1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
|
#############################################################################
##
## This file is part of GAP, a system for computational discrete algebra.
## This file's authors include Frank Celler, Alexander Hulpke.
##
## Copyright of GAP belongs to its developers, whose names are too numerous
## to list here. Please refer to the COPYRIGHT file for details.
##
## SPDX-License-Identifier: GPL-2.0-or-later
##
## This file contains functions for polynomials over finite fields
##
#############################################################################
##
#F FactorsCommonDegreePol( <R>, <f>, <d> ) . . . . . . . . . . . . . factors
##
## <f> must be a square free product of irreducible factors of degree <d>
## and leading coefficient 1. <R> must be a polynomial ring over a finite
## field of size p^k.
##
DeclareGlobalFunction("FactorsCommonDegreePol");
#############################################################################
##
#F RootsRepresentativeFFPol( <R>, <f>, <n> )
##
## returns a <n>-th root of the finite field polynomial <f>.
DeclareGlobalFunction("RootsRepresentativeFFPol");
#############################################################################
##
#F OrderKnownDividendList( <l>, <pp> ) . . . . . . . . . . . . . . . . local
##
## Computes an integer n such that OnSets( <l>, n ) contains only one
## element e. <pp> must be a list of prime powers of an integer d such that
## n divides d. The functions returns the integer n and the element e.
##
DeclareGlobalFunction("OrderKnownDividendList");
#############################################################################
##
#F FFPOrderKnownDividend( <R>, <g>, <f>, <pp> ) . . . . . . . . . . . local
##
## Computes an integer n such that <g>^n = const mod <f> where <g> and <f>
## are polynomials in <R> and <pp> is list of prime powers of an integer d
## such that n divides d. The functions returns the integer n and the
## element const.
DeclareGlobalFunction("FFPOrderKnownDividend");
DeclareGlobalFunction("FFPFactors");
|