File: polyfinf.gd

package info (click to toggle)
gap 4.15.1-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 110,212 kB
  • sloc: ansic: 97,261; xml: 48,343; cpp: 13,946; sh: 4,900; perl: 1,650; javascript: 255; makefile: 252; ruby: 9
file content (52 lines) | stat: -rw-r--r-- 2,073 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#############################################################################
##
##  This file is part of GAP, a system for computational discrete algebra.
##  This file's authors include Frank Celler, Alexander Hulpke.
##
##  Copyright of GAP belongs to its developers, whose names are too numerous
##  to list here. Please refer to the COPYRIGHT file for details.
##
##  SPDX-License-Identifier: GPL-2.0-or-later
##
##  This file contains functions for polynomials over finite fields
##

#############################################################################
##
#F  FactorsCommonDegreePol( <R>, <f>, <d> ) . . . . . . . . . . . . . factors
##
##  <f> must be a  square free product of  irreducible factors of  degree <d>
##  and leading coefficient 1.  <R>  must be a polynomial  ring over a finite
##  field of size p^k.
##
DeclareGlobalFunction("FactorsCommonDegreePol");

#############################################################################
##
#F  RootsRepresentativeFFPol( <R>, <f>, <n> )
##
##  returns a <n>-th root of the finite field polynomial <f>.
DeclareGlobalFunction("RootsRepresentativeFFPol");

#############################################################################
##
#F  OrderKnownDividendList( <l>, <pp> ) . . . . . . . . . . . . . . . . local
##
##  Computes  an  integer  n  such  that  OnSets( <l>, n ) contains  only one
##  element e.  <pp> must be a list of prime powers of an integer d such that
##  n divides d. The functions returns the integer n and the element e.
##
DeclareGlobalFunction("OrderKnownDividendList");

#############################################################################
##
#F  FFPOrderKnownDividend( <R>, <g>, <f>, <pp> )  . . . . . . . . . . . local
##
##  Computes an integer n such that <g>^n = const  mod <f> where <g>  and <f>
##  are polynomials in <R> and <pp> is list  of prime powers of  an integer d
##  such that n divides  d.   The  functions  returns  the integer n  and the
##  element const.
DeclareGlobalFunction("FFPOrderKnownDividend");

DeclareGlobalFunction("FFPFactors");