File: tom.gd

package info (click to toggle)
gap 4.15.1-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 110,212 kB
  • sloc: ansic: 97,261; xml: 48,343; cpp: 13,946; sh: 4,900; perl: 1,650; javascript: 255; makefile: 252; ruby: 9
file content (2311 lines) | stat: -rw-r--r-- 84,501 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
#############################################################################
##
##  This file is part of GAP, a system for computational discrete algebra.
##  This file's authors include Götz Pfeiffer, Thomas Merkwitz.
##
##  Copyright of GAP belongs to its developers, whose names are too numerous
##  to list here. Please refer to the COPYRIGHT file for details.
##
##  SPDX-License-Identifier: GPL-2.0-or-later
##
##  This file contains the declarations of the category and family of tables
##  of marks, and their properties, attributes, operations and functions.
##
##  1. Tables of Marks
##  2. More about Tables of Marks
##  3. Table of Marks Objects in ⪆
##  4. Constructing Tables of Marks
##  5. Printing Tables of Marks
##  6. Sorting Tables of Marks
##  7. Technical Details about Tables of Marks
##  8. Attributes of Tables of Marks
##  9. Properties of Tables of Marks
##  10. Other Operations for Tables of Marks
##  11. Accessing Subgroups via Tables of Marks
##  12. The Interface between Tables of Marks and Character Tables
##  13. Generic Construction of Tables of Marks
##


#############################################################################
##
##  1. Tables of Marks
##
##  <#GAPDoc Label="[1]{tom}">
##  The concept of a <E>table of marks</E> was introduced by W.&nbsp;Burnside
##  in his book <Q>Theory of Groups of Finite Order</Q>,
##  see&nbsp;<Cite Key="Bur55"/>.
##  Therefore a table of marks is sometimes called a <E>Burnside matrix</E>.
##  <P/>
##  The table of marks of a finite group <M>G</M> is a matrix whose rows and
##  columns are labelled by the conjugacy classes of subgroups of <M>G</M>
##  and where for two subgroups <M>A</M> and <M>B</M> the <M>(A, B)</M>-entry
##  is the number of fixed points of <M>B</M> in the transitive action of
##  <M>G</M> on the cosets of <M>A</M> in <M>G</M>.
##  So the table of marks characterizes the set of all permutation
##  representations of <M>G</M>.
##  <P/>
##  Moreover, the table of marks gives a compact description of the subgroup
##  lattice of <M>G</M>, since from the numbers of fixed points the numbers
##  of conjugates of a subgroup <M>B</M> contained in a subgroup <M>A</M>
##  can be derived.
##  <P/>
##  A table of marks of a given group <M>G</M> can be constructed from the
##  subgroup lattice of <M>G</M>
##  (see&nbsp;<Ref Sect="Constructing Tables of Marks"/>).
##  For several groups, the table of marks can be restored from the &GAP;
##  library of tables of marks
##  (see&nbsp;<Ref Sect="The Library of Tables of Marks"/>).
##  <P/>
##  Given the table of marks of <M>G</M>, one can display it
##  (see&nbsp;<Ref Sect="Printing Tables of Marks"/>)
##  and derive information about <M>G</M> and its Burnside ring from it
##  (see&nbsp;<Ref Sect="Attributes of Tables of Marks"/>,
##  <Ref Sect="Properties of Tables of Marks"/>,
##  <Ref Sect="Other Operations for Tables of Marks"/>).
##  Moreover, tables of marks in &GAP; provide an easy access to the classes
##  of subgroups of their underlying groups
##  (see&nbsp;<Ref Sect="Accessing Subgroups via Tables of Marks"/>).
##  <#/GAPDoc>
##


#############################################################################
##
##  2. More about Tables of Marks
##
##  <#GAPDoc Label="[2]{tom}">
##  Let <M>G</M> be a finite group with <M>n</M> conjugacy classes of
##  subgroups <M>C_1, C_2, \ldots, C_n</M> and representatives
##  <M>H_i \in C_i</M>, <M>1 \leq i \leq n</M>.
##  The <E>table of marks</E> of <M>G</M> is defined to be the
##  <M>n \times n</M> matrix <M>M = (m_{ij})</M> where the
##  <E>mark</E> <M>m_{ij}</M> is the number of fixed points of the subgroup
##  <M>H_j</M> in the action of <M>G</M> on the right cosets of <M>H_i</M>
##  in <M>G</M>.
##  <P/>
##  Since <M>H_j</M> can only have fixed points if it is contained in a point
##  stabilizer the matrix <M>M</M> is lower triangular if the classes
##  <M>C_i</M> are sorted according to the condition that if <M>H_i</M>
##  is contained in a conjugate of <M>H_j</M> then <M>i \leq j</M>.
##  <P/>
##  Moreover, the diagonal entries <M>m_{ii}</M> are nonzero
##  since <M>m_{ii}</M> equals the index of <M>H_i</M> in its normalizer
##  in <M>G</M>.  Hence <M>M</M> is invertible.
##  Since any transitive action of <M>G</M> is equivalent to an action on the
##  cosets of a subgroup of <M>G</M>, one sees that the table of marks
##  completely characterizes the set of all permutation representations of
##  <M>G</M>.
##  <P/>
##  The marks <M>m_{ij}</M> have further meanings.
##  If <M>H_1</M> is the trivial subgroup of <M>G</M> then each mark
##  <M>m_{i1}</M> in the first column of <M>M</M> is equal to the index of
##  <M>H_i</M> in <M>G</M> since the trivial subgroup fixes all cosets of
##  <M>H_i</M>.
##  If <M>H_n = G</M> then each <M>m_{nj}</M> in the last row of <M>M</M> is
##  equal to <M>1</M> since there is only one coset of <M>G</M> in <M>G</M>.
##  In general, <M>m_{ij}</M> equals the number of conjugates of <M>H_i</M>
##  containing <M>H_j</M>, multiplied by the index of <M>H_i</M> in its
##  normalizer in <M>G</M>.
##  Moreover, the number <M>c_{ij}</M> of conjugates of <M>H_j</M> which are
##  contained in <M>H_i</M> can be derived from the marks <M>m_{ij}</M> via
##  the formula
##  <Display Mode="M">
##  c_{ij} = ( m_{ij} m_{j1} ) / ( m_{i1} m_{jj} )
##  </Display>.
##  <P/>
##  Both the marks <M>m_{ij}</M>  and the numbers of subgroups <M>c_{ij}</M>
##  are needed for the functions described in this chapter.
##  <P/>
##  A brief survey of properties of tables of marks and a description of
##  algorithms for the interactive construction of tables of marks using
##  &GAP; can be found in&nbsp;<Cite Key="Pfe97"/>.
##  <#/GAPDoc>
##


#############################################################################
##
##  3. Table of Marks Objects in &GAP;
##
##  <#GAPDoc Label="[3]{tom}">
##  A table of marks of a group <M>G</M> in &GAP; is represented by an
##  immutable (see&nbsp;<Ref Sect="Mutability and Copyability"/>) object
##  <A>tom</A> in the category <Ref Filt="IsTableOfMarks"/>,
##  with defining attributes <Ref Attr="SubsTom"/> and
##  <Ref Attr="MarksTom"/>.
##  These two attributes encode the matrix of marks in a compressed form.
##  The <Ref Attr="SubsTom"/> value of <A>tom</A> is a list where for each
##  conjugacy class of subgroups the class numbers of its subgroups are
##  stored.
##  These are exactly the positions in the corresponding row of the matrix of
##  marks which have nonzero entries.
##  The marks themselves are stored via the <Ref Attr="MarksTom"/> value of
##  <A>tom</A>, which is a list that contains for each entry in
##  <C>SubsTom( <A>tom</A> )</C> the corresponding nonzero value of the
##  table of marks.
