File: ring.gd

package info (click to toggle)
gap 4.15.1-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 110,212 kB
  • sloc: ansic: 97,261; xml: 48,343; cpp: 13,946; sh: 4,900; perl: 1,650; javascript: 255; makefile: 252; ruby: 9
file content (1482 lines) | stat: -rw-r--r-- 49,838 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
#############################################################################
##
##  This file is part of GAP, a system for computational discrete algebra.
##  This file's authors include Thomas Breuer.
##
##  Copyright of GAP belongs to its developers, whose names are too numerous
##  to list here. Please refer to the COPYRIGHT file for details.
##
##  SPDX-License-Identifier: GPL-2.0-or-later
##
##  This file declares the operations for rings.
##


#############################################################################
##
#P  IsNearRing( <R> )
##
##  <ManSection>
##  <Prop Name="IsNearRing" Arg='R'/>
##
##  <Description>
##  A <E>near-ring</E> in &GAP; is a near-additive group
##  (see&nbsp;<Ref Func="IsNearAdditiveGroup"/>) that is also a semigroup (see&nbsp;<Ref Func="IsSemigroup"/>),
##  such that addition <C>+</C> and multiplication <C>*</C> are right distributive
##  (see&nbsp;<Ref Func="IsRDistributive"/>).
##  Any associative ring (see&nbsp;<Ref Func="IsRing"/>) is also a near-ring.
##  </Description>
##  </ManSection>
##
DeclareSynonymAttr( "IsNearRing",
    IsNearAdditiveGroup and IsMagma and IsRDistributive and IsAssociative );


#############################################################################
##
#P  IsNearRingWithOne( <R> )
##
##  <ManSection>
##  <Prop Name="IsNearRingWithOne" Arg='R'/>
##
##  <Description>
##  A <E>near-ring-with-one</E> in &GAP; is a near-ring (see&nbsp;<Ref Prop="IsNearRing"/>)
##  that is also a magma-with-one (see&nbsp;<Ref Func="IsMagmaWithOne"/>).
##  <P/>
##  Note that the identity and the zero of a near-ring-with-one need <E>not</E> be
##  distinct.
##  This means that a near-ring that consists only of its zero element can be
##  regarded as a near-ring-with-one.
##  </Description>
##  </ManSection>
##
DeclareSynonymAttr( "IsNearRingWithOne", IsNearRing and IsMagmaWithOne );


#############################################################################
##
#A  AsNearRing( <C> )
##
##  <ManSection>
##  <Attr Name="AsNearRing" Arg='C'/>
##
##  <Description>
##  If the elements in the collection <A>C</A> form a near-ring then <C>AsNearRing</C>
##  returns this near-ring, otherwise <K>fail</K> is returned.
##  </Description>
##  </ManSection>
##
DeclareAttribute( "AsNearRing", IsNearRingElementCollection );


#############################################################################
##
#P  IsRing( <R> )
##
##  <#GAPDoc Label="IsRing">
##  <ManSection>
##  <Filt Name="IsRing" Arg='R'/>
##
##  <Description>
##  A <E>ring</E> in &GAP; is an additive group
##  (see&nbsp;<Ref Filt="IsAdditiveGroup"/>)
##  that is also a magma (see&nbsp;<Ref Filt="IsMagma"/>),
##  such that addition <C>+</C> and multiplication <C>*</C> are distributive,
##  see <Ref Prop="IsDistributive"/>.
##  <P/>
##  The multiplication need <E>not</E> be associative
##  (see&nbsp;<Ref Prop="IsAssociative"/>).
##  For example, a Lie algebra (see&nbsp;<Ref Chap="Lie Algebras"/>)
##  is regarded as a ring in &GAP;.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareSynonymAttr( "IsRing",
    IsAdditiveGroup and IsMagma and IsDistributive );


#############################################################################
##
#P  IsRingWithOne( <R> )
##
##  <#GAPDoc Label="IsRingWithOne">
##  <ManSection>
##  <Filt Name="IsRingWithOne" Arg='R'/>
##
##  <Description>
##  A <E>ring-with-one</E> in &GAP; is a ring (see&nbsp;<Ref Filt="IsRing"/>)
##  that is also a magma-with-one (see&nbsp;<Ref Filt="IsMagmaWithOne"/>).
##  <P/>
##  Note that the identity and the zero of a ring-with-one need <E>not</E> be
##  distinct.
##  This means that a ring that consists only of its zero element can be
##  regarded as a ring-with-one.
##  <!-- shall we force <E>every</E> trivial ring to be a ring-with-one-->
##  <!-- by installing an implication?-->
##  <P/>
##  This is especially useful in the case of finitely presented rings,
##  in the sense that each factor of a ring-with-one is again a
##  ring-with-one.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareSynonymAttr( "IsRingWithOne", IsRing and IsMagmaWithOne );


#############################################################################
##
#A  AsRing( <C> )
##
##  <#GAPDoc Label="AsRing">
##  <ManSection>
##  <Attr Name="AsRing" Arg='C'/>
##
##  <Description>
##  If the elements in the collection <A>C</A> form a ring then
##  <Ref Func="AsRing"/> returns this ring,
##  otherwise <K>fail</K> is returned.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "AsRing", IsRingElementCollection );


#############################################################################
##
#A  GeneratorsOfRing( <R> )
##
##  <#GAPDoc Label="GeneratorsOfRing">
##  <ManSection>
##  <Attr Name="GeneratorsOfRing" Arg='R'/>
##
##  <Description>
##  <Ref Attr="GeneratorsOfRing"/> returns a list of elements such that the
##  ring <A>R</A> is the closure of these elements under addition,
##  multiplication, and taking additive inverses.
##  <Example><![CDATA[
##  gap> R:=Ring( 2, 1/2 );
##  <ring with 2 generators>
##  gap> GeneratorsOfRing( R );
##  [ 2, 1/2 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "GeneratorsOfRing", IsRing );


#############################################################################
##
#A  GeneratorsOfRingWithOne( <R> )
##
##  <#GAPDoc Label="GeneratorsOfRingWithOne">
##  <ManSection>
##  <Attr Name="GeneratorsOfRingWithOne" Arg='R'/>
##
##  <Description>
##  <Ref Attr="GeneratorsOfRingWithOne"/> returns a list of elements
##  such that the ring <A>R</A> is the closure of these elements
##  under addition, multiplication, taking additive inverses, and taking
##  the identity element <C>One( <A>R</A> )</C>.
##  <P/>
##  <A>R</A> itself need <E>not</E> be known to be a ring-with-one.
##  <P/>
##  <Example><![CDATA[
##  gap> R:= RingWithOne( [ 4, 6 ] );
##  Integers
##  gap> GeneratorsOfRingWithOne( R );
##  [ 1 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "GeneratorsOfRingWithOne", IsRingWithOne );


#############################################################################
##
#O  RingByGenerators( <C> ) . . . . . . .  ring gener. by elements in a coll.
##
##  <#GAPDoc Label="RingByGenerators">
##  <ManSection>
##  <Oper Name="RingByGenerators" Arg='C'/>
##
##  <Description>
##  <Ref Oper="RingByGenerators"/> returns the ring generated by the elements
##  in the collection <A>C</A>,
##  i.&nbsp;e., the closure of <A>C</A> under addition, multiplication,
##  and taking additive inverses.
##  <Example><![CDATA[
##  gap> RingByGenerators([ 2, E(4) ]);
##  <ring with 2 generators>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "RingByGenerators", [ IsCollection ] );


#############################################################################
##
#O  DefaultRingByGenerators( <coll> ) . . . . default ring containing a coll.
##
##  <#GAPDoc Label="DefaultRingByGenerators">
##  <ManSection>
##  <Oper Name="DefaultRingByGenerators" Arg='coll'/>
##
##  <Description>
##  For a collection <A>coll</A>, returns a default ring in which
##  <A>coll</A> is contained.
##  <Example><![CDATA[
##  gap> DefaultRingByGenerators([ 2, E(4) ]);
##  GaussianIntegers
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "DefaultRingByGenerators", [ IsCollection ] );


#############################################################################
##
#F  Ring( <r>, <s>, ... )  . . . . . . . . . . ring generated by a collection
#F  Ring( <coll> ) . . . . . . . . . . . . . . ring generated by a collection
##
##  <#GAPDoc Label="Ring">
##  <ManSection>
##  <Heading>Ring</Heading>
##  <Func Name="Ring" Arg='r, s, ...' Label="for ring elements"/>
##  <Func Name="Ring" Arg='coll' Label="for a collection"/>
##
##  <Description>
##  In the first form <Ref Func="Ring" Label="for ring elements"/>
##  returns the smallest ring that contains all the elements
##  <A>r</A>, <A>s</A>, <M>\ldots</M>
##  In the second form <Ref Func="Ring" Label="for a collection"/> returns
##  the smallest ring that contains all the elements in the collection
##  <A>coll</A>.
##  If any element is not an element of a ring or if the elements lie in no
##  common ring an error is raised.
##  <P/>
##  <Ref Func="Ring" Label="for ring elements"/> differs from
##  <Ref Func="DefaultRing" Label="for ring elements"/> in that it returns
##  the smallest ring in which the elements lie,
##  while <Ref Func="DefaultRing" Label="for ring elements"/>
##  may return a larger ring if that makes sense.
##  <Example><![CDATA[
##  gap> Ring( 2, E(4) );
##  <ring with 2 generators>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "Ring" );


#############################################################################
##
#O  RingWithOneByGenerators( <coll> )
##
##  <#GAPDoc Label="RingWithOneByGenerators">
##  <ManSection>
##  <Oper Name="RingWithOneByGenerators" Arg='coll'/>
##
##  <Description>
##  <Ref Oper="RingWithOneByGenerators"/> returns the ring-with-one
##  generated by the elements in the collection <A>coll</A>,
##  i.&nbsp;e., the closure of <A>coll</A> under
##  addition, multiplication, taking additive inverses,
##  and taking the identity of an element.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "RingWithOneByGenerators", [ IsCollection ] );


#############################################################################
##
#F  RingWithOne( <r>, <s>, ... )  . . ring-with-one generated by a collection
#F  RingWithOne( <C> )  . . . . . . . ring-with-one generated by a collection
##
##  <#GAPDoc Label="RingWithOne">
##  <ManSection>
##  <Heading>RingWithOne</Heading>
##  <Func Name="RingWithOne" Arg='r, s, ...' Label="for ring elements"/>
##  <Func Name="RingWithOne" Arg='coll' Label="for a collection"/>
##
##  <Description>
##  In the first form <Ref Func="RingWithOne" Label="for ring elements"/>
##  returns the smallest ring with one that contains all the elements
##  <A>r</A>, <A>s</A>, <M>\ldots</M>
##  In the second form <Ref Func="RingWithOne" Label="for a collection"/>
##  returns the smallest ring with one that contains all the elements
##  in the collection <A>C</A>.
##  If any element is not an element of a ring or if the elements lie in no
##  common ring an error is raised.
##  <Example><![CDATA[
##  gap> RingWithOne( [ 4, 6 ] );
##  Integers
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "RingWithOne" );


#############################################################################
##
#F  DefaultRing( <r>, <s>, ... )  . . .  default ring containing a collection
#F  DefaultRing( <coll> ) . . . . . . .  default ring containing a collection
##
##  <#GAPDoc Label="DefaultRing">
##  <ManSection>
##  <Heading>DefaultRing</Heading>
##  <Func Name="DefaultRing" Arg='r, s, ...' Label="for ring elements"/>
##  <Func Name="DefaultRing" Arg='coll' Label="for a collection"/>
##
##  <Description>
##  In the first form <Ref Func="DefaultRing" Label="for ring elements"/>
##  returns a ring that contains all the elements <A>r</A>, <A>s</A>,
##  <M>\ldots</M> etc.
##  In the second form <Ref Func="DefaultRing" Label="for a collection"/>
##  returns a ring that contains all the elements in the collection
##  <A>coll</A>.
##  If any element is not an element of a ring or if the elements lie in no
##  common ring an error is raised.
##  <P/>
##  The ring returned by <Ref Func="DefaultRing" Label="for ring elements"/>
##  need not be the smallest ring in which the elements lie.
##  For example for elements from cyclotomic fields,
##  <Ref Func="DefaultRing" Label="for ring elements"/> may return the ring
##  of integers of the smallest cyclotomic field in which the elements lie,
##  which need not be the smallest ring overall,
##  because the elements may in fact lie in a smaller number field
##  which is itself not a cyclotomic field.
##  <P/>
##  (For the exact definition of the default ring of a certain type of
##  elements, look at the corresponding method installation.)
##  <P/>
##  <Ref Func="DefaultRing" Label="for ring elements"/> is used
##  by ring functions such as <Ref Oper="Quotient"/>, <Ref Oper="IsPrime"/>,
##  <Ref Oper="Factors"/>,
##  or <Ref Func="Gcd" Label="for (a ring and) several elements"/>
##  if no explicit ring is given.
##  <P/>
##  <Ref Func="Ring" Label="for ring elements"/> differs from
##  <Ref Func="DefaultRing" Label="for ring elements"/> in that it returns
##  the smallest ring in which the elements lie,
##  while <Ref Func="DefaultRing" Label="for ring elements"/> may return
##  a larger ring if that makes sense.
##  <P/>
##  <Example><![CDATA[
##  gap> DefaultRing( 2, E(4) );
##  GaussianIntegers
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "DefaultRing" );


#############################################################################
##
#F  Subring( <R>, <gens> ) . . . . . . . . subring of <R> generated by <gens>
#F  SubringNC( <R>, <gens> ) . . . . . . . subring of <R> generated by <gens>
##
##  <#GAPDoc Label="Subring">
##  <ManSection>
##  <Func Name="Subring" Arg='R, gens'/>
##  <Func Name="SubringNC" Arg='R, gens'/>
##
##  <Description>
##  returns the ring with parent <A>R</A> generated by the elements in
##  <A>gens</A>.
##  When the second form, <Ref Func="SubringNC"/> is used,
##  it is <E>not</E> checked whether all elements in <A>gens</A> lie in
##  <A>R</A>.
##  <P/>
##  <Example><![CDATA[
##  gap> R:= Integers;
##  Integers
##  gap> S:= Subring( R, [ 4, 6 ] );
##  <ring with 1 generator>
##  gap> Parent( S );
##  Integers
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "Subring" );
DeclareGlobalFunction( "SubringNC" );


#############################################################################
##
#F  SubringWithOne( <R>, <gens> )   .  subring-with-one of <R> gen. by <gens>
#F  SubringWithOneNC( <R>, <gens> ) .  subring-with-one of <R> gen. by <gens>
##
##  <#GAPDoc Label="SubringWithOne">
##  <ManSection>
##  <Func Name="SubringWithOne" Arg='R, gens'/>
##  <Func Name="SubringWithOneNC" Arg='R, gens'/>
##
##  <Description>
##  returns the ring with one with parent <A>R</A> generated by the elements
##  in <A>gens</A>.
##  When the second form, <Ref Func="SubringWithOneNC"/> is used,
##  it is <E>not</E> checked whether all elements in <A>gens</A> lie in
##  <A>R</A>.
##  <P/>
##  <Example><![CDATA[
##  gap> R:= SubringWithOne( Integers, [ 4, 6 ] );
##  Integers
##  gap> Parent( R );
##  Integers
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "SubringWithOne" );
DeclareGlobalFunction( "SubringWithOneNC" );


#############################################################################
##
#O  ClosureRing( <R>, <r> )
#O  ClosureRing( <R>, <S> )
##
##  <#GAPDoc Label="ClosureRing">
##  <ManSection>
##  <Heading>ClosureRing</Heading>
##  <Oper Name="ClosureRing" Arg='R, r'
##   Label="for a ring and a ring element"/>
##  <Oper Name="ClosureRing" Arg='R, S' Label="for two rings"/>
##
##  <Description>
##  For a ring <A>R</A> and either an element <A>r</A> of its elements family
##  or a ring <A>S</A>,
##  <Ref Oper="ClosureRing" Label="for a ring and a ring element"/>
##  returns the ring generated by both arguments.
##  <P/>
##  <Example><![CDATA[
##  gap> ClosureRing( Integers, E(4) );
##  <ring-with-one, with 2 generators>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "ClosureRing", [ IsRing, IsObject ] );


#############################################################################
##
#C  IsUniqueFactorizationRing( <R> )
##
##  <#GAPDoc Label="IsUniqueFactorizationRing">
##  <ManSection>
##  <Filt Name="IsUniqueFactorizationRing" Arg='R' Type='Category'/>
##
##  <Description>
##  A ring <A>R</A> is called a <E>unique factorization ring</E> if
##  every nonzero element has a unique factorization into
##  irreducible elements,
##  i.e., a  unique representation as product of irreducibles
##  (see <Ref Oper="IsIrreducibleRingElement"/>).
##  Unique in this context means unique up to permutations of the factors and
##  up to multiplication of the factors by units
##  (see&nbsp;<Ref Attr="Units"/>).
##  <P/>
##  (Note that we cannot install a subset maintained method for this filter
##  since the factorization of an element needs not exist in a subring.
##  As an example, consider the subring <M>4 &NN; + 1</M> of the ring
##  <M>4 &ZZ; + 1</M>;
##  in the subring, the element <M>3 \cdot 3 \cdot 11 \cdot 7</M> has the two
##  factorizations <M>33 \cdot 21 = 9 \cdot 77</M>,
##  but in the large ring there is the unique factorization
##  <M>(-3) \cdot (-3) \cdot (-11) \cdot (-7)</M>,
##  and it is easy to see that every element in <M>4 &ZZ; + 1</M> has a
##  unique factorization.)
##  <P/>
##  <Example><![CDATA[
##  gap> IsUniqueFactorizationRing( PolynomialRing( Rationals, 1 ) );
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "IsUniqueFactorizationRing", IsRing );


#############################################################################
##
#C  IsEuclideanRing( <R> )
##
##  <#GAPDoc Label="IsEuclideanRing">
##  <ManSection>
##  <Filt Name="IsEuclideanRing" Arg='R' Type='Category'/>
##
##  <Description>
##  A ring <M>R</M> is called a Euclidean ring if it is a non-trivial commutative ring and
##  there exists a function <M>\delta</M>, called the Euclidean degree, from
##  <M>R-\{0_R\}</M> into a well-ordered set (such as the nonnegative integers),
##  such that for every pair <M>r \in R</M> and <M>s \in  R-\{0_R\}</M> there
##  exists an element <M>q</M> such that either
##  <M>r - q s = 0_R</M> or <M>\delta(r - q s) &lt; \delta( s )</M>.
##  In &GAP; the Euclidean degree <M>\delta</M> is implicitly built into a
##  ring and cannot be changed.
##  The existence of this division with remainder implies that the
##  Euclidean algorithm can be applied to compute a greatest common divisor
##  of two elements,
##  which in turn implies that <M>R</M> is a unique factorization ring.
##  <P/>
##  <!-- more general: new category <Q>valuated domain</Q>?-->
##  <Example><![CDATA[
##  gap> IsEuclideanRing( GaussianIntegers );
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "IsEuclideanRing",
    IsRingWithOne and IsUniqueFactorizationRing );


#############################################################################
##
#P  IsAnticommutative( <R> )
##
##  <#GAPDoc Label="IsAnticommutative">
##  <ManSection>
##  <Prop Name="IsAnticommutative" Arg='R'/>
##
##  <Description>
##  is <K>true</K> if the relation <M>a * b = - b * a</M>
##  holds for all elements <M>a</M>, <M>b</M> in the ring <A>R</A>,
##  and <K>false</K> otherwise.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsAnticommutative", IsRing );

InstallSubsetMaintenance( IsAnticommutative,
    IsRing and IsAnticommutative, IsRing );

InstallFactorMaintenance( IsAnticommutative,
    IsRing and IsAnticommutative, IsObject, IsRing );


#############################################################################
##
#P  IsIntegralRing( <R> )
##
##  <#GAPDoc Label="IsIntegralRing">
##  <ManSection>
##  <Prop Name="IsIntegralRing" Arg='R'/>
##
##  <Description>
##  A ring-with-one <A>R</A> is integral if it is commutative,
##  contains no nontrivial zero divisors,
##  and if its identity is distinct from its zero.
##  <Example><![CDATA[
##  gap> IsIntegralRing( Integers );
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsIntegralRing", IsRing );

InstallSubsetMaintenance( IsIntegralRing,
    IsRing and IsIntegralRing, IsRing and IsNonTrivial );

InstallTrueMethod( IsIntegralRing,
    IsRing and IsMagmaWithInversesIfNonzero and IsNonTrivial );
InstallTrueMethod( IsIntegralRing,
    IsRing and IsCyclotomicCollection and IsNonTrivial );


#############################################################################
##
#P  IsJacobianRing( <R> )
##
##  <#GAPDoc Label="IsJacobianRing">
##  <ManSection>
##  <Prop Name="IsJacobianRing" Arg='R'/>
##
##  <Description>
##  is <K>true</K> if the Jacobi identity holds in the ring <A>R</A>,
##  and <K>false</K> otherwise.
##  The Jacobi identity means that
##  <M>x * (y * z) + z * (x * y) +  y * (z * x)</M>
##  is the zero element of <A>R</A>,
##  for all elements <M>x</M>, <M>y</M>, <M>z</M> in <A>R</A>.
##  <Example><![CDATA[
##  gap> L:= FullMatrixLieAlgebra( GF( 5 ), 7 );
##  <Lie algebra over GF(5), with 13 generators>
##  gap> IsJacobianRing( L );
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsJacobianRing", IsRing );

InstallTrueMethod( IsJacobianRing,
    IsJacobianElementCollection and IsRing );

InstallSubsetMaintenance( IsJacobianRing,
    IsRing and IsJacobianRing, IsRing );

InstallFactorMaintenance( IsJacobianRing,
    IsRing and IsJacobianRing, IsObject, IsRing );


#############################################################################
##
#P  IsZeroSquaredRing( <R> )
##
##  <#GAPDoc Label="IsZeroSquaredRing">
##  <ManSection>
##  <Prop Name="IsZeroSquaredRing" Arg='R'/>
##
##  <Description>
##  is <K>true</K> if <M>a * a</M> is the zero element of the ring <A>R</A>
##  for all <M>a</M> in <A>R</A>, and <K>false</K> otherwise.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsZeroSquaredRing", IsRing );

InstallTrueMethod( IsAnticommutative, IsRing and IsZeroSquaredRing );

InstallTrueMethod( IsZeroSquaredRing,
    IsZeroSquaredElementCollection and IsRing );

InstallSubsetMaintenance( IsZeroSquaredRing,
    IsRing and IsZeroSquaredRing, IsRing );

InstallFactorMaintenance( IsZeroSquaredRing,
    IsRing and IsZeroSquaredRing, IsObject, IsRing );


#############################################################################
##
#P  IsZeroMultiplicationRing( <R> )
##
##  <ManSection>
##  <Prop Name="IsZeroMultiplicationRing" Arg='R'/>
##
##  <Description>
##  is <K>true</K> if <M>a * b</M> is the zero element of the ring <A>R</A>
##  for all <M>a, b</M> in <A>R</A>, and <K>false</K> otherwise.
##  </Description>
##  </ManSection>
##
DeclareProperty( "IsZeroMultiplicationRing", IsRing );

# FIXME: the following implication is correct, but triggers a bug in
# the Sophus package. Until that is fixed, we disable it. To reproduce
# the bug, load Sophus, and enter this command:
#   f:= FullMatrixAlgebra( Rationals, 2 );
# If the bug is still present, this will trigger an error due to
# LeftActingDomain being called on an object which does not (yet)
# have LeftActingDomain set.
#InstallTrueMethod( IsZeroMultiplicationRing, IsRing and IsTrivial );

InstallTrueMethod( IsZeroSquaredRing, IsRing and IsZeroMultiplicationRing );
InstallTrueMethod( IsAssociative, IsRing and IsZeroMultiplicationRing );
InstallTrueMethod( IsCommutative, IsRing and IsZeroMultiplicationRing );
# The implication to `IsAnticommutative' follows from `IsZeroSquaredRing'.

InstallSubsetMaintenance( IsZeroMultiplicationRing,
    IsRing and IsZeroMultiplicationRing, IsRing );

InstallFactorMaintenance( IsZeroMultiplicationRing,
    IsRing and IsZeroMultiplicationRing, IsObject, IsRing );


#############################################################################
##
#A  Units( <R> )
##
##  <#GAPDoc Label="Units">
##  <ManSection>
##  <Attr Name="Units" Arg='R'/>
##
##  <Description>
##  <Ref Attr="Units"/> returns the group of units of the ring <A>R</A>.
##  This may either be returned as a list or as a group.
##  <P/>
##  An element <M>r</M> is called a <E>unit</E> of a ring <M>R</M>
##  if <M>r</M> has an inverse in <M>R</M>.
##  It is easy to see that the set of units forms a multiplicative group.
##  <P/>
##  <Example><![CDATA[
##  gap> Units( GaussianIntegers );
##  [ -1, 1, -E(4), E(4) ]
##  gap> Units( GF( 16 ) );
##  <group of size 15 with 1 generator>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "Units", IsRing );


#############################################################################
##
#O  Factors( [<R>, ]<r> )
##
##  <#GAPDoc Label="Factors">
##  <ManSection>
##  <Oper Name="Factors" Arg='[R, ]r'/>
##
##  <Description>
##  <Ref Oper="Factors"/> returns the factorization of the ring element
##  <A>r</A> in the ring <A>R</A>, if given,
##  and otherwise in its default ring
##  (see <Ref Func="DefaultRing" Label="for ring elements"/>).
##  The factorization is returned as a list of primes
##  (see <Ref Oper="IsPrime"/>).
##  Each element in the list is a standard associate
##  (see <Ref Oper="StandardAssociate"/>) except the first one,
##  which is multiplied by a unit as necessary to have
##  <C>Product( Factors( <A>R</A>, <A>r</A> )  )  = <A>r</A></C>.
##  This list is usually also sorted, thus smallest prime factors come first.
##  If <A>r</A> is a unit or zero,
##  <C>Factors( <A>R</A>, <A>r</A> ) = [ <A>r</A> ]</C>.
##  <P/>
##  <!-- Who does really need the additive structure?
##       We could define <C>Factors</C> for arbitrary commutative monoids.-->
##  <Example><![CDATA[
##  gap> x:= Indeterminate( GF(2), "x" );;
##  gap> pol:= x^2+x+1;
##  x^2+x+Z(2)^0
##  gap> Factors( pol );
##  [ x^2+x+Z(2)^0 ]
##  gap> Factors( PolynomialRing( GF(4) ), pol );
##  [ x+Z(2^2), x+Z(2^2)^2 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "Factors", [ IsRing, IsRingElement ] );


#############################################################################
##
#O  IsAssociated( [<R>, ]<r>, <s> )
##
##  <#GAPDoc Label="IsAssociated">
##  <ManSection>
##  <Oper Name="IsAssociated" Arg='[R, ]r, s'/>
##
##  <Description>
##  <Ref Oper="IsAssociated"/> returns <K>true</K> if the two ring elements
##  <A>r</A> and <A>s</A> are associated in the ring <A>R</A>, if given,
##  and otherwise in their default ring
##  (see <Ref Func="DefaultRing" Label="for ring elements"/>).
##  If the two elements are not associated then <K>false</K> is returned.
##  <P/>
##  Two elements <A>r</A> and <A>s</A> of a ring <A>R</A> are called
##  <E>associated</E> if there is a unit <M>u</M> of <A>R</A> such that
##  <A>r</A> <M>u = </M><A>s</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "IsAssociated", [ IsRing, IsRingElement, IsRingElement ] );


#############################################################################
##
#O  Associates( [<R>, ]<r> )
##
##  <#GAPDoc Label="Associates">
##  <ManSection>
##  <Oper Name="Associates" Arg='[R, ]r'/>
##
##  <Description>
##  <Ref Oper="Associates"/> returns the set of associates of <A>r</A> in
##  the ring <A>R</A>, if given,
##  and otherwise in its default ring
##  (see <Ref Func="DefaultRing" Label="for ring elements"/>).
##  <P/>
##  Two elements <A>r</A> and <M>s</M> of a ring <M>R</M> are called
##  <E>associated</E> if there is a unit <M>u</M> of <M>R</M> such that
##  <M><A>r</A> u = s</M>.
##  <P/>
##  <Example><![CDATA[
##  gap> Associates( Integers, 2 );
##  [ -2, 2 ]
##  gap> Associates( GaussianIntegers, 2 );
##  [ -2, 2, -2*E(4), 2*E(4) ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "Associates", [ IsRing, IsRingElement ] );


#############################################################################
##
#O  IsUnit( [<R>, ]<r> ). . . . . . . . .  check whether <r> is a unit in <R>
##
##  <#GAPDoc Label="IsUnit">
##  <ManSection>
##  <Oper Name="IsUnit" Arg='[R, ]r'/>
##
##  <Description>
##  <Ref Oper="IsUnit"/> returns <K>true</K> if <A>r</A> is a unit in the
##  ring <A>R</A>, if given, and otherwise in its default ring
##  (see <Ref Func="DefaultRing" Label="for ring elements"/>).
##  If <A>r</A> is not a unit then <K>false</K> is returned.
##  <P/>
##  An element <A>r</A> is called a <E>unit</E> in a ring <A>R</A>,
##  if <A>r</A> has an inverse in <A>R</A>.
##  <P/>
##  <Ref Oper="IsUnit"/> may call <Ref Oper="Quotient"/>.
##  <!-- really?-->
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "IsUnit", [ IsRing, IsRingElement ] );


#############################################################################
##
#O  InterpolatedPolynomial( <R>, <x>, <y> ) . . . . . . . . . . interpolation
##
##  <#GAPDoc Label="InterpolatedPolynomial">
##  <ManSection>
##  <Oper Name="InterpolatedPolynomial" Arg='R, x, y'/>
##
##  <Description>
##  <Ref Oper="InterpolatedPolynomial"/> returns, for given lists <A>x</A>,
##  <A>y</A> of elements in a ring <A>R</A> of the same length <M>n</M>
##  the unique  polynomial of  degree less than <M>n</M> which has value
##  <A>y</A>[<M>i</M>] at <A>x</A><M>[i]</M>,
##  for all <M>i \in \{ 1, \ldots, n \}</M>.
##  Note that the elements in <A>x</A> must be distinct.
##  <Example><![CDATA[
##  gap> InterpolatedPolynomial( Integers, [ 1, 2, 3 ], [ 5, 7, 0 ] );
##  -9/2*x^2+31/2*x-6
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "InterpolatedPolynomial",
    [ IsRing, IsHomogeneousList, IsHomogeneousList ] );


#############################################################################
##
#O  Quotient( [<R>, ]<r>, <s> )
##
##  <#GAPDoc Label="Quotient">
##  <ManSection>
##  <Oper Name="Quotient" Arg='[R, ]r, s'/>
##
##  <Description>
##  <Ref Oper="Quotient"/> returns a (right) quotient of the two ring elements
##  <A>r</A> and <A>s</A> in the ring <A>R</A>, if given,
##  and otherwise in their default ring
##  (see <Ref Func="DefaultRing" Label="for ring elements"/>).
##  More specifically, it returns a ring element <M>q</M> such that
##  <M>r = q * s</M> holds, or <K>fail</K> if no such elements exists in the
##  respective ring.
##  <P/>
##  The result may not be unique if the ring contains zero divisors.
##  <P/>
##  (To perform the division in the quotient field of a ring, use the
##  quotient operator <C>/</C>.)
##  <Example><![CDATA[
##  gap> Quotient( 2, 3 );
##  fail
##  gap> Quotient( 6, 3 );
##  2
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "Quotient", [ IsRing, IsRingElement, IsRingElement ] );


#############################################################################
##
#O  StandardAssociate( [<R>, ]<r> )
##
##  <#GAPDoc Label="StandardAssociate">
##  <ManSection>
##  <Oper Name="StandardAssociate" Arg='[R, ]r'/>
##
##  <Description>
##  <Ref Oper="StandardAssociate"/> returns the standard associate of the
##  ring element <A>r</A> in the ring <A>R</A>, if given,
##  and otherwise in its default ring
##  (see <Ref Func="DefaultRing" Label="for ring elements"/>).
##  <P/>
##  The <E>standard associate</E> of a ring element <A>r</A> of <A>R</A> is
##  an associated element of <A>r</A> which is, in a ring dependent way,
##  distinguished among the set of associates of <A>r</A>.
##  For example, in the ring of integers the standard associate is the
##  absolute value.
##  <P/>
##  <Example><![CDATA[
##  gap> x:= Indeterminate( Rationals, "x" );;
##  gap> StandardAssociate( -x^2-x+1 );
##  x^2+x-1
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "StandardAssociate", [ IsRing, IsRingElement ] );


#############################################################################
##
#O  StandardAssociateUnit( [<R>, ]<r> )
##
##  <#GAPDoc Label="StandardAssociateUnit">
##  <ManSection>
##  <Oper Name="StandardAssociateUnit" Arg='[R, ]r'/>
##
##  <Description>
##  <Ref Oper="StandardAssociateUnit"/> returns a unit in the ring <A>R</A>
##  such that the ring element <A>r</A> times this unit equals the
##  standard associate of <A>r</A> in <A>R</A>.
##  <P/>
##  If <A>R</A> is not given, the default ring of <A>r</A> is used instead.
##  (see <Ref Func="DefaultRing" Label="for ring elements"/>).
##  <P/>
##  <P/>
##  <Example><![CDATA[
##  gap> y:= Indeterminate( Rationals, "y" );;
##  gap> r:= -y^2-y+1;
##  -y^2-y+1
##  gap> StandardAssociateUnit( r );
##  -1
##  gap> StandardAssociateUnit( r ) * r = StandardAssociate( r );
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "StandardAssociateUnit", [ IsRing, IsRingElement ] );


#############################################################################
##
#O  IsPrime( [<R>, ]<r> )
##
##  <#GAPDoc Label="IsPrime">
##  <ManSection>
##  <Oper Name="IsPrime" Arg='[R, ]r'/>
##
##  <Description>
##  <Ref Oper="IsPrime"/> returns <K>true</K> if the ring element <A>r</A> is
##  a prime in the ring <A>R</A>, if given,
##  and otherwise in its default ring
##  (see <Ref Func="DefaultRing" Label="for ring elements"/>).
##  If <A>r</A> is not a prime then <K>false</K> is returned.
##  <P/>
##  An element <A>r</A> of a ring <A>R</A> is called <E>prime</E> if for each
##  pair <M>s</M> and <M>t</M> such that <A>r</A> divides <M>s t</M>
##  the element <A>r</A> divides either <M>s</M> or <M>t</M>.
##  Note that there are rings where not every irreducible element
##  (see <Ref Oper="IsIrreducibleRingElement"/>) is a prime.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "IsPrime", [ IsRing, IsRingElement ] );


#############################################################################
##
#O  IsIrreducibleRingElement( [<R>, ]<r> )
##
##  <#GAPDoc Label="IsIrreducibleRingElement">
##  <ManSection>
##  <Oper Name="IsIrreducibleRingElement" Arg='[R, ]r'/>
##
##  <Description>
##  <Ref Oper="IsIrreducibleRingElement"/> returns <K>true</K> if the ring
##  element <A>r</A> is irreducible in the ring <A>R</A>, if given,
##  and otherwise in its default ring
##  (see <Ref Func="DefaultRing" Label="for ring elements"/>).
##  If <A>r</A> is not irreducible then <K>false</K> is returned.
##  <P/>
##  An element <A>r</A> of a ring <A>R</A> is called <E>irreducible</E>
##  if <A>r</A> is not a unit in <A>R</A> and if there is no nontrivial
##  factorization of <A>r</A> in <A>R</A>,
##  i.e., if there is no representation of <A>r</A> as product <M>s t</M>
##  such that neither <M>s</M> nor <M>t</M> is a unit
##  (see <Ref Oper="IsUnit"/>).
##  Each prime element (see <Ref Oper="IsPrime"/>) is irreducible.
##  <Example><![CDATA[
##  gap> IsIrreducibleRingElement( Integers, 2 );
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "IsIrreducibleRingElement", [ IsRing, IsRingElement ] );


#############################################################################
##
#O  EuclideanDegree( [<R>, ]<r> )
##
##  <#GAPDoc Label="EuclideanDegree">
##  <ManSection>
##  <Oper Name="EuclideanDegree" Arg='[R, ]r'/>
##
##  <Description>
##  <Ref Oper="EuclideanDegree"/> returns the Euclidean degree of the
##  ring element <A>r</A> in the ring <A>R</A>, if given,
##  and otherwise in its default ring
##  (see <Ref Func="DefaultRing" Label="for ring elements"/>).
##  <P/>
##  The ring <A>R</A> must be a Euclidean ring
##  (see <Ref Filt="IsEuclideanRing"/>).
##  <Example><![CDATA[
##  gap> EuclideanDegree( GaussianIntegers, 3 );
##  9
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "EuclideanDegree", [ IsEuclideanRing, IsRingElement ] );


#############################################################################
##
#O  EuclideanRemainder( [<R>, ]<r>, <m> )
##
##  <#GAPDoc Label="EuclideanRemainder">
##  <ManSection>
##  <Oper Name="EuclideanRemainder" Arg='[R, ]r, m'/>
##
##  <Description>
##  <Ref Oper="EuclideanRemainder"/> returns the Euclidean remainder of the
##  ring element <A>r</A> modulo the ring element <A>m</A>
##  in the ring <A>R</A>, if given,
##  and otherwise in their default ring
##  (see <Ref Func="DefaultRing" Label="for ring elements"/>).
##  <P/>
##  The ring <A>R</A> must be a Euclidean ring
##  (see <Ref Filt="IsEuclideanRing"/>), otherwise an error is signalled.
##  <Example><![CDATA[
##  gap> EuclideanRemainder( 8, 3 );
##  2
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "EuclideanRemainder",
    [ IsEuclideanRing, IsRingElement, IsRingElement ] );


#############################################################################
##
#O  EuclideanQuotient( [<R>, ]<r>, <m> )
##
##  <#GAPDoc Label="EuclideanQuotient">
##  <ManSection>
##  <Oper Name="EuclideanQuotient" Arg='[R, ]r, m'/>
##
##  <Description>
##  <Ref Oper="EuclideanQuotient"/> returns the Euclidean quotient of the
##  ring elements <A>r</A> and <A>m</A> in the ring <A>R</A>, if given,
##  and otherwise in their default ring
##  (see <Ref Func="DefaultRing" Label="for ring elements"/>).
##  <P/>
##  The ring <A>R</A> must be a Euclidean ring
##  (see <Ref Filt="IsEuclideanRing"/>), otherwise an error is signalled.
##  <Example><![CDATA[
##  gap> EuclideanQuotient( 8, 3 );
##  2
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "EuclideanQuotient",
    [ IsEuclideanRing, IsRingElement, IsRingElement ] );


#############################################################################
##
#O  QuotientRemainder( [<R>, ]<r>, <m> )
##
##  <#GAPDoc Label="QuotientRemainder">
##  <ManSection>
##  <Oper Name="QuotientRemainder" Arg='[R, ]r, m'/>
##
##  <Description>
##  <Ref Oper="QuotientRemainder"/> returns the Euclidean quotient
##  and the Euclidean remainder of the ring elements <A>r</A> and <A>m</A>
##  in the ring <A>R</A>, if given,
##  and otherwise in their default ring
##  (see <Ref Func="DefaultRing" Label="for ring elements"/>).
##  The result is a pair of ring elements.
##  <P/>
##  The ring <A>R</A> must be a Euclidean ring
##  (see <Ref Filt="IsEuclideanRing"/>), otherwise an error is signalled.
##  <Example><![CDATA[
##  gap> QuotientRemainder( GaussianIntegers, 8, 3 );
##  [ 3, -1 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "QuotientRemainder",
    [ IsRing, IsRingElement, IsRingElement ] );


#############################################################################
##
#O  QuotientMod( [<R>, ]<r>, <s>, <m> )
##
##  <#GAPDoc Label="QuotientMod">
##  <ManSection>
##  <Oper Name="QuotientMod" Arg='[R, ]r, s, m'/>
##
##  <Description>
##  <Ref Oper="QuotientMod"/> returns a quotient of the ring
##  elements <A>r</A> and <A>s</A> modulo the ring element <A>m</A>
##  in the ring <A>R</A>, if given,
##  and otherwise in their default ring, see
##  <Ref Func="DefaultRing" Label="for ring elements"/>.
##  <P/>
##  <A>R</A> must be a Euclidean ring (see <Ref Filt="IsEuclideanRing"/>)
##  so that <Ref Oper="EuclideanRemainder"/> can be applied.
##  If no modular quotient exists, <K>fail</K> is returned.
##  <P/>
##  A quotient <M>q</M> of <A>r</A> and <A>s</A> modulo <A>m</A> is an
##  element of <A>R</A> such that <M>q <A>s</A> = <A>r</A></M> modulo
##  <M>m</M>, i.e., such that <M>q <A>s</A> - <A>r</A></M> is divisible by
##  <A>m</A> in <A>R</A> and that <M>q</M> is either zero (if <A>r</A> is
##  divisible by <A>m</A>) or the Euclidean degree of <M>q</M> is strictly
##  smaller than the Euclidean degree of <A>m</A>.
##  <Example><![CDATA[
##  gap> QuotientMod( 7, 2, 3 );
##  2
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "QuotientMod",
    [ IsRing, IsRingElement, IsRingElement, IsRingElement ] );


#############################################################################
##
#O  PowerMod( [<R>, ]<r>, <e>, <m> )
##
##  <#GAPDoc Label="PowerMod">
##  <ManSection>
##  <Oper Name="PowerMod" Arg='[R, ]r, e, m'/>
##
##  <Description>
##  <Ref Oper="PowerMod"/> returns the <A>e</A>-th power of the ring
##  element <A>r</A> modulo the ring element <A>m</A>
##  in the ring <A>R</A>, if given,
##  and otherwise in their default ring, see
##  <Ref Func="DefaultRing" Label="for ring elements"/>.
##  <A>e</A> must be an integer.
##  <P/>
##  <A>R</A> must be a Euclidean ring (see <Ref Filt="IsEuclideanRing"/>)
##  so that <Ref Oper="EuclideanRemainder"/> can be applied to its elements.
##  <P/>
##  If <A>e</A> is positive the result is <A>r</A><C>^</C><A>e</A> modulo
##  <A>m</A>.
##  If <A>e</A> is negative then <Ref Oper="PowerMod"/> first tries to find
##  the inverse of <A>r</A> modulo <A>m</A>, i.e.,
##  <M>i</M> such that <M>i <A>r</A> = 1</M> modulo <A>m</A>.
##  If the inverse does not exist an error is signalled.
##  If the inverse does exist <Ref Oper="PowerMod"/> returns
##  <C>PowerMod( <A>R</A>, <A>i</A>, -<A>e</A>, <A>m</A> )</C>.
##  <P/>
##  <Ref Oper="PowerMod"/> reduces the intermediate values modulo <A>m</A>,
##  improving performance drastically when <A>e</A> is large and <A>m</A>
##  small.
##  <Example><![CDATA[
##  gap> PowerMod( 12, 100000, 7 );
##  2
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "PowerMod",
    [ IsRing, IsRingElement, IsInt, IsRingElement ] );


#############################################################################
##
#F  Gcd( [<R>, ]<r1>, <r2>, ... )
#F  Gcd( [<R>, ]<list> )
##
##  <#GAPDoc Label="Gcd">
##  <ManSection>
##  <Heading>Gcd</Heading>
##  <Func Name="Gcd" Arg='[R, ]r1, r2, ...'
##   Label="for (a ring and) several elements"/>
##  <Func Name="Gcd" Arg='[R, ]list'
##   Label="for (a ring and) a list of elements"/>
##
##  <Description>
##  <Ref Func="Gcd" Label="for (a ring and) several elements"/> returns
##  the greatest common divisor of the ring elements <A>r1</A>, <A>r2</A>,
##  <M>\ldots</M> resp. of the ring elements in the list <A>list</A>
##  in the ring <A>R</A>, if given, and otherwise in their default ring,
##  see <Ref Func="DefaultRing" Label="for ring elements"/>.
##  <P/>
##  <Ref Func="Gcd" Label="for (a ring and) several elements"/> returns
##  the standard associate (see <Ref Oper="StandardAssociate"/>) of the
##  greatest common divisors.
##  <P/>
##  A divisor of an element <M>r</M> in the ring <M>R</M> is an element
##  <M>d\in R</M> such that <M>r</M> is a multiple of <M>d</M>.
##  A common divisor of the elements <M>r_1, r_2, \ldots</M> in the
##  ring <M>R</M> is an element <M>d\in R</M> which is a divisor of
##  each <M>r_1, r_2, \ldots</M>.
##  A greatest common divisor <M>d</M> in addition has the property that every
##  other common divisor of <M>r_1, r_2, \ldots</M> is a divisor of <M>d</M>.
##  <P/>
##  Note that this in particular implies the following:
##  For the zero element <M>z</M> of <A>R</A>, we have
##  <C>Gcd( <A>r</A>, </C><M>z</M><C> ) = Gcd( </C><M>z</M><C>, <A>r</A> )
##  = StandardAssociate( <A>r</A> )</C>
##  and <C>Gcd( </C><M>z</M><C>, </C><M>z</M><C> ) = </C><M>z</M>.
##  <Example><![CDATA[
##  gap> Gcd( Integers, [ 10, 15 ] );
##  5
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "Gcd" );


#############################################################################
##
#O  GcdOp( [<R>, ]<r>, <s> )
##
##  <#GAPDoc Label="GcdOp">
##  <ManSection>
##  <Oper Name="GcdOp" Arg='[R, ]r, s'/>
##
##  <Description>
##  <Ref Oper="GcdOp"/> is the operation to compute
##  the greatest common divisor of two ring elements <A>r</A>, <A>s</A>
##  in the ring <A>R</A> or in their default ring.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "GcdOp",
    [ IsUniqueFactorizationRing, IsRingElement, IsRingElement ] );

# The following function allows installing two and three argument methods
# for GcdOp at the same time. This can be desirable over just installing a
# three argument version, as a lot of code will invoke the two argument
# version, which by default uses DefaultRing to construct a ring object,
# based on the two arguments, and then redispatches to the three argument
# version. But constructing this ring object can be costly compared to the
# cost of the actual Gcd computation. By installing a custom two-argument
# method for GcdOp, we can avoid this and the overhead of the second method
# dispatch.
BindGlobal("InstallRingAgnosticGcdMethod",
function(info,fampred3,fampred2,filters,rank,fun)
  InstallMethod(GcdOp,Concatenation(info,": with ring"),
    fampred3,filters,rank,function(R,a,b) return fun(a,b);end);
  InstallOtherMethod(GcdOp,Concatenation(info,": no ring"),fampred2,
  filters{[2,3]},
  # Adjust the method rank by taking the rank of the (omitted) ring argument
  # into account
  {} -> rank+Maximum(0,RankFilter(filters[1])
                   -RankFilter(IsUniqueFactorizationRing)),fun);
end);

#############################################################################
##
#F  GcdRepresentation( [<R>, ]<r1>, <r2>, ... )
#F  GcdRepresentation( [<R>, ]<list> )
##
##  <#GAPDoc Label="GcdRepresentation">
##  <ManSection>
##  <Heading>GcdRepresentation</Heading>
##  <Func Name="GcdRepresentation" Arg='[R, ]r1, r2, ...'
##   Label="for (a ring and) several elements"/>
##  <Func Name="GcdRepresentation" Arg='[R, ]list'
##   Label="for (a ring and) a list of elements"/>
##
##  <Description>
##  <Ref Func="GcdRepresentation" Label="for (a ring and) several elements"/>
##  returns a representation of
##  the greatest common divisor of the ring elements
##  <A>r1</A>, <A>r2</A>, <M>\ldots</M> resp. of the ring elements
##  in the list <A>list</A> in the Euclidean ring <A>R</A>, if given,
##  and otherwise in their default ring,
##  see <Ref Func="DefaultRing" Label="for ring elements"/>.
##  <P/>
##  A representation of the gcd <M>g</M> of the elements
##  <M>r_1, r_2, \ldots</M> of a ring <M>R</M> is a list of ring elements
##  <M>s_1, s_2, \ldots</M> of <M>R</M>,
##  such that <M>g = s_1 r_1 + s_2  r_2 + \cdots</M>.
##  Such representations do not exist in all rings, but they
##  do exist in Euclidean rings (see <Ref Filt="IsEuclideanRing"/>),
##  which can be shown using the Euclidean algorithm, which in fact can
##  compute those coefficients.
##  <Example><![CDATA[
##  gap> a:= Indeterminate( Rationals, "a" );;
##  gap> GcdRepresentation( a^2+1, a^3+1 );
##  [ -1/2*a^2-1/2*a+1/2, 1/2*a+1/2 ]
##  ]]></Example>
##  <P/>
##  <Ref Func="Gcdex"/> provides similar functionality over the integers.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "GcdRepresentation" );


#############################################################################
##
#O  GcdRepresentationOp( [<R>, ]<r>, <s> )
##
##  <#GAPDoc Label="GcdRepresentationOp">
##  <ManSection>
##  <Oper Name="GcdRepresentationOp" Arg='[R, ]r, s'/>
##
##  <Description>
##  <Ref Oper="GcdRepresentationOp"/> is the operation to compute
##  the representation of the greatest common divisor of two ring elements
##  <A>r</A>, <A>s</A> in the Euclidean ring <A>R</A> or in their default ring,
##  respectively.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "GcdRepresentationOp",
    [ IsEuclideanRing, IsRingElement, IsRingElement ] );


#############################################################################
##
#F  Lcm( [<R>, ]<r1>, <r2>, ... )
#F  Lcm( [<R>, ]<list> )
##
##  <#GAPDoc Label="Lcm">
##  <ManSection>
##  <Heading>Lcm</Heading>
##  <Func Name="Lcm" Arg='[R, ]r1, r2, ...'
##   Label="for (a ring and) several elements"/>
##  <Func Name="Lcm" Arg='[R, ]list'
##   Label="for (a ring and) a list of elements"/>
##
##  <Description>
##  <Ref Func="Lcm" Label="for (a ring and) several elements"/> returns
##  the least common multiple of the ring elements
##  <A>r1</A>, <A>r2</A>, <M>\ldots</M> resp. of the ring elements
##  in the list <A>list</A> in the ring <A>R</A>, if given,
##  and otherwise in their default ring,
##  see <Ref Func="DefaultRing" Label="for ring elements"/>.
##  <P/>
##  <Ref Func="Lcm" Label="for (a ring and) several elements"/> returns
##  the standard associate (see&nbsp;<Ref Oper="StandardAssociate"/>)
##  of the least common multiples.
##  <P/>
##  A least common multiple of the elements <M>r_1, r_2, \ldots</M> of the
##  ring <M>R</M> is an element <M>m</M> that is a multiple of <M>r_1, r_2, \ldots</M>,
##  and every other multiple of these elements is a multiple of <M>m</M>.
##  <P/>
##  Note that this in particular implies the following:
##  For the zero element <M>z</M> of <A>R</A>, we have
##  <C>Lcm( <A>r</A>, </C><M>z</M><C> ) = Lcm( </C><M>z</M><C>, <A>r</A> )
##  = StandardAssociate( <A>r</A> )</C>
##  and <C>Lcm( </C><M>z</M><C>, </C><M>z</M><C> ) = </C><M>z</M>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "Lcm" );


#############################################################################
##
#O  LcmOp( [<R>, ]<r>, <s> )
##
##  <#GAPDoc Label="LcmOp">
##  <ManSection>
##  <Oper Name="LcmOp" Arg='[R, ]r, s'/>
##
##  <Description>
##  <Ref Oper="LcmOp"/> is the operation to compute the least common multiple
##  of two ring elements <A>r</A>, <A>s</A> in the ring <A>R</A>
##  or in their default ring, respectively.
##  <P/>
##  The default methods for this uses the equality
##  <M>lcm( m, n ) = m*n / gcd( m, n )</M> (see&nbsp;<Ref Oper="GcdOp"/>).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "LcmOp",
    [ IsUniqueFactorizationRing, IsRingElement, IsRingElement ] );


#############################################################################
##
#O  PadicValuation( <r>, <p> )
##
##  <#GAPDoc Label="PadicValuation">
##  <ManSection>
##  <Oper Name="PadicValuation" Arg='r, p'/>
##
##  <Description>
##  <Ref Oper="PadicValuation"/> is the operation to compute
##  the <A>p</A>-adic valuation of a ring element <A>r</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "PadicValuation", [ IsRingElement, IsPosInt ] );