File: pcgsperm.gi

package info (click to toggle)
gap 4.15.1-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 110,212 kB
  • sloc: ansic: 97,261; xml: 48,343; cpp: 13,946; sh: 4,900; perl: 1,650; javascript: 255; makefile: 252; ruby: 9
file content (1429 lines) | stat: -rw-r--r-- 46,601 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
#############################################################################
##
##  This file is part of GAP, a system for computational discrete algebra.
##  This file's authors include Heiko Theißen.
##
##  Copyright of GAP belongs to its developers, whose names are too numerous
##  to list here. Please refer to the COPYRIGHT file for details.
##
##  SPDX-License-Identifier: GPL-2.0-or-later
##
##  This file  contains    functions which deal with   polycyclic  generating
##  systems of solvable permutation groups.
##

#############################################################################
##
#R  IsMemberPcSeriesPermGroup . . . . . . . . . . . . .  members of pc series
##
DeclareRepresentation( "IsMemberPcSeriesPermGroup",
    IsPermGroup, [ "noInSeries" ] );

#############################################################################
##
#F  AddNormalizingElementPcgs( <G>, <z> ) . . . . . cyclic extension for pcgs
##
InstallGlobalFunction( AddNormalizingElementPcgs, function( G, z )
  local   S,  A,  pos,  relord,
            pnt,  orb,  l,  L,  n,  m,  img,  i,  f,  p,  edg;

    StretchImportantSLPElement(z);
    S := G;
    A := G;
    pos := 1;
    L := [  ];
    if IsBound( G.relativeOrders )  then  relord := G.relativeOrders;
                                    else  relord := false;             fi;

    # Loop over the stabilizer chain.
    while z <> S.identity  do

        # If necessary, extend the stabilizer chain.
        if IsBound( G.base )  then
            ChooseNextBasePoint( S, G.base, [ z ] );
        elif not IsBound( S.stabilizer )  then
            InsertTrivialStabilizer( S, SmallestMovedPoint( z ) );
            Unbind( S.stabilizer.relativeOrders );
        fi;

        # Extend the orbit.
        orb := S.orbit;
        pnt := orb[ 1 ];
        l := Length( orb );  Add( L, l );
        n := l;
        m := 1;
        img := pnt / z;
        while not IsBound( S.translabels[ img ] )  do
            orb[ n + 1 ] := img;
            for i  in [ 2 .. l ]  do
                orb[ n + i ] := orb[ n - l + i ] / z;
            od;
            n := n + l;
            m := m + 1;
            img := img / z;
        od;

        # Let  $m   =  p_1p_2...p_l$.  Then  instead   of  entering <z>  into
        # '<G>.translabels' <d> times, enter $z^d$ once, for $d=p_1p_2...p_k$
        # (where $k<=l$).
        if m > 1  then

            # If <m> = 1, the current level <A> has not been extended and <z>
            # has been shifted  into <w> in  the next level. <w> or something
            # further down, which will extend a  future level, must be put in
            # as a generator here.
            AddSet( S.genlabels, 1 - pos );
            while A.orbit[ 1 ] <> S.orbit[ 1 ]  do
                AddSet( A.genlabels, 1 - pos );
                A := A.stabilizer;
            od;
            A := A.stabilizer;

            f := 1;
            for p  in Factors(Integers, m )  do
                if relord <> false  then
                    Add( relord, p, pos );
                fi;
                pos := pos + 1;
                Add( S.labels, z, pos );
                edg := ListWithIdenticalEntries( l, -pos );
                for i  in f * [ 1 .. m / f - 1 ]  do
                    S.translabels{ orb{ i * l + [ 1 .. l ] } } := edg;
                od;
                f := f * p;
                z := z ^ p;
            od;

        fi;

        # Find a cofactor to <z> such that the product fixes <pnt>.
        edg := S.translabels[ pnt ^ z ];
        while edg <> 1  do
            if edg > 1  then  z := z * S.labels[ edg + pos - 1 ];
                        else  z := z * S.labels[ -edg ];       fi;
            edg := S.translabels[ pnt ^ z ];
        od;

        # Go down one step in the stabilizer chain.
        S := S.stabilizer;

    od;

    if pos = 1  then
        return false;
    fi;

    # Correct   the `genlabels' and   `translabels'  entries and  install the
    # `generators'.
    S := G;  i := 0;  pos := pos - 1;
    while IsBound( S.stabilizer )  do
        p := PositionSorted( S.genlabels, 2 );
        if not IsEmpty( S.genlabels )
           and S.genlabels[ 1 ] < 1  then
            S.genlabels[ 1 ] := 2 - S.genlabels[ 1 ];
        fi;
        orb := [ p .. Length( S.genlabels ) ];
        S.genlabels{ orb } := S.genlabels{ orb } + pos;
        if i < Length( L )  then  i := i + 1;  l := L[ i ];
                            else  l := Length( S.orbit );    fi;
        orb := S.orbit{ [ 2 .. l ] };
        S.translabels{ orb } := S.translabels{ orb } + pos;
        orb := S.orbit{ [ l + 1 .. Length( S.orbit ) ] };
        S.translabels{ orb } := -S.translabels{ orb };
        S.transversal := [  ];
        S.transversal{ S.orbit } := S.labels{ S.translabels{ S.orbit } };
        S.generators := S.labels{ S.genlabels };
        for z in S.generators do
          StretchImportantSLPElement(z);
        od;
        S := S.stabilizer;
    od;

    return true;
end );

#############################################################################
##
#F  ExtendSeriesPermGroup( ... )  . . . . . . extend a series of a perm group
##
InstallGlobalFunction( ExtendSeriesPermGroup, function(
            G,       # the group in which factors are to be normal/central
            series,  # the series being constructed
            cent,    # flag: true if central factors are wanted
            desc,    # flag: true if a fastest-descending series is wanted
            elab,    # flag: true if elementary abelian factors are wanted
            s,       # the element to be added to `series[ <lev> ]'
            lev,     # the level of the series which is to be extended
            dep,     # the depth of <s> in <G>
            bound )  # a bound on the depth, for solvability/nilpotency tests

    local   M0,  M1,  C,  X,  oldX,  T,  t,  u,  w,  r,  done,
            ndep,  ord,  gcd,  p;

    # If we are too deep in the derived series, give up.
    if dep > bound  then
        return s;
    fi;

    if desc  then

        # If necessary, add a new (trivial) subgroup to the series.
        if lev + 2 > Length( series )  then
            series[ lev + 2 ] := StructuralCopy( series[ lev + 1 ] );
        fi;

        M0 := series[ lev + 1 ];
        M1 := series[ lev + 2 ];
        X := M0.labels{ [ 2 .. Length( M0.labels )
                             - Length( M1.labels ) + 1 ] };
        r := lev + 2;

    # If the  series  need not be   fastest-descending, prepare to add  a new
    # group to the list.
    else
        M1 := series[ 1 ];
        M0 := StructuralCopy( M1 );
        X := [  ];
        r := 1;
    fi;

    # For elementary abelian factors, find a suitable prime.
    if IsInt( elab )  then
        p := elab;
    elif elab  then

        # For central series, the prime must be given.
        if cent  then
          Error("cannot construct central el ab series with varying primes");
        fi;

        ord := Order( s );
        if not IsEmpty( X )  then
            gcd := GcdInt( ord, Order( X[ 1 ] ) );
            if gcd <> 1  then
                ord := gcd;
            fi;
        fi;
        p := Factors(Integers, ord )[ 1 ];
    fi;

    # Loop over all conjugates of <s>.
    C := [ s ];
    while not IsEmpty( C )  do
        t := C[ 1 ];
        C := C{ [ 2 .. Length( C ) ] };
        if not MembershipTestKnownBase( M0, G, t )  then

            # Form  all necessary  commutators with  <t>   and for elementary
            # abelian factors also a <p>th power.
            if cent  then  T := SSortedList( GeneratorsOfGroup( G ) );
                     else  T := SSortedList( X );                       fi;
            done := false;
            while not done  and  ( not IsEmpty( T )  or  elab <> false )  do
                if not IsEmpty( T )  then
                    u := T[ 1 ];        RemoveSet( T, u );
                    w := Comm( t, u );  ndep := dep + 1;
                else
                    done := true;
                    w := t ^ p;         ndep := dep;
                fi;

                # If   the commutator or  power  is not  in <M1>, recursively
                # extend <M1>.
                if not MembershipTestKnownBase( M1, G, w )  then
                    w := ExtendSeriesPermGroup( G, series, cent,
                                 desc, elab, w, lev + 1, ndep, bound );
                    if w <> true  then
                        return w;
                    fi;
                    M1 := series[ r ];

                    # The enlarged <M1> also pushes up <M0>.
                    M0 := StructuralCopy( M1 );
                    oldX := X;
                    X := [  ];
                    for u  in oldX  do
                        if AddNormalizingElementPcgs( M0, u )  then
                            Add( X, u );
                        else
                            RemoveSet( T, u );
                        fi;
                    od;
                    if MembershipTestKnownBase( M0, G, t )  then
                        done := true;
                    fi;
                fi;

            od;

            # Add <t> to <M0> and register its conjugates.
            if AddNormalizingElementPcgs( M0, t )  then
                Add( X, t );
            fi;
            UniteSet( C, List( GeneratorsOfGroup( G ), g -> t ^ g ) );

        fi;
    od;

    # For a fastest-descending series,  replace the old group. Otherwise, add
    # the new group to the list.
    if desc  then
        series[ lev + 1 ] := M0;
        if IsEmpty( X )  then
            Remove( series, lev + 2 );
        fi;
    else
        if not IsEmpty( X )  then
            Add( series, M0, 1 );
        fi;
    fi;

    return true;
end );

#############################################################################
##
#F  TryPcgsPermGroup(<Act>[, <G>] , <cent>, <desc>, <elab>) . . try for pcgs
##
InstallGlobalFunction(TryPcgsPermGroup,function(arg)
    local   grp,  pcgs,  U,  oldlen,  series,  y,  w,  whole,
            bound,  deg,  step,  i,  S,  filter,A,G,cent,desc,elab;

    A:=arg[1];
    cent:=arg[Length(arg)-2];
    desc:=arg[Length(arg)-1];
    elab:=arg[Length(arg)];

    # If the last member <U> of the series <G> already has a pcgs, start with
    # its stabilizer chain.
    if IsList( A )  then
        G:=A;
        A:=A[1];
        U := Last(G);
        if HasPcgs( U )  and  IsPcgsPermGroupRep( Pcgs( U ) )  then
            U := CopyStabChain( Pcgs( U )!.stabChain );
        fi;
    elif Length(arg)>4 then
      G:=arg[2];
      U := TrivialSubgroup( G );
      if ForAll(GeneratorsOfGroup(G),IsOne) then G:=[G];
                                      else G:=[G,U];fi;
    else
      G:=A;
      U := TrivialSubgroup( G );
      if IsTrivial( G )  then  G := [ G ];
                          else  G := [ G, U ];  fi;
    fi;

    # Otherwise start  with stabilizer chain  of  <U> with identical `labels'
    # components on all levels.
    if IsGroup( U )  then
        if IsTrivial( U )  and  not HasStabChainMutable( U )  then
            U := EmptyStabChain( [  ], One( U ) );
        else
            S:=U;
            U := StabChainMutable( U );
            if IsBound( U.base )  and Length(U.base)>0  then  i := U.base;
                                  else  i := fail;   fi;

            # ensure compatible bases
            if HasBaseOfGroup(G[1])
               and not IsSubset(BaseOfGroup(G[1]),BaseStabChain(U)) then

              # ensure compatible bases

              # compute a new stab chain without touching the stab chain
              # stored in S
              #T this is less than satisficial but I don't see how otherwise
              #T to avoid those %$#@ side effects. AH
              U:= StabChainOp( GroupByGenerators(GeneratorsOfGroup(S),One(S) ),
                             rec(base:=BaseOfGroup(G[1]),size:=Size(S)));
            else
              U := StabChainBaseStrongGenerators( BaseStabChain( U ),
                           StrongGeneratorsStabChain( U ),U.identity );
              if i <> fail  then
                  U.base := i;
              fi;
           fi;
        fi;
    fi;


    # The `genlabels' at every level of $U$ must be sets.
    S := U;
    while not IsEmpty( S.genlabels )  do
        Sort( S.genlabels );
        S := S.stabilizer;
    od;

    grp := G[ 1 ];
    whole := IsTrivial( Last(G) );

    oldlen := Length( U.labels );
    series := [ U ];
    series[ 1 ].relativeOrders := [  ];

    if not IsTrivial( grp )  then

        # The derived  length of  <G> was  bounded by  Dixon. The  nilpotency
        # class of <G> is at most Max( log_p(d)-1 ).
        deg := NrMovedPoints( grp );
        if cent  then
            bound := Maximum( List( Collected( Factors(Integers, deg ) ), p ->
                             p[ 1 ] ^ ( LogInt( deg, p[ 1 ] ) ) ) );
        else
            bound := Int( LogInt( deg ^ 5, 3 ) / 2 );
        fi;
        # avoid recursion trap through Size
        if bound>4900 then Size(grp); fi;
        if     HasSize( grp )
           and Length( Factors(Integers, Size( grp ) ) ) < bound  then
            bound := Length( Factors(Integers, Size( grp ) ) );
        fi;

        for step  in Reversed( [ 1 .. Length( G ) - 1  ] )  do
            for y  in GeneratorsOfGroup( G[ step ] )  do
                if not y in GeneratorsOfGroup( G[ step + 1 ] )  then
                    w := ExtendSeriesPermGroup( A, series, cent,
                                 desc, elab, y, 0, 0, bound );
                    if w <> true  then
                        SetIsNilpotentGroup( grp, false );
                        if not cent  then
                            SetIsSolvableGroup( grp, false );
                        fi;

                        # In case of  failure, return two ``witnesses'':  The
                        # pcgs   of   the solvable  normal   subgroup  of <G>
                        # constructed    so   far,     and   an  element   in
                        # $G^{(\infty)}$.
#T this should be cleaned up.
                        return [ PcgsStabChainSeries( IsPcgsPermGroupRep,
                                 GroupStabChain( grp, series[ 1 ], true ),
                                 series, oldlen,false ),
                                 w ];

                    fi;
                fi;
            od;
        od;
    fi;

    # Construct the pcgs object.
    if whole  then  filter := IsPcgsPermGroupRep;
              else  filter := IsModuloPcgsPermGroupRep;  fi;

    if elab=true then
      filter:=filter and IsPcgsElementaryAbelianSeries;
    fi;

    if cent then
      filter:=filter and IsPcgsCentralSeries;
    fi;

    pcgs := PcgsStabChainSeries( filter, grp, series, oldlen,
      (elab=true) or cent);

    if whole  then
        SetIsSolvableGroup( grp, true );
        SetPcgs( grp, pcgs );
        if not HasHomePcgs( grp ) then
          SetHomePcgs( grp, pcgs );
        fi;
        SetGroupOfPcgs (pcgs, grp);
        if cent  then
            SetIsNilpotentGroup( grp, true );
        fi;
    else
        pcgs!.denominator := Last(G);
        if     HasIsSolvableGroup( Last(G) )
           and IsSolvableGroup( Last(G) )  then
            SetIsSolvableGroup( grp, true );
        fi;
    fi;
    return pcgs;
end);

## Based on `TryPcgsPermGroup', a method for PcgsByPcSequence

BindGlobal("ExtendSeriesPGParticular", function(
            G,       # the group in which factors are to be normal
            series,  # the series being constructed
            adds)     # the elements to be added to `series[ <lev> ]'

  local   M0,  M1,  C,  X,  oldX,  T,  t,  u,  w,  r,  done,
          ord,  p,ap,s;

  # As series  need not be   fastest-descending, prepare to add  a new
  # group to the list.
  M1 := series[ 1 ];
  M0 := StructuralCopy( M1 );
  X := [  ];
  r := 1;

  # find next elt to add
  ap:=1;
  while MembershipTestKnownBase(M0,G,adds[ap])=true do
    ap:=ap+1;
    if ap>Length(adds) then
      return fail; # nothing to add
    fi;
  od;
  s:=adds[ap];

  # find prime.
  ord:=Factors(Order( s ));
  p:=First(Set(ord),x->MembershipTestKnownBase(M0,G,s^x)=true);

  # Loop over adds
  ap:=ap-1;
  C := [s];
  while not IsEmpty( C )  do
    t := C[ 1 ];
    if not MembershipTestKnownBase( M0, G, t )  then

      # Form  all necessary  commutators with  <t>   and for elementary
      # abelian factors also a <p>th power.
      T := SSortedList( X );
      done := false;
      while not done  and  not IsEmpty( T ) do
        if not IsEmpty( T )  then
          u := T[ 1 ];        RemoveSet( T, u );
          w := Comm( t, u );
        else
          done := true;
          w := t ^ p;
        fi;

        # If   the commutator or  power  is not  in <M1>,
        # it was not a proper pcgs
        if not MembershipTestKnownBase( M1, G, w )  then
          return w;
        fi;

      od;

      ap:=ap+1;
      t:=adds[ap];

      # Add <t> to <M0> and register its conjugates.
      if AddNormalizingElementPcgs( M0, t )  then
        Add( X, t );
      fi;
      Append( C, List( GeneratorsOfGroup( G ), g -> t ^ g ) );

    else
      # this t is done with
      C := C{ [ 2 .. Length( C ) ] };
    fi;
  od;

  if not IsEmpty( X )  then
    Add( series, M0, 1 );
  fi;

  return true;
end );

InstallGlobalFunction(PermgroupSuggestPcgs,function(G,pcseq)
local   grp,  pcgs,  U,  series,   w, bound,  deg,  S,  filter;

  U := TrivialSubgroup( G );
  G := [ G, U ];
  # Otherwise start  with stabilizer chain  of  <U> with identical `labels'
  # components on all levels.
  U := EmptyStabChain( [  ], One( U ) );

  # The `genlabels' at every level of $U$ must be sets.
  S := U;
  while not IsEmpty( S.genlabels )  do
    Sort( S.genlabels );
    S := S.stabilizer;
  od;

  grp := G[ 1 ];

  series := [ U ];
  series[ 1 ].relativeOrders := [  ];

  # The derived  length of  <G> was  bounded by  Dixon. The  nilpotency
  # class of <G> is at most Max( log_p(d)-1 ).
  deg := NrMovedPoints( grp );
  bound := Int( LogInt( deg ^ 5, 3 ) / 2 );
  if HasSize( grp ) and Length( Factors(Integers, Size( grp ) ) ) < bound  then
    bound:=Length( Factors(Integers, Size( grp ) ) );
  fi;

  pcseq:=Reversed(pcseq); # build up

  # can do repeat-until as group is not trivial
  repeat
    w := ExtendSeriesPGParticular( G[1], series, pcseq);
    if w <> true  and w<>fail then
      # if it fails the pcgs does not fit an elementary
      # abelian series. In this case we need to defer to the
      # generic approach.
      return fail;
    fi;
    #Print(List(series,SizeStabChain),":",Length(series[1].labels),":",List(series[1].labels,x->Position(pcseq,x)),"\n");
  until w=fail;

  # Construct the pcgs object.
  filter := IsPcgsPermGroupRep and IsPcgsElementaryAbelianSeries;

  pcgs := PcgsStabChainSeries( filter, grp, series, 1,true);

  if Set(GeneratorsOfGroup(grp))=Set(pcseq) then
    SetIsSolvableGroup( grp, true );
    SetPcgs( grp, pcgs );
    SetHomePcgs( grp, pcgs );
  fi;
  SetGroupOfPcgs (pcgs, grp);
  return pcgs;
end);

# arbitrary pc sequence pcgs for perm group. Construct pcgs from it using
# variant of sims' algorithm, then use translation of exponents.
InstallMethod(PcgsByPcSequenceNC,"perm group, Sims' algorithm",true,
  [IsFamily,IsHomogeneousList and IsPermCollection],0,

function( efam, pcs )
    local   pfa,  pcgs,  pag,  id,  g,  dg,  i,  new,
    ord,codepths,pagpow,sorco,filter;

    # quick check
    if not IsIdenticalObj( efam, ElementsFamily(FamilyObj(pcs)) )  then
        Error( "elements family of <pcs> does not match <efam>" );
    fi;

    if ForAll(pcs,IsOne) then
      TryNextMethod(); # degenerate case
    fi;

    pfa := PermgroupSuggestPcgs(Group(pcs),pcs);
    if pfa=fail then
      TryNextMethod();
    fi;

    if pfa=pcs then
      # is it by happenstance the one we want?
      return pfa;

    else
      # make a sorted/unsorted pcgs

      # sort the elements according to the depth wrt pfa
      pag := [];
      new := [];
      ord := [];
      id  := One(pcs[1]);
      for i  in [ Length(pcs), Length(pcs)-1 .. 1 ]  do
        g  := pcs[i];
        dg := DepthOfPcElement( pfa, g );
        while g <> id and IsBound(pag[dg])  do
          g  := ReducedPcElement( pfa, g, pag[dg] );
          dg := DepthOfPcElement( pfa, g );
        od;
        if g <> id  then
          pag[dg] := g;
          new[dg] := i;
          ord[i]  := RelativeOrderOfPcElement( pfa, g );
        fi;
      od;
      if not IsHomogeneousList(ord) then
        Error("not all relative orders given");
      fi;

      filter:=IsPcgs;

      if IsSSortedList(new) and Length(new)=Length(pfa) then
        filter:=filter and IsSortedPcgsRep;
      else
        filter:=filter and IsUnsortedPcgsRep;
      fi;

      # we have the same sequence, same depths, just changed by
      # multiplying elements of a lower level
      pcgs := PcgsByPcSequenceCons( IsPcgsDefaultRep, filter,
                  efam, pcs,[] );

      pcgs!.sortedPcSequence := pag;
      pcgs!.newDepths        := new;
      pcgs!.sortingPcgs      := pfa;

      # Precompute the leading coeffs and the powers of pag up to the
      # relative order
      pagpow:=[];
      sorco:=[];
      for i in [1..Length(pag)] do
        if IsBound(pag[i]) then
          pagpow[i]:=
            List([1..RelativeOrderOfPcElement(pfa,pag[i])-1],j->pag[i]^j);
          sorco[i]:=LeadingExponentOfPcElement(pfa,pag[i]);
        fi;
      od;
      pcgs!.sortedPcSeqPowers:=pagpow;
      pcgs!.sortedPcSequenceLeadCoeff:=sorco;

      # codepths[i]: the minimum pcgs-depth that can be implied by pag-depth i
      codepths:=[];
      for dg in [1..Length(new)] do
        g:=Length(new)+1;
        for i in [dg..Length(new)] do
          if IsBound(new[i]) and new[i]<g then
            g:=new[i];
          fi;
        od;
        codepths[dg]:=g;
      od;
      pcgs!.minimumCodepths:=codepths;
      SetRelativeOrders( pcgs, ord );
      if IsSortedPcgsRep(pcgs) then
        pcgs!.inversePowers:=
                      List([1..Length(pfa)],i->(1/sorco[i]) mod ord[i]);
      fi;
  fi;

  return pcgs;

end );

#############################################################################
##
#F  PcgsStabChainSeries( <filter>, <G>, <series>, <oldlen>,<iselab> )
##
InstallGlobalFunction(PcgsStabChainSeries,
function(filter,G,series,oldlen,iselab)
    local   pcgs,  first,  i,attr;

    first := [  ];
    for i  in [ 1 .. Length( series ) ]  do
      Add( first, Length( series[ i ].labels ) );
    od;
    first:=first[ 1 ] - first + 1;


    filter:=filter and IsPcgs and IsPrimeOrdersPcgs;
    attr:=[];
    if iselab=true then
      filter:=filter and HasIndicesEANormalSteps;
      attr:=[IndicesEANormalSteps, first];
    fi;
    pcgs := PcgsByPcSequenceCons( IsPcgsDefaultRep,filter,
                ElementsFamily( FamilyObj( G ) ),
                series[ 1 ].labels
                { 1 + [ 1 .. Length(series[ 1 ].labels) - oldlen ] },
                attr );

    SetRelativeOrders(pcgs, series[ 1 ].relativeOrders);
    pcgs!.stabChain := series[ 1 ];
    pcgs!.generatingSeries:=series;
    pcgs!.permpcgsNormalSteps:=first;

#    if HasHomePcgs(G) and HomePcgs(G)<>pcgs then
#      G:=Group(series[1].generators,());
#    fi;
#    SetGroupOfPcgs( pcgs, G );

    return pcgs;
end );

BindGlobal("NorSerPermPcgs",function(pcgs)
local ppcgs,series,stbc,G,i;
  ppcgs := ParentPcgs (pcgs);
  G:=GroupOfPcgs(pcgs);
  series:=EmptyPlist( Length(pcgs!.generatingSeries) );
  for i  in [ 1 .. Length( pcgs!.generatingSeries ) ]  do
    stbc := ShallowCopy (pcgs!.generatingSeries[i]);
    Unbind( stbc.relativeOrders );
    Unbind( stbc.base           );
    series[ i ] := GroupStabChain( G, stbc, true );
    if (not HasHomePcgs(series[i]) ) or HomePcgs(series[i]) = ppcgs then
      SetHomePcgs ( series[ i ], ppcgs );
      SetFilterObj( series[ i ], IsMemberPcSeriesPermGroup );
      series[ i ]!.noInSeries := i;
    fi;
  od;
  return series;
end);

InstallMethod(EANormalSeriesByPcgs,"perm group rep",true,
   [IsPcgs and IsPcgsElementaryAbelianSeries and IsPcgsPermGroupRep],0,
   NorSerPermPcgs);

InstallOtherMethod(EANormalSeriesByPcgs,"perm group modulo rep",true,
  [IsModuloPcgsPermGroupRep and IsPcgsElementaryAbelianSeries],0,
  NorSerPermPcgs);

#############################################################################
##
#F  PcgsMemberPcSeriesPermGroup( <U> ) . . . . pcgs for a group in the series
##
InstallGlobalFunction( PcgsMemberPcSeriesPermGroup, function( U )
    local   home,  pcgs,npf;

    home := HomePcgs( U );
    npf:=home!.permpcgsNormalSteps;

    if U!.noInSeries>Length(npf) then
      # special treatment for the trivial subgroup
      pcgs:=InducedPcgsByGenerators(home,GeneratorsOfGroup(U));
    else
      pcgs := TailOfPcgsPermGroup( home,
                      npf[ U!.noInSeries ] );
    fi;
    SetGroupOfPcgs( pcgs, U );
    return pcgs;
end );

#############################################################################
##
#F  ExponentsOfPcElementPermGroup( <pcgs>, <g>, <min>, <max>, <mode> )  local
##
InstallGlobalFunction( ExponentsOfPcElementPermGroup,
    function( pcgs, g, mindepth, maxdepth, mode )
    local   exp,  base,  bimg,  r,  depth,  img,  H,  bpt,  gen,  e,  i;

    if mode = 'e'  then
        exp := ListWithIdenticalEntries( maxdepth - mindepth + 1, 0 );
    fi;
    base  := BaseStabChain( pcgs!.stabChain );
    bimg  := OnTuples( base, g );
    r     := Length( base );
    depth := mindepth;

    while depth <= maxdepth  do

        # Determine the depth of <g>.
        repeat
            img := ShallowCopy( bimg );
            gen := pcgs!.pcSequence[ depth ];
            depth := depth + 1;

            # Find the base level of the <depth>th generator, remove the part
            # of <g> moving the earlier basepoints.
            H := pcgs!.stabChain;
            bpt := H.orbit[ 1 ];
            i := 1;
            while bpt ^ gen = bpt  do
                while img[ i ] <> bpt  do
                    img{ [ i .. r ] } := OnTuples( img{ [ i .. r ] },
                                                 H.transversal[ img[ i ] ] );
                od;
                H := H.stabilizer;
                bpt := H.orbit[ 1 ];
                i := i + 1;
            od;

        until depth > maxdepth  or  H.translabels[ img[ i ] ] = depth;

        # If  `H.translabels[  img[  i ] ]  =   depth', then <g>  is  not the
        # identity.
        if H.translabels[ img[ i ] ] = depth  then
            if mode = 'd'  then
                return depth - 1;
            fi;

            # Determine the <depth>th exponent.
            e := RelativeOrders( pcgs )[ depth - 1 ];
            i := img[ i ];
            repeat
                e := e - 1;
                i := i ^ gen;
            until H.translabels[ i ] <> depth;

            if mode = 'l'  then
                return e;
            elif mode='s' then
              return [depth-1,e];
            fi;

            # Remove the appropriate  power  of the <depth>th  generator  and
            # iterate.
            exp[ depth - mindepth ] := e;
            g := LeftQuotient( gen ^ e, g );
            bimg := OnTuples( base, g );

        fi;
    od;
    if   mode = 'd'  then  return maxdepth + 1;
    elif mode = 'l'  then  return fail;
    elif mode = 's'  then  return [maxdepth+1,0];
    else                   return exp;  fi;
end );

#############################################################################
##
#F  PermpcgsPcGroupPcgs( <pcgs>, <index>, <isPcgsCentral> )
##
##  different than `PcGroupWithPcgs' since extra parameters for shortcut.
##
InstallGlobalFunction( PermpcgsPcGroupPcgs, function( pcgs, index, isPcgsCentral )
    local   m,  sc,  gens,  p,  i,  i2,  n,  n2;

    m := Length( pcgs );
    sc := SingleCollector( FreeGroup(IsSyllableWordsFamily, m ),
                           RelativeOrders( pcgs ) );
    gens := GeneratorsOfRws( sc );

    # Find the relations of the p-th powers. Use  the  vector space structure
    # of the elementary abelian factors.
    for i  in [ 1 .. Length( index ) - 1 ]  do
        p := RelativeOrders( pcgs )[ index[ i ] ];
        for n  in [ index[ i ] .. index[ i + 1 ] - 1 ]  do
            SetPowerNC( sc, n, LinearCombinationPcgs
                    ( gens, ExponentsOfPcElement
                      ( pcgs, pcgs[ n ] ^ p ) ) );
        od;
    od;

    # Find the relations of the conjugates.
    for i  in [ 1 .. Length( index ) - 1 ]  do
        for n  in [ index[ i ] .. index[ i + 1 ] - 1 ]  do
            for i2  in [ 1 .. i - 1 ]  do
                if isPcgsCentral then
                    for n2  in [ index[ i2 ] .. index[ i2 + 1 ] - 1 ]  do
                        SetConjugateNC( sc, n, n2,
                            GeneratorsOfRws( sc )[ n ]*
                        LinearCombinationPcgs( gens,
                            ExponentsOfPcElement( pcgs, Comm
                            ( pcgs[ n ], pcgs[ n2 ] ) ) ) );
                    od;
                else
                    for n2  in [ index[ i2 ] .. index[ i2 + 1 ] - 1 ]  do
                        SetConjugateNC( sc, n, n2, LinearCombinationPcgs( gens,
                            ExponentsOfPcElement
                            ( pcgs,
                              pcgs[ n ] ^ pcgs[ n2 ]) ) );
                    od;
                fi;
            od;
            for n2  in [ index[ i ] .. n - 1 ]  do
                SetConjugateNC( sc, n, n2,
                    GeneratorsOfRws( sc )[ n ]*LinearCombinationPcgs( gens,
                      ExponentsOfPcElement( pcgs, Comm
                      ( pcgs[ n ], pcgs[ n2 ] ) ) ) );
            od;
        od;
    od;
    UpdatePolycyclicCollector( sc );
    m:=GroupByRwsNC( sc );
    SetParentAttr(m,m); # some other routines are obnocious otherwise.
    return m;
end );

#############################################################################
##
#F  SolvableNormalClosurePermGroup( <G>, <H> )  . . . solvable normal closure
##
InstallGlobalFunction( SolvableNormalClosurePermGroup, function( G, H )
    local   U,  oldlen,  series,  bound,  z,  S;

    U := CopyStabChain( StabChainImmutable( TrivialSubgroup( G ) ) );
    oldlen := Length( U.labels );

    # The `genlabels' at every level of $U$ must be sets.
    S := U;
    while not IsEmpty( S.genlabels )  do
        Sort( S.genlabels );
        S := S.stabilizer;
    od;

    if HasBaseOfGroup(G) and not IsSubset(G,BaseStabChain(U)) then
      Error("incompatible bases");
    fi;

    U.relativeOrders := [  ];
    series := [ U ];

    # The derived length of <G> is at most (5 log_3(deg(<G>)))/2 (Dixon).
    bound := Int( LogInt( Maximum(1,NrMovedPoints( G ) ^ 5), 3 ) / 2 );
    if     HasSize( G )
       and Length( Factors(Integers, Size( G ) ) ) < bound  then
        bound := Length( Factors(Integers, Size( G ) ) );
    fi;

    if IsGroup( H )  then
        H := GeneratorsOfGroup( H );
    fi;
    for z  in H  do
        if ExtendSeriesPermGroup( G, series, false, false, false, z, 0, 0,
                   bound ) <> true  then
            return fail;
        fi;
    od;


    U := GroupStabChain( G, series[ 1 ], true );
    SetIsSolvableGroup( U, true );
    SetIsNormalInParent( U, true );

    # remember the pcgs
    SetPcgs(U,PcgsStabChainSeries(IsPcgsPermGroupRep,U,series,oldlen,false));

    return U;
end );

#############################################################################
##
#M  NumeratorOfModuloPcgs( <pcgs> ) . . . . . . . . . .  for perm modulo pcgs
##
InstallOtherMethod( NumeratorOfModuloPcgs, true,
    [ IsModuloPcgsPermGroupRep ], 0,
    pcgs -> Pcgs( GroupOfPcgs( pcgs ) ) );

#############################################################################
##
#M  DenominatorOfModuloPcgs( <pcgs> ) . . . . . . . . .  for perm modulo pcgs
##
InstallOtherMethod( DenominatorOfModuloPcgs, true,
    [ IsModuloPcgsPermGroupRep ], 0,
    pcgs -> Pcgs( pcgs!.denominator ) );

#############################################################################
##
#M  Pcgs( <G> ) . . . . . . . . . . . . . . . . . . . .  pcgs for perm groups
##
InstallMethod( Pcgs, "Sims's method", true, [ IsPermGroup ],
        100,  # to override method ``from indep. generators of abelian group''
    function( G )
    local   pcgs;

    pcgs := TryPcgsPermGroup( G, false, false, true );
    if not IsPcgs( pcgs )  then
      return fail;
    else
      if not HasPcgsElementaryAbelianSeries(G) then
        SetPcgsElementaryAbelianSeries(G,pcgs);
      fi;
      return pcgs;
    fi;
end );

InstallMethod( Pcgs, "tail of perm pcgs", true,
        [ IsMemberPcSeriesPermGroup ], 100,
        PcgsMemberPcSeriesPermGroup );


#############################################################################
##
#M  HomePcgs( <G> ) . . . . . . . . . . . . . . . . home pcgs for perm groups
##
InstallMethod( HomePcgs, "use a perm pcgs if possible", true,
    [ IsPermGroup and HasPcgs ],
    function( G )
    local   pcgs;

    pcgs := Pcgs( G );
    if IsPcgsPermGroupRep( pcgs ) then
        if HasParentPcgs( pcgs ) then
            return ParentPcgs( pcgs );
        else
            return pcgs;
        fi;
    else
        TryNextMethod();
    fi;
end);


InstallMethod( HomePcgs, "try to compute a perm pcgs", true,
    [ IsPermGroup ],
    function( G )
    local   pcgs;

    pcgs := TryPcgsPermGroup( G, false, false, true );

    if not IsPcgs( pcgs )  then
        TryNextMethod();
    else
      if not HasPcgsElementaryAbelianSeries(G) then
        SetPcgsElementaryAbelianSeries(G,pcgs);
      fi;
      return pcgs;
    fi;
end );


#############################################################################
##
#M  GroupOfPcgs( <pcgs> ) . . . . . . . . . . . . . . . . . . for perm groups
##
InstallMethod( GroupOfPcgs, true, [ IsPcgs and IsPcgsPermGroupRep ], 0,
    function( pcgs )
    local   G;

    G := GroupStabChain( pcgs!.stabChain );
    SetPcgs( G, pcgs );
    return G;
end );

#############################################################################
##
#M  PcSeries( <pcgs> )  . . . . . . . . . . . . . . . . . . . for perm groups
##
InstallMethod( PcSeries, true, [ IsPcgs and IsPcgsPermGroupRep ], 0,
    function( pcgs )
    local   series,  G,  N,  i;

    G := GroupOfPcgs( pcgs );
    N := CopyStabChain( StabChainImmutable( TrivialSubgroup( G ) ) );
    series := [ GroupStabChain( G, CopyStabChain( N ), true ) ];
    for i  in Reversed( [ 1 .. Length( pcgs ) ] )  do
        AddNormalizingElementPcgs( N, pcgs[ i ] );
        Add( series, GroupStabChain( G, CopyStabChain( N ), true ) );
    od;
    return Reversed( series );
end );

#############################################################################
##
#F  TailOfPcgsPermGroup( <pcgs>, <from> ) . . . . . . . . construct tail pcgs
##
InstallGlobalFunction( TailOfPcgsPermGroup, function( pcgs, from )
local   tail,  i,ins,pins,ran,filt,attr;

  i := 1;
  pins:=pcgs!.permpcgsNormalSteps;
  while pins[ i ] < from  do
      i := i + 1;
  od;
  ran:=[pins[i]..Length(pcgs)];

  ins:=pins{[i..Length(pins)]}-from+1;

  filt:=IsPcgs
        #NOT PcgsPermGroupRep -- otherwise we get wrong exponents!
        #and IsPcgsPermGroupRep
        and IsPrimeOrdersPcgs
        and IsInducedPcgs and IsInducedPcgsRep and IsTailInducedPcgsRep
        and HasParentPcgs;
  attr:=[ParentPcgs,pcgs];

  if HasIndicesEANormalSteps(pcgs) then
    filt:=filt and HasIndicesEANormalSteps;
    Append(attr,[IndicesEANormalSteps,ins]);
  fi;
  if HasEANormalSeriesByPcgs(pcgs) then
    filt:=filt and HasEANormalSeriesByPcgs;
    Append(attr,[EANormalSeriesByPcgs,
                 EANormalSeriesByPcgs(pcgs){[i..Length(pins)]}]);
  fi;

  tail := PcgsByPcSequenceCons(
          IsPcgsDefaultRep,
          filt,
          FamilyObj( OneOfPcgs( pcgs ) ),
          pcgs{[pins[i]..Length(pcgs)]},
          attr);

  tail!.permpcgsNormalSteps:=ins;

  SetRelativeOrders(tail,RelativeOrders(pcgs){[from..Length(pcgs)]});
  tail!.stabChain := StabChainMutable( EANormalSeriesByPcgs( pcgs )[ i ] );
  if from < pins[ i ]  then
    tail := ExtendedPcgs( tail,
                    pcgs{ [ from .. pins[ i ] - 1 ] } );
  fi;
  tail!.tailStart := from;
  # information many InducedPcgs methods use
  tail!.depthsInParent:=ran;
  tail!.depthMapFromParent:=[];
  tail!.depthMapFromParent{ran}:=[1..Length(tail)];
  tail!.depthMapFromParent[Length(pcgs)+1]:=Length(tail)+1;
  return tail;

end );

#############################################################################
##
#M  InducedPcgsByPcSequenceNC( <pcgs>, <pcs> )  . . . . . . . .  as perm pcgs
##
InstallMethod( InducedPcgsByPcSequenceNC, "tail of perm pcgs", true,
  [ IsPcgsPermGroupRep and IsPrimeOrdersPcgs and IsPcgs,
    IsList and IsPermCollection ], 0,
function( pcgs, pcs )
local   l,i,ran;

  l := Length( pcgs )-Length( pcs );
  i := Position( pcgs!.permpcgsNormalSteps, l+1 );
  ran:=[ l + 1 .. Length( pcgs ) ];
  if i = fail  or pcgs{ ran } <> pcs  then
    TryNextMethod();
  fi;
  return TailOfPcgsPermGroup(pcgs,ran[1]);
end );

#############################################################################
##
#M  InducedPcgsWrtHomePcgs( <U> ) . . . . . . . . . . . . . . . via home pcgs
##
InstallMethod( InducedPcgsWrtHomePcgs, "tail of perm pcgs", true,
        [ IsMemberPcSeriesPermGroup and HasHomePcgs ], 0,
function( U )
local   pcgs,par,ran;

  pcgs := PcgsMemberPcSeriesPermGroup( U );
  par:=HomePcgs(U);
  SetFilterObj( pcgs, IsInducedPcgs and IsInducedPcgsRep);
  SetParentPcgs( pcgs,par ) ;
  # information many InducedPcgs methods use
  ran:=[par!.permpcgsNormalSteps[U!.noInSeries]..Length(par)];
  pcgs!.depthsInParent:=ran;
  pcgs!.depthMapFromParent:=[];
  pcgs!.depthMapFromParent{ran}:=[1..Length(pcgs)];
  pcgs!.depthMapFromParent[Length(par)+1]:=Length(pcgs)+1;
  pcgs!.tailStart:=par!.permpcgsNormalSteps[U!.noInSeries];
  return pcgs;
end );

#############################################################################
##
#M  ExtendedPcgs( <N>, <gens> ) . . . . . . . . . . . . . . .  in perm groups
##
InstallMethod( ExtendedPcgs, "perm pcgs", true,
        [ IsPcgs and IsPcgsPermGroupRep and IsPrimeOrdersPcgs,
          IsList and IsPermCollection ], 0,
    function( N, gens )
    local   S,  gen,  pcs,  pcgs;

    S := CopyStabChain( N!.stabChain );
    S.relativeOrders := ShallowCopy( RelativeOrders( N ) );
    for gen  in Reversed( gens )  do
        AddNormalizingElementPcgs( S, gen );
    od;
    pcs := S.labels{ [ 2 .. Length( S.labels ) -
                   Length( N!.stabChain.labels ) + Length( N ) + 1 ] };
    if IsInducedPcgs( N )  then
        pcgs := InducedPcgsByPcSequenceNC( ParentPcgs( N ), pcs );
    else
        pcgs := PcgsByPcSequenceCons( IsPcgsDefaultRep,
                        IsPcgs and IsPcgsPermGroupRep and IsPrimeOrdersPcgs,
                        FamilyObj( OneOfPcgs( N ) ), pcs,[] );
    fi;
    pcgs!.stabChain := S;
    SetRelativeOrders( pcgs, S.relativeOrders );
    Unbind( S.relativeOrders );
    pcgs!.permpcgsNormalSteps:=Concatenation([1],N!.permpcgsNormalSteps+1);
    SetEANormalSeriesByPcgs( pcgs, Concatenation( [ GroupStabChain( S ) ],
            EANormalSeriesByPcgs( N ) ) );
    return pcgs;
end );

#############################################################################
##
#M  DepthOfPcElement( <pcgs>, <g> [ , <from> ] )  . . . . . . for perm groups
##
InstallMethod( DepthOfPcElement,"permpcgs", true,
        [ IsPcgs and IsPcgsPermGroupRep and IsPrimeOrdersPcgs, IsPerm ], 0,
    function( pcgs, g )
    return ExponentsOfPcElementPermGroup( pcgs, g, 1, Length( pcgs ), 'd' );
end );

InstallMethod( DepthAndLeadingExponentOfPcElement,"permpcgs", true,
        [ IsPcgs and IsPcgsPermGroupRep and IsPrimeOrdersPcgs, IsPerm ], 0,
    function( pcgs, g )
    return ExponentsOfPcElementPermGroup( pcgs, g, 1, Length( pcgs ), 's' );
end );

InstallOtherMethod( DepthOfPcElement,"permpcgs,start", true,
        [ IsPcgs and IsPcgsPermGroupRep and IsPrimeOrdersPcgs, IsPerm,
          IsPosInt ], 0,
    function( pcgs, g, depth )
    return ExponentsOfPcElementPermGroup( pcgs, g, depth, Length( pcgs ),
                   'd' );
end );

#############################################################################
##
#M  LeadingExponentOfPcElement( <pcgs>, <g> ) . . . . . . . . for perm groups
##
InstallMethod( LeadingExponentOfPcElement, true,
        [ IsPcgs and IsPcgsPermGroupRep and IsPrimeOrdersPcgs, IsPerm ], 0,
    function( pcgs, g )
    return ExponentsOfPcElementPermGroup( pcgs, g, 1, Length( pcgs ), 'l' );
end );

#############################################################################
##
#M  ExponentsOfPcElement( <pcgs>, <g> [ , <poss> ] )  . . . . for perm groups
##
InstallMethod( ExponentsOfPcElement, "perm group", true,
        [ IsPcgs and IsPcgsPermGroupRep and IsPrimeOrdersPcgs, IsPerm ], 0,
    function( pcgs, g )
    return ExponentsOfPcElementPermGroup( pcgs, g, 1, Length( pcgs ), 'e' );
end );

InstallOtherMethod( ExponentsOfPcElement, "perm group with positions", true,
        [ IsPcgs and IsPcgsPermGroupRep and IsPrimeOrdersPcgs, IsPerm,
          IsList and IsCyclotomicCollection ], 0,
    function( pcgs, g, poss )
    return ExponentsOfPcElementPermGroup( pcgs, g, 1, Maximum( poss ), 'e' )
           { poss };
           # was: { poss - Minimum( poss ) + 1 };
end );

InstallOtherMethod( ExponentsOfPcElement, "perm group with 0 positions", true,
        [ IsPcgs and IsPcgsPermGroupRep and IsPrimeOrdersPcgs, IsPerm,
          IsList and IsEmpty ], 0,
    function( pcgs, g, poss )
    return [  ];
end );

#############################################################################
##
#M  ExponentOfPcElement( <pcgs>, <g>, <pos> ) . . . . . . . . for perm groups
##
InstallMethod( ExponentOfPcElement, true,
        [ IsPcgs and IsPcgsPermGroupRep and IsPrimeOrdersPcgs, IsPerm,
          IsPosInt ], 0,
    function( pcgs, g, pos )
    return ExponentsOfPcElementPermGroup( pcgs, g, 1, pos, 'e' )[ pos ];
end );

#############################################################################
##
#M  RepresentativeAction( <G>, <d>, <e>, OnPoints )   first compare cycles
##
InstallOtherMethod( RepresentativeActionOp,
  "cycle structure comparison for solvable perm groups", true,
  [ IsPermGroup and CanEasilyComputePcgs, IsPerm, IsPerm, IsFunction ], 0,
function( G, d, e, opr )
    if opr <> OnPoints  or not (d in G and e in G) then
        TryNextMethod();
    elif Collected( CycleLengths( d, MovedPoints( G ) ) ) <>
         Collected( CycleLengths( e, MovedPoints( G ) ) )  then
        return fail;
    else
        TryNextMethod();
    fi;
end );

BIND_GLOBAL( "CYCLICACHE", NEW_SORTED_CACHE(false) );

InstallGlobalFunction(CreateIsomorphicPcGroup,function(pcgs,needindices,flag)
local r,i,p,A,f,a;
  r:=RelativeOrders(pcgs);
  if Length(r)<=1 then
    p:=Product(r);
    return GET_FROM_SORTED_CACHE(CYCLICACHE, p,
        {} -> PermpcgsPcGroupPcgs( pcgs, IndicesEANormalSteps(pcgs), flag ));
  fi;

  # is the group in the mappings families cache?
  f:=FamiliesOfGeneralMappingsAndRanges(FamilyObj(OneOfPcgs(pcgs)));
  i:=1;
  atomic readonly GENERAL_MAPPING_REGION do # for HPC-GAP; does nothing in plain GAP
  while i<=Length(f) do
    a:=ElmWPObj(f,i);
    if a<>fail and IsBound(a!.DefiningPcgs)
       and RelativeOrders(a!.DefiningPcgs)=r then
      # right type PCGS -- test relations
      a:=a!.DefiningPcgs;
      if (needindices=false or  (not HasIndicesEANormalSteps(a)) or
        IndicesEANormalSteps(a)=IndicesEANormalSteps(pcgs)) and
        ForAll([1..Length(r)-1],x->
        ExponentsOfPcElement(a,a[x]^r[x])
        =ExponentsOfPcElement(pcgs,pcgs[x]^r[x])) and
        ForAll([1..Length(r)],x->ForAll([x+1..Length(r)],y->
          ExponentsOfPcElement(a,a[y]^a[x])
          =ExponentsOfPcElement(pcgs,pcgs[y]^pcgs[x]))) then

        # indeed the group is OK
        if not HasIndicesEANormalSteps(a) then
          SetIndicesEANormalSteps(a,IndicesEANormalSteps(pcgs));
        fi;
        A:=GroupOfPcgs(a);
        return A;
      fi;
    fi;
    i:=i+2;
  od;
  od; # end of atomic
  A := PermpcgsPcGroupPcgs( pcgs, IndicesEANormalSteps(pcgs), flag );
  return A;
end);



#############################################################################
##
#M  IsomorphismPcGroup( <G> ) . . . . . . . . . . . .  perm group as pc group
##
InstallMethod( IsomorphismPcGroup, true, [ IsPermGroup ], 0,
    function( G )
    local   iso,  A,  pcgs;

    # Make  a pcgs   based on  an  elementary   abelian series (good  for  ag
    # routines).
    pcgs:=PcgsElementaryAbelianSeries(G);
    if not IsPcgs( pcgs )  then
        return fail;
    fi;

    # Construct the pcp group <A> and the bijection between <A> and <G>.
    A:=CreateIsomorphicPcGroup(pcgs,false,false);

    iso := GroupHomomorphismByImagesNC( G, A, pcgs, GeneratorsOfGroup( A ) );
    SetIsBijective( iso, true );

    return iso;
end );

#############################################################################
##
#M  ModuloPcgs( <G>, <N> )
##
InstallMethod( ModuloPcgs, "for permutation groups", IsIdenticalObj,
        [ IsPermGroup, IsPermGroup ], 0,
function( G, N )
local   pcgs;

  # Make  a pcgs   based on  an  elementary   abelian series (good  for  ag
  # routines).
  pcgs := TryPcgsPermGroup( [ G, N ], false, false, true );

  if not IsModuloPcgs( pcgs )  then
      return fail;
  fi;

  # set nomerator and denominator appropriately
  SetNumeratorOfModuloPcgs(pcgs,GeneratorsOfGroup(G));
  SetDenominatorOfModuloPcgs(pcgs,GeneratorsOfGroup(N));

  return pcgs;
end);

#############################################################################
##
#M  PcgsElementaryAbelianSeries( <G> )
##
InstallMethod( PcgsElementaryAbelianSeries, "perm group", true,
  [ IsPermGroup ], 0,
function(G)
local pcgs;
  if HasPcgs(G) and IsPcgsElementaryAbelianSeries(Pcgs(G)) then
    return Pcgs(G);
  fi;
  pcgs:=TryPcgsPermGroup( G, false, false, true );
  if IsPcgs(pcgs) and not HasPcgs(G) then
       SetPcgs(G,pcgs);
  fi;
  return pcgs;
end);


#############################################################################
##
#M  MaximalSubgroupClassReps( <G> )
##
##  method for solvable perm groups -- it is cheaper to translate to a pc
##  group
InstallMethod( CalcMaximalSubgroupClassReps,"solvable perm group",true,
    [ IsPermGroup and CanEasilyComputePcgs and IsFinite ], 0,
function(G)
local hom,m;
  hom:=IsomorphismPcGroup(G);
  m:=MaximalSubgroupClassReps(Image(hom));
  List(m,Size); # force
  return List(m,i->PreImage(hom,i));
end);