##  <P/>
##  It is possible to create table of marks objects that do not store a
##  group, moreover one can create a table of marks object from a matrix of
##  marks (see&nbsp;<Ref Attr="TableOfMarks" Label="for a matrix"/>).
##  So it may happen that a table of marks object in &GAP; is in fact
##  <E>not</E> the table of marks of a group.
##  To some extent, the consistency of a table of marks object can be checked
##  (see&nbsp;<Ref Sect="Other Operations for Tables of Marks"/>),
##  but &GAP; knows no general way to prove or disprove that a given matrix
##  of nonnegative integers is the matrix of marks for a group.
##  Many functions for tables of marks work well without access to the group
##  &ndash;this is one of the arguments why tables of marks are so
##  useful&ndash;,
##  but for example normalizers (see&nbsp;<Ref Oper="NormalizerTom"/>)
##  and derived subgroups (see&nbsp;<Ref Oper="DerivedSubgroupTom"/>) of
##  subgroups are in general not uniquely determined by the matrix of marks.
##  <P/>
##  &GAP; tables of marks are assumed to be in lower triangular form,
##  that is, if a subgroup from the conjugacy class corresponding to the
##  <M>i</M>-th row is contained in a subgroup from the class corresponding
##  to the <M>j</M>-th row j then <M>i \leq j</M>.
##  <P/>
##  The <Ref Attr="MarksTom"/> information can be computed from the values of
##  the attributes <Ref Attr="NrSubsTom"/>, <Ref Attr="LengthsTom"/>,
##  <Ref Attr="OrdersTom"/>, and <Ref Attr="SubsTom"/>.
##  <Ref Attr="NrSubsTom"/> stores a list containing for each entry in the
##  <Ref Attr="SubsTom"/> value the corresponding number of conjugates that
##  are contained in a subgroup,
##  <Ref Attr="LengthsTom"/> a list containing for each conjugacy class
##  of subgroups its length,
##  and <Ref Attr="OrdersTom"/> a list containing for each class of subgroups
##  their order.
##  So the <Ref Attr="MarksTom"/> value of <A>tom</A> may be missing
##  provided that the values of <Ref Attr="NrSubsTom"/>,
##  <Ref Attr="LengthsTom"/>, and <Ref Attr="OrdersTom"/> are stored in
##  <A>tom</A>.
##  <P/>
##  Additional information about a table of marks is needed by some
##  functions.
##  The class numbers of normalizers in <M>G</M> and the number of the
##  derived subgroup of <M>G</M> can be stored via appropriate attributes
##  (see&nbsp;<Ref Attr="NormalizersTom"/>,
##  <Ref Oper="DerivedSubgroupTom"/>).
##  <P/>
##  If <A>tom</A> stores its group <M>G</M> and a bijection from the rows and
##  columns of the matrix of marks of <A>tom</A> to the classes of subgroups
##  of <M>G</M> then clearly normalizers, derived subgroup etc.&nbsp;can be
##  computed from this information.
##  But in general a table of marks need not have access to <M>G</M>,
##  for example <A>tom</A> might have been constructed from a generic table
##  of marks
##  (see&nbsp;<Ref Sect="Generic Construction of Tables of Marks"/>),
##  or as table of marks of a factor group from a given table of marks
##  (see&nbsp;<Ref Oper="FactorGroupTom"/>).
##  Access to the group <M>G</M> is provided by the attribute
##  <Ref Attr="UnderlyingGroup" Label="for tables of marks"/>
##  if this value is set.
##  Access to the relevant information about conjugacy classes of subgroups
##  of <M>G</M>
##  &ndash;compatible with the ordering of rows and columns of the marks in
##  <A>tom</A>&ndash; is signalled by the filter
##  <Ref Filt="IsTableOfMarksWithGens"/>.
##  <#/GAPDoc>
##


#############################################################################
##
##  4. Constructing Tables of Marks
##


#############################################################################
##
#A  TableOfMarks( <G> )
#A  TableOfMarks( <string> )
#A  TableOfMarks( <matrix> )
##
##  <#GAPDoc Label="TableOfMarks">
##  <ManSection>
##  <Attr Name="TableOfMarks" Arg='G' Label="for a group"/>
##  <Attr Name="TableOfMarks" Arg='string' Label="for a string"/>
##  <Attr Name="TableOfMarks" Arg='matrix' Label="for a matrix"/>
##
##  <Description>
##  In the first form, <A>G</A> must be a finite group,
##  and <Ref Attr="TableOfMarks" Label="for a group"/>
##  constructs the table of marks of <A>G</A>.
##  This computation requires the knowledge of the complete subgroup lattice
##  of <A>G</A> (see&nbsp;<Ref Attr="LatticeSubgroups"/>).
##  If the lattice is not yet stored then it will be constructed.
##  This may take a while if <A>G</A> is large.
##  The result has the <Ref Filt="IsTableOfMarksWithGens"/> value
##  <K>true</K>.
##  <P/>
##  In the second form, <A>string</A> must be a string,
##  and <Ref Attr="TableOfMarks" Label="for a string"/> gets
##  the table of marks with name <A>string</A> from the &GAP; library
##  (see <Ref Sect="The Library of Tables of Marks"/>).
##  If no table of marks with this name is contained in the library then
##  <K>fail</K> is returned.
##  <P/>
##  In the third form, <A>matrix</A> must be a matrix or a list of rows
##  describing a lower triangular matrix where the part above the diagonal is
##  omitted.
##  For such an argument <A>matrix</A>,
##  <Ref Attr="TableOfMarks" Label="for a matrix"/> returns
##  a table of marks object
##  (see&nbsp;<Ref Sect="Table of Marks Objects in GAP"/>)
##  for which <A>matrix</A> is the matrix of marks.
##  Note that not every matrix
##  (containing only nonnegative integers and having lower triangular shape)
##  describes a table of marks of a group.
##  Necessary conditions are checked with
##  <Ref Meth="IsInternallyConsistent" Label="for tables of marks"/>
##  (see&nbsp;<Ref Sect="Other Operations for Tables of Marks"/>),
##  and <K>fail</K> is returned if <A>matrix</A> is proved not to describe a
##  matrix of marks;
##  but if <Ref Attr="TableOfMarks" Label="for a matrix"/> returns a table of
##  marks object created from a matrix then it may still happen that this
##  object does not describe the table of marks of a group.
##  <P/>
##  For an overview of operations for table of marks objects,
##  see the introduction to Chapter&nbsp;<Ref Chap="Tables of Marks"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> tom:= TableOfMarks( AlternatingGroup( 5 ) );
##  TableOfMarks( Alt( [ 1 .. 5 ] ) )
##  gap> TableOfMarks( "J5" );
##  fail
##  gap> a5:= TableOfMarks( "A5" );
##  TableOfMarks( "A5" )
##  gap> mat:=
##  > [ [ 60, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 30, 2, 0, 0, 0, 0, 0, 0, 0 ],
##  >   [ 20, 0, 2, 0, 0, 0, 0, 0, 0 ], [ 15, 3, 0, 3, 0, 0, 0, 0, 0 ],
##  >   [ 12, 0, 0, 0, 2, 0, 0, 0, 0 ], [ 10, 2, 1, 0, 0, 1, 0, 0, 0 ],
##  >   [ 6, 2, 0, 0, 1, 0, 1, 0, 0 ], [ 5, 1, 2, 1, 0, 0, 0, 1, 0 ],
##  >   [ 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ];;
##  gap> TableOfMarks( mat );
##  TableOfMarks( <9 classes> )
##  ]]></Example>
##  <P/>
##  The following <Ref Attr="TableOfMarks" Label="for a group"/> methods
##  for a group are installed.
##  <List>
##  <Item>
##    If the group is known to be cyclic then
##    <Ref Attr="TableOfMarks" Label="for a group"/> constructs the
##    table of marks essentially without the group, instead the knowledge
##    about the structure of cyclic groups is used.
##  </Item>
##  <Item>
##    If the lattice of subgroups is already stored in the group then
##    <Ref Attr="TableOfMarks" Label="for a group"/> computes the
##    table of marks from the lattice
##    (see&nbsp;<Ref Func="TableOfMarksByLattice"/>).
##  </Item>
##  <Item>
##    If the group is known to be solvable then
##    <Ref Attr="TableOfMarks" Label="for a group"/> takes the
##    lattice of subgroups (see&nbsp;<Ref Attr="LatticeSubgroups"/>) of the
##    group &ndash;which means that the lattice is computed if it is not yet
##    stored&ndash;
##    and then computes the table of marks from it.
##    This method is also accessible via the global function
##    <Ref Func="TableOfMarksByLattice"/>.
##  </Item>
##  <Item>
##    If the group doesn't know its lattice of subgroups or its conjugacy
##    classes of subgroups then the table of marks and the conjugacy
##    classes of subgroups are computed at the same time by the cyclic
##    extension method.
##    Only the table of marks is stored because the conjugacy classes of
##    subgroups or the lattice of subgroups can be easily read off
##    (see&nbsp;<Ref Func="LatticeSubgroupsByTom"/>).
##  </Item>
##  </List>
##  <P/>
##  Conversely, the lattice of subgroups of a group with known table of marks
##  can be computed using the table of marks, via the function
##  <Ref Func="LatticeSubgroupsByTom"/>.
##  This is also installed as a method for <Ref Attr="LatticeSubgroups"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "TableOfMarks", IsGroup );
DeclareAttribute( "TableOfMarks", IsString );
DeclareAttribute( "TableOfMarks", IsTable );


#############################################################################
##
#F  TableOfMarksByLattice( <G> )
##
##  <#GAPDoc Label="TableOfMarksByLattice">
##  <ManSection>
##  <Func Name="TableOfMarksByLattice" Arg='G'/>
##
##  <Description>
##  <Ref Func="TableOfMarksByLattice"/> computes the table of marks of the
##  group <A>G</A> from the lattice of subgroups of <A>G</A>.
##  This lattice is computed via <Ref Attr="LatticeSubgroups"/>
##  if it is not yet stored in <A>G</A>.
##  The function <Ref Func="TableOfMarksByLattice"/> is installed as a method
##  for <Ref Attr="TableOfMarks" Label="for a group"/> for solvable groups
##  and groups with stored subgroup lattice,
##  and is available as a global variable only in order to provide
##  explicit access to this method.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "TableOfMarksByLattice" );


#############################################################################
##
#F  LatticeSubgroupsByTom( <G> )
##
##  <#GAPDoc Label="LatticeSubgroupsByTom">
##  <ManSection>
##  <Func Name="LatticeSubgroupsByTom" Arg='G'/>
##
##  <Description>
##  <Ref Func="LatticeSubgroupsByTom"/> computes the lattice of subgroups of
##  <A>G</A> from the table of marks of <A>G</A>,
##  using <Ref Oper="RepresentativeTom"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "LatticeSubgroupsByTom" );


#############################################################################
##
##  5. Printing Tables of Marks
##
##  <#GAPDoc Label="[5]{tom}">
##  <ManSection>
##  <Meth Name="ViewObj" Arg='tom' Label="for a table of marks"/>
##
##  <Description>
##  The default <Ref Oper="ViewObj"/> method for tables of marks prints
##  the string <C>"TableOfMarks"</C>,
##  followed by &ndash;if known&ndash; the identifier
##  (see&nbsp;<Ref Attr="Identifier" Label="for tables of marks"/>)
##  or the group of the table of marks enclosed in brackets;
##  if neither group nor identifier are known then just
##  the number of conjugacy classes of subgroups is printed instead.
##  </Description>
##  </ManSection>
##
##  <ManSection>
##  <Meth Name="PrintObj" Arg='tom' Label="for a table of marks"/>
##
##  <Description>
##  The default <Ref Oper="PrintObj"/> method for tables of marks
##  does the same as <Ref Oper="ViewObj"/>,
##  except that <Ref Oper="PrintObj"/> is used for the group instead of
##  <Ref Oper="ViewObj"/>.
##  </Description>
##  </ManSection>
##
##  <ManSection>
##  <Meth Name="Display" Arg='tom[, arec]' Label="for a table of marks"/>
##
##  <Description>
##  The default <Ref Oper="Display"/> method for a table of marks <A>tom</A>
##  produces a formatted output of the marks in <A>tom</A>.
##  Each line of output begins with the number of the corresponding class of
##  subgroups.
##  This number is repeated if the output spreads over several pages.
##  The number of columns printed at one time depends on the actual
##  line length, which can be accessed and changed by the function
##  <Ref Func="SizeScreen"/>.
##  <P/>
##  An interactive variant of <Ref Oper="Display"/> is the
##  <Ref Oper="Browse" BookName="browse"/> method for tables of marks
##  that is provided by the &GAP; package <Package>Browse</Package>,
##  see <Ref Meth="Browse" Label="for tables of marks"
##  BookName="browse"/>.
##  <P/>
##  The optional second argument <A>arec</A> of <Ref Oper="Display"/> can be
##  used to change the default style for displaying a table of marks.
##  <A>arec</A> must be a record, its relevant components are the following.
##  <P/>
##  <List>
##  <Mark><C>classes</C></Mark>
##  <Item>
##    a list of class numbers to select only the rows and columns of the
##    matrix that correspond to this list for printing,
##  </Item>
##  <Mark><C>form</C></Mark>
##  <Item>
##    one of the strings <C>"subgroups"</C>, <C>"supergroups"</C>;
##    in the former case, at position <M>(i,j)</M> of the matrix the number
##    of conjugates of <M>H_j</M> contained in <M>H_i</M> is printed,
##    and in the latter case, at position <M>(i,j)</M> the number of
##    conjugates of <M>H_i</M> which contain <M>H_j</M> is printed.
##  </Item>
##  </List>
##  <P/>
##  <Example><![CDATA[
##  gap> tom:= TableOfMarks( "A5" );;
##  gap> Display( tom );
##  1:  60
##  2:  30 2
##  3:  20 . 2
##  4:  15 3 . 3
##  5:  12 . . . 2
##  6:  10 2 1 . . 1
##  7:   6 2 . . 1 . 1
##  8:   5 1 2 1 . . . 1
##  9:   1 1 1 1 1 1 1 1 1
##
##  gap> Display( tom, rec( classes:= [ 1, 2, 3, 4, 8 ] ) );
##  1:  60
##  2:  30 2
##  3:  20 . 2
##  4:  15 3 . 3
##  8:   5 1 2 1 1
##
##  gap> Display( tom, rec( form:= "subgroups" ) );
##  1:  1
##  2:  1  1
##  3:  1  .  1
##  4:  1  3  . 1
##  5:  1  .  . . 1
##  6:  1  3  1 . .  1
##  7:  1  5  . . 1  . 1
##  8:  1  3  4 1 .  . . 1
##  9:  1 15 10 5 6 10 6 5 1
##
##  gap> Display( tom, rec( form:= "supergroups" ) );
##  1:   1
##  2:  15 1
##  3:  10 . 1
##  4:   5 1 . 1
##  5:   6 . . . 1
##  6:  10 2 1 . . 1
##  7:   6 2 . . 1 . 1
##  8:   5 1 2 1 . . . 1
##  9:   1 1 1 1 1 1 1 1 1
##
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##


#############################################################################
##
##  6. Sorting Tables of Marks
##


#############################################################################
##
#C  IsTableOfMarks( <obj> )
##
##  <#GAPDoc Label="IsTableOfMarks">
##  <ManSection>
##  <Filt Name="IsTableOfMarks" Arg='obj' Type='Category'/>
##
##  <Description>
##  Each table of marks belongs to this category.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "IsTableOfMarks", IsObject );


#############################################################################
##
#O  SortedTom( <tom>, <perm> )
##
##  <#GAPDoc Label="SortedTom">
##  <ManSection>
##  <Oper Name="SortedTom" Arg='tom, perm'/>
##
##  <Description>
##  <Ref Oper="SortedTom"/> returns a table of marks where the rows and
##  columns of the table of marks <A>tom</A> are reordered according to the
##  permutation <A>perm</A>.
##  <P/>
##  <E>Note</E> that in each table of marks in &GAP;,
##  the matrix of marks is assumed to have lower triangular shape
##  (see&nbsp;<Ref Sect="Table of Marks Objects in GAP"/>).
##  If the permutation <A>perm</A> does <E>not</E> have this property then
##  the functions for tables of marks might return wrong results when applied
##  to the output of <Ref Oper="SortedTom"/>.
##  <P/>
##  The returned table of marks has only those attribute values stored that
##  are known for <A>tom</A> and listed in
##  <Ref Var="TableOfMarksComponents"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> tom:= TableOfMarksCyclic( 6 );;  Display( tom );
##  1:  6
##  2:  3 3
##  3:  2 . 2
##  4:  1 1 1 1
##
##  gap> sorted:= SortedTom( tom, (2,3) );;  Display( sorted );
##  1:  6
##  2:  2 2
##  3:  3 . 3
##  4:  1 1 1 1
##
##  gap> wrong:= SortedTom( tom, (1,2) );;  Display( wrong );
##  1:  3
##  2:  . 6
##  3:  . 2 2
##  4:  1 1 1 1
##
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "SortedTom", [ IsTableOfMarks, IsPerm ] );


#############################################################################
##
#A  PermutationTom( <tom> )
##
##  <#GAPDoc Label="PermutationTom">
##  <ManSection>
##  <Attr Name="PermutationTom" Arg='tom'/>
##
##  <Description>
##  For the table of marks <A>tom</A> of the group <M>G</M> stored as
##  <Ref Attr="UnderlyingGroup" Label="for tables of marks"/>
##  value of <A>tom</A>,
##  <Ref Attr="PermutationTom"/> is a permutation <M>\pi</M> such that the
##  <M>i</M>-th conjugacy class of subgroups of <M>G</M> belongs to the
##  <M>i^\pi</M>-th column and row of marks in <A>tom</A>.
##  <P/>
##  This attribute value is bound only if <A>tom</A> was obtained from
##  another table of marks by permuting with <Ref Oper="SortedTom"/>,
##  and there is no default method to compute its value.
##  <P/>
##  The attribute is necessary because the original and the sorted table of
##  marks have the same identifier and the same group,
##  and information computed from the group may depend on the ordering of
##  marks, for example the fusion from the ordinary character table of
##  <M>G</M> into <A>tom</A>.
##  <P/>
##  <Example><![CDATA[
##  gap> MarksTom( tom )[2];
##  [ 3, 3 ]
##  gap> MarksTom( sorted )[2];
##  [ 2, 2 ]
##  gap> HasPermutationTom( sorted );
##  true
##  gap> PermutationTom( sorted );
##  (2,3)
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "PermutationTom", IsTableOfMarks );


#############################################################################
##
##  7. Technical Details about Tables of Marks
##


#############################################################################
##
#V  InfoTom
##
##  <#GAPDoc Label="InfoTom">
##  <ManSection>
##  <InfoClass Name="InfoTom"/>
##
##  <Description>
##  is the info class for computations concerning tables of marks.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareInfoClass( "InfoTom" );


#############################################################################
##
#V  TableOfMarksFamily
##
##  <#GAPDoc Label="TableOfMarksFamily">
##  <ManSection>
##  <Fam Name="TableOfMarksFamily"/>
##
##  <Description>
##  Each table of marks belongs to this family.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
BindGlobal( "TableOfMarksFamily",
    NewFamily( "TableOfMarksFamily", IsTableOfMarks ) );


#############################################################################
##
#F  ConvertToTableOfMarks( <record> )
##
##  <#GAPDoc Label="ConvertToTableOfMarks">
##  <ManSection>
##  <Func Name="ConvertToTableOfMarks" Arg='record'/>
##
##  <Description>
##  <Ref Func="ConvertToTableOfMarks"/> converts a record with components
##  from <Ref Var="TableOfMarksComponents"/> into a table of marks object
##  with the corresponding attributes.
##  <P/>
##  <Example><![CDATA[
##  gap> record:= rec( MarksTom:= [ [ 4 ], [ 2, 2 ], [ 1, 1, 1 ] ],
##  >  SubsTom:= [ [ 1 ], [ 1, 2 ], [ 1, 2, 3 ] ] );;
##  gap> ConvertToTableOfMarks( record );;
##  gap> record;
##  TableOfMarks( <3 classes> )
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "ConvertToTableOfMarks" );


#############################################################################
##
##  8. Attributes of Tables of Marks
##


#############################################################################
##
#A  MarksTom( <tom> ) . . . . . . . . . . . . . . . . . .  defining attribute
#A  SubsTom( <tom> )  . . . . . . . . . . . . . . . . . .  defining attribute
##
##  <#GAPDoc Label="MarksTom">
##  <ManSection>
##  <Attr Name="MarksTom" Arg='tom'/>
##  <Attr Name="SubsTom" Arg='tom'/>
##
##  <Description>
##  The matrix of marks (see&nbsp;<Ref Sect="More about Tables of Marks"/>)
##  of the table of marks <A>tom</A> is stored in a compressed form
##  where zeros are omitted,
##  using the attributes <Ref Attr="MarksTom"/> and <Ref Attr="SubsTom"/>.
##  If <M>M</M> is the square matrix of marks of <A>tom</A>
##  (see&nbsp;<Ref Attr="MatTom"/>) then the <Ref Attr="SubsTom"/> value of
##  <A>tom</A> is a list that contains at position <M>i</M> the list
##  of all positions of nonzero entries of the <M>i</M>-th row of <M>M</M>,
##  and the <Ref Attr="MarksTom"/> value of <A>tom</A> is a list
##  that contains at position <M>i</M> the list of the corresponding marks.
##  <P/>
##  <Ref Attr="MarksTom"/> and <Ref Attr="SubsTom"/> are defining attributes
##  of tables of marks (see&nbsp;<Ref Sect="Table of Marks Objects in GAP"/>).
##  There is no default method for computing the <Ref Attr="SubsTom"/> value,
##  and the default <Ref Attr="MarksTom"/> method needs the values of
##  <Ref Attr="NrSubsTom"/> and <Ref Attr="OrdersTom"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> a5:= TableOfMarks( "A5" );
##  TableOfMarks( "A5" )
##  gap> MarksTom( a5 );
##  [ [ 60 ], [ 30, 2 ], [ 20, 2 ], [ 15, 3, 3 ], [ 12, 2 ],
##    [ 10, 2, 1, 1 ], [ 6, 2, 1, 1 ], [ 5, 1, 2, 1, 1 ],
##    [ 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ]
##  gap> SubsTom( a5 );
##  [ [ 1 ], [ 1, 2 ], [ 1, 3 ], [ 1, 2, 4 ], [ 1, 5 ], [ 1, 2, 3, 6 ],
##    [ 1, 2, 5, 7 ], [ 1, 2, 3, 4, 8 ], [ 1, 2, 3, 4, 5, 6, 7, 8, 9 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "MarksTom", IsTableOfMarks );
DeclareAttribute( "SubsTom", IsTableOfMarks );


#############################################################################
##
#A  NrSubsTom( <tom> )
#A  OrdersTom( <tom> )
##
##  <#GAPDoc Label="NrSubsTom">
##  <ManSection>
##  <Attr Name="NrSubsTom" Arg='tom'/>
##  <Attr Name="OrdersTom" Arg='tom'/>
##
##  <Description>
##  Instead of storing the marks (see&nbsp;<Ref Attr="MarksTom"/>) of the
##  table of marks <A>tom</A> one can use a matrix which contains at position
##  <M>(i,j)</M> the number of subgroups of conjugacy class <M>j</M>
##  that are contained in one member of the conjugacy class <M>i</M>.
##  These values are stored in the <Ref Attr="NrSubsTom"/> value in the same
##  way as the marks in the <Ref Attr="MarksTom"/> value.
##  <P/>
##  <Ref Attr="OrdersTom"/> returns a list that contains at position <M>i</M>
##  the order of a representative of the <M>i</M>-th conjugacy class of
##  subgroups of <A>tom</A>.
##  <P/>
##  One can compute the <Ref Attr="NrSubsTom"/> and <Ref Attr="OrdersTom"/>
##  values from the <Ref Attr="MarksTom"/> value of <A>tom</A>
##  and vice versa.
##  <P/>
##  <Example><![CDATA[
##  gap> NrSubsTom( a5 );
##  [ [ 1 ], [ 1, 1 ], [ 1, 1 ], [ 1, 3, 1 ], [ 1, 1 ], [ 1, 3, 1, 1 ],
##    [ 1, 5, 1, 1 ], [ 1, 3, 4, 1, 1 ], [ 1, 15, 10, 5, 6, 10, 6, 5, 1 ]
##   ]
##  gap> OrdersTom( a5 );
##  [ 1, 2, 3, 4, 5, 6, 10, 12, 60 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "NrSubsTom", IsTableOfMarks );
DeclareAttribute( "OrdersTom", IsTableOfMarks );


#############################################################################
##
#A  LengthsTom( <tom> )
##
##  <#GAPDoc Label="LengthsTom">
##  <ManSection>
##  <Attr Name="LengthsTom" Arg='tom'/>
##
##  <Description>
##  For a table of marks <A>tom</A>,
##  <Ref Attr="LengthsTom"/> returns a list of the lengths of
##  the conjugacy classes of subgroups.
##  <P/>
##  <Example><![CDATA[
##  gap> LengthsTom( a5 );
##  [ 1, 15, 10, 5, 6, 10, 6, 5, 1 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "LengthsTom", IsTableOfMarks );


#############################################################################
##
#A  ClassTypesTom( <tom> )
##
##  <#GAPDoc Label="ClassTypesTom">
##  <ManSection>
##  <Attr Name="ClassTypesTom" Arg='tom'/>
##
##  <Description>
##  <Ref Attr="ClassTypesTom"/> distinguishes isomorphism types of the
##  classes of subgroups of the table of marks <A>tom</A>
##  as far as this is possible from the <Ref Attr="SubsTom"/> and
##  <Ref Attr="MarksTom"/> values of <A>tom</A>.
##  <P/>
##  Two subgroups are clearly not isomorphic if they have different orders.
##  Moreover, isomorphic subgroups must contain the same number of subgroups
##  of each type.
##  <P/>
##  Each type is represented by a positive integer.
##  <Ref Attr="ClassTypesTom"/> returns the list which contains for each
##  class of subgroups its corresponding type.
##  <P/>
##  <Example><![CDATA[
##  gap> a6:= TableOfMarks( "A6" );;
##  gap> ClassTypesTom( a6 );
##  [ 1, 2, 3, 3, 4, 5, 6, 6, 7, 7, 8, 9, 10, 11, 11, 12, 13, 13, 14, 15,
##    15, 16 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "ClassTypesTom", IsTableOfMarks );


#############################################################################
##
#A  ClassNamesTom( <tom> )
##
##  <#GAPDoc Label="ClassNamesTom">
##  <ManSection>
##  <Attr Name="ClassNamesTom" Arg='tom'/>
##
##  <Description>
##  <Ref Attr="ClassNamesTom"/> constructs generic names for the conjugacy
##  classes of subgroups of the table of marks <A>tom</A>.
##  In general, the generic name of a class of non-cyclic subgroups consists
##  of three parts and has the form
##  <C>"(</C><A>o</A><C>)_{</C><A>t</A><C>}</C><A>l</A><C>"</C>,
##  where <A>o</A> indicates the order of the subgroup,
##  <A>t</A> is a number that distinguishes different types of subgroups of
##  the same order, and <A>l</A> is a letter that distinguishes classes of
##  subgroups of the same type and order.
##  The type of a subgroup is determined by the numbers of its subgroups of
##  other types (see&nbsp;<Ref Attr="ClassTypesTom"/>).
##  This is slightly weaker than isomorphism.
##  <P/>
##  The letter is omitted if there is only one class of subgroups of that
##  order and type,
##  and the type is omitted if there is only one class of that order.
##  Moreover, the braces <C>{}</C>  around the type are omitted
##  if the type number has only one digit.
##  <P/>
##  For classes of cyclic subgroups, the parentheses round the order and the
##  type are omitted.
##  Hence the most general form of their generic names is
##  <C>"<A>o</A>,<A>l</A>"</C>.
##  Again, the letter is omitted if there is only one class of cyclic
##  subgroups of that order.
##  <P/>
##  <Example><![CDATA[
##  gap> ClassNamesTom( a6 );
##  [ "1", "2", "3a", "3b", "5", "4", "(4)_2a", "(4)_2b", "(6)a", "(6)b",
##    "(8)", "(9)", "(10)", "(12)a", "(12)b", "(18)", "(24)a", "(24)b",
##    "(36)", "(60)a", "(60)b", "(360)" ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "ClassNamesTom", IsTableOfMarks );


#############################################################################
##
#A  FusionsTom( <tