElement( pa, elm );
        return elm ^ (1/LeadingExponentOfPcElement(pa,elm) mod ros[d]);
    fi;
end );


InstallMethod( CanonicalPcElement,
    "generic method",
    IsCollsElms,
    [ IsInducedPcgs and IsInducedPcgsRep and IsPrimeOrdersPcgs,
      IsObject ],
    0,
    CANONICAL_PC_ELEMENT );


#############################################################################
##
#M  DepthOfPcElement( <igs>, <elm> )
##
InstallMethod( DepthOfPcElement,
    "induced pcgs",
    IsCollsElms,
    [ IsInducedPcgs and IsInducedPcgsRep,
      IsObject ],
    0,

function( pcgs, elm )
    return pcgs!.depthMapFromParent[DepthOfPcElement(ParentPcgs(pcgs),elm)];
end );


#############################################################################
##
#M  ExponentOfPcElement( <igs>, <elm>, <pos> )
##
InstallMethod( ExponentOfPcElement,
    "induced pcgs",
    function(a,b,c) return IsCollsElms(a,b); end,
    [ IsInducedPcgs and IsInducedPcgsRep and IsPrimeOrdersPcgs,
      IsObject,
      IsPosInt ],
    0,

function( pcgs, elm, pos )
    local   pa,  map,  id,  exp,  ros,  d,  ll,  lr,lc;

    pa  := ParentPcgs(pcgs);
    map := pcgs!.depthMapFromParent;
    lc  := LeadCoeffsIGS(pcgs);
    id  := OneOfPcgs(pcgs);
    exp := ListWithIdenticalEntries(Length( pcgs),0);
    ros := RelativeOrders(pa);
    while elm <> id  do
        d := DepthOfPcElement( pa, elm );
        if not IsBound(map[d])  then
            Error( "<elm> lies not in group defined by <pcgs>" );
        elif map[d]>Length(pcgs) then
          return exp;
        fi;
        ll := LeadingExponentOfPcElement( pa, elm );
        #lr := LeadingExponentOfPcElement( pa, pcgs[map[d]] );
        lr := lc[d];
        exp := ll / lr mod ros[d];
        if map[d] = pos  then
            return exp;
        else
            #elm := LeftQuotient( pcgs[map[d]]^exp, elm );
            elm := LeftQuotientPowerPcgsElement( pcgs,map[d],exp, elm );
        fi;
    od;
    return 0;
end );


#############################################################################
##
#M  ExponentsOfPcElement( <igs>, <elm> )
##
InstallMethod( ExponentsOfPcElement,
    "induced pcgs",
    IsCollsElms,
    [ IsInducedPcgs and IsInducedPcgsRep and IsPrimeOrdersPcgs,
      IsObject ],
    0,

function( pcgs, elm )
    local   pa,  map,  id,  exp,  ros,  d,  ll,  lr,lc;

    pa  := ParentPcgs(pcgs);
    map := pcgs!.depthMapFromParent;
    lc  := LeadCoeffsIGS(pcgs);
    id  := OneOfPcgs(pcgs);
    exp := ListWithIdenticalEntries(Length( pcgs),0);
    ros := RelativeOrders(pa);
    while elm <> id  do
        d := DepthOfPcElement( pa, elm );
        if not IsBound(map[d])  then
            Error( "<elm> lies not in group defined by <pcgs>" );
        elif map[d]>Length(pcgs) then
          return exp;
        fi;
        ll := LeadingExponentOfPcElement( pa, elm );
        #lr := LeadingExponentOfPcElement( pa, pcgs[map[d]] );
        lr := lc[d];
        exp[map[d]] := ll / lr mod ros[d];
        #elm := LeftQuotient( pcgs[map[d]]^exp[map[d]], elm );
        elm := LeftQuotientPowerPcgsElement( pcgs,map[d],exp[map[d]], elm );
    od;
    return exp;
end );

#############################################################################
##
#M  ExponentsOfPcElement( <igs>, <elm>, <subrange> )
##
InstallOtherMethod( ExponentsOfPcElement,
    "induced pcgs, subrange",
    IsCollsElmsX,
    [ IsInducedPcgs and IsInducedPcgsRep and IsPrimeOrdersPcgs,
      IsObject,IsList ], 0,

function( pcgs, elm,range )
    local   pa,  map,  id,  exp,  ros,  d,  ll,  lr,lc,max;

    if not IsSSortedList(range) then
      TryNextMethod(); # the range may be unsorted or contain duplicates,
      # then we would have to be more clever.
    fi;
    if Length(range)=0 then return [];fi;
    max:=Maximum(range);

    pa  := ParentPcgs(pcgs);
    map := pcgs!.depthMapFromParent;
    lc  := LeadCoeffsIGS(pcgs);
    id  := OneOfPcgs(pcgs);
    exp := ListWithIdenticalEntries(Length( pcgs),0);
    ros := RelativeOrders(pa);
    while elm <> id  do
        d := DepthOfPcElement( pa, elm );
        if not IsBound(map[d])  then
          Error( "<elm> lies not in group defined by <pcgs>" );
        elif map[d]>max then
          # we have reached the maximum of the range we asked for. Thus we
          # can stop calculating exponents now, all further exponents would
          # be discarded anyhow
          elm:=id;
        else
          ll := LeadingExponentOfPcElement( pa, elm );
          #lr := LeadingExponentOfPcElement( pa, pcgs[map[d]] );
          lr := lc[d];
          exp[map[d]] := ll / lr mod ros[d];
          #elm := LeftQuotient( pcgs[map[d]]^exp[map[d]], elm );
          elm := LeftQuotientPowerPcgsElement( pcgs,map[d],exp[map[d]], elm );
        fi;
    od;
    exp:=exp{range};
    return exp;
end );

#############################################################################
##
#M  SiftedPcElement( <igs>, <elm> )
##
InstallMethod( SiftedPcElement,"for induced pcgs", IsCollsElms,
    [ IsInducedPcgs and IsInducedPcgsRep and IsPrimeOrdersPcgs,
      IsObject ], 0,
function( pcgs, elm )
local   pa, l, map,  d,lc,ro,tail;

  pa  := ParentPcgs(pcgs);
  l:=Length(pa);
  d := DepthOfPcElement( pa, elm );
  if d>l then
    return elm; # no depth in parent => elm is one
  fi;

  map := pcgs!.depthMapFromParent;
  lc  := LeadCoeffsIGS(pcgs);
  ro  := RelativeOrders(pa);

  # stop level for tails
  if IsTailInducedPcgsRep(pcgs) then
    tail:=pcgs!.tailStart;
  else
    tail:=infinity;
  fi;

  while d<=l do
    if not IsBound(map[d])  then
        return elm;
    elif d>=tail then
      # from this level on every level in the parent is also in the pcgs,
      # so we can clean out completely
      return OneOfPcgs(pcgs);
    fi;
    elm := LeftQuotientPowerPcgsElement(pcgs,map[d],
                  (LeadingExponentOfPcElement(pa,elm)/lc[d] mod ro[d])
            ,elm);
    d := DepthOfPcElement( pa, elm );
  od;
  return elm;
end );


#############################################################################
##
#M  ExponentsOfPcElement( <sub-igs>, <elm> )
##
InstallMethod( ExponentsOfPcElement,
    "subset of induced pcgs",
    IsCollsElms,
    [ IsPcgs and IsSubsetInducedPcgsRep and IsPrimeOrdersPcgs,
      IsObject ], 0,
function( pcgs, elm )
    return ExponentsOfPcElement(ParentPcgs(pcgs),elm,pcgs!.depthsInParent);
end );


#############################################################################
##
#M  ExponentsOfPcElement( <sub-igs>, <elm>, <subrange> )
##
InstallOtherMethod( ExponentsOfPcElement,
    "subset of induced pcgs, subrange",
    IsCollsElmsX,
    [ IsPcgs and IsSubsetInducedPcgsRep and IsPrimeOrdersPcgs,
      IsObject,IsList ], 0,
function( pcgs, elm,range )
    return
      ExponentsOfPcElement(ParentPcgs(pcgs),elm,pcgs!.depthsInParent{range});
end );

#############################################################################
##
#M  LeadingExponentOfPcElement( <sub-igs>, <elm> )
##
InstallMethod( LeadingExponentOfPcElement,
    "subset induced pcgs",
    IsCollsElms,
    [ IsPcgs and IsSubsetInducedPcgsRep and IsPrimeOrdersPcgs,
      IsObject ],
    0,

function( pcgs, elm )
    return LeadingExponentOfPcElement( ParentPcgs(pcgs), elm );
end );


#############################################################################
##
#M  ExtendedPcgs( <pcgs>, <img> )
##
InstallMethod( ExtendedPcgs, "induced pcgs", IsIdenticalObj,
    [ IsInducedPcgs, IsList ], 0,
function( kern, img )
local p;
  p:=ParentPcgs(kern);
  img:=Concatenation(img,kern);
  return InducedPcgsByPcSequenceNC( p, img );
end );


#############################################################################
##
#F  CorrespondingGeneratorsByModuloPcgs( <mpcgs>, <imgs> )
##
##  computes a list of elements in the span of <imgs> that form a cgs with
##  respect to <mpcgs> (The calculation of induced generating sets is not
##  possible for some modulo pcgs).
InstallGlobalFunction( CorrespondingGeneratorsByModuloPcgs,
    function(pcgs,l)
local e,s,d,o,j,bj,bjo,ro,max,id,seen,wseen,igs,chain,new,old,u,up,uw,cw,x,c;

  # start with a non-commutative Gauss

  # get relative orders and composition length
  ro  := RelativeOrders(pcgs);
  max := Length(pcgs);

  # get the identity
  id := OneOfPcgs(pcgs);

  # and keep a list of seen weights
  wseen := BlistList( [ 1 .. max ], [] );

  # the induced generating sequence will be collected into <igs>
  igs := List( [ 1 .. max ], x -> id );

  # <chain> gives a chain of trailing weights
  chain := max+1;

  # <new> contains a list of generators
  new := Reversed( Difference( Set(l), [id] ) );
  # <seen> holds a list of words already seen
  seen := Union( new, [id] );

  # start putting <new> into <igs>
  while 0 < Length(new)  do
    old := Reversed(new);
    new := [];
    for u  in old  do
      uw := DepthOfPcElement( pcgs, u );

      # if <uw> has reached <chain>, we can ignore <u>
      if uw < chain  then
        up := [];
        repeat
          if igs[uw] <> id  then
#T we may not replace by elements of pcgs because that might change the
#T group.
#           if chain <= uw+1  then
#             # all powers would be cancelled out
#             u := id;
#           else
              u:=u/igs[uw]^((LeadingExponentOfPcElement(pcgs,u)
                             / LeadingExponentOfPcElement(pcgs,igs[uw]))
                      mod ro[uw] );
#           fi;
          else
            AddSet( seen, u );
            wseen[uw] := true;
            Add( up, u );
            if chain <= uw+1  then
              u := id;
            else
              u := u ^ ro[uw];
            fi;
          fi;
          if u <> id  then
            uw := DepthOfPcElement( pcgs, u );
          fi;
        until u = id or chain <= uw;

        # add the commutators with the powers of <u>
        for u  in up  do
          for x in igs  do
            if x<>id and ( DepthOfPcElement(pcgs,x) + 1 < chain
                        or DepthOfPcElement(pcgs,u) + 1 < chain ) then
              c := Comm( u, x );
              if not c in seen  then
                cw := DepthOfPcElement( pcgs, c );
                wseen[cw] := true;
                AddSet( new, c );
                AddSet( seen, c );
              fi;
            fi;
          od;
        od;

        # enter the generators <up> into <igs>
        for x  in up  do
          igs[DepthOfPcElement(pcgs,x)] := x;
        od;

#T we may not replace by elements of pcgs because that might change the
#T group.
#       # update the chain
#       while 1 < chain and wseen[chain-1]  do
#         chain := chain-1;
#       od;
#
#       for i  in [ chain .. max ]  do
#         if igs[i] = id  then
#           igs[i] := pcgs[i];
#           for j  in [ 1 .. chain-1 ]  do
#             c := Comm( igs[i], igs[j] );
#             if not c in seen  then
#               AddSet( seen, c );
#               AddSet( new, c );
#               wseen[DepthOfPcElement(pcgs,c)] := true;
#             fi;
#           od;
#         fi;
#       od;

      fi;
    od;
  od;

    igs := Filtered( igs, x -> x <> id );

#T we may not replace by elements of pcgs because that might change the
#T group.
#
# if <chain> has reached one, we have the whole group
#  for i  in [ chain .. max ]  do
#      igs[i] := pcgs[i]; # on the lowermost levels we can even get the
#      # original pcgs elements
#  od;
#  if chain = 1  then
#    igs := List( [ 1 .. max ], x -> pcgs[x] );
#  else
#  fi;

  e:=List(igs,i->ExponentsOfPcElement(pcgs,i));
  s:=0;
  d:=1;
  while d<=Length(pcgs) do
    o:=RelativeOrderOfPcElement(pcgs,pcgs[d]);

    # find pivot
    j:=s+1;
    bj:=0;
    bjo:=o;
    while j<=Length(e) do
      if e[j][d]<>0 and e[j][d]<bjo then
        bj:=j;
        bjo:=e[j][d];
      fi;
      j:=j+1;
    od;
    if bj<>0 then
      # we found a pivot, move to top
      s:=s+1;
      j:=igs[bj]; igs[bj]:=igs[s];igs[s]:=j;
      j:=e[bj]; e[bj]:=e[s];e[s]:=j;
      #change norm
      if bjo<>1 then
        bjo:=1/bjo mod o; # inverse order
        igs[s]:=igs[s]^bjo;
        e[s]:=ExponentsOfPcElement(pcgs,igs[s]);
      fi;
      # clean out
      for j in [1..Length(e)] do
        if j<>s and e[j][d]<>0 then
          igs[j]:=igs[j]/igs[s]^e[j][d];
          e[j]:=ExponentsOfPcElement(pcgs,igs[j]);
        fi;
      od;
    fi;
    d:=d+1;
  od;
  return igs{[1..s]};
end );

#############################################################################
##
#M  IndicesEANormalSteps( <ipcgs> )
##
InstallMethod(IndicesEANormalSteps,"inherit from parent",true,
  [IsInducedPcgs and HasParentPcgs],0,
function(pcgs)
local i,p,ind,a,b,d;
  p:=ParentPcgs(pcgs);
  if not HasIndicesEANormalSteps(p) then
    TryNextMethod();
  fi;
  d:=pcgs!.depthsInParent;
  ind:=[];
  a:=1;
  for i in IndicesEANormalSteps(p) do
    b:=First([a..Length(d)],x->d[x]>=i);
    if b<>fail then
      if not b in ind then
        Add(ind,b);
      fi;
      a:=b;
    fi;
  od;
  Add(ind,Length(pcgs)+1);
  return ind;
end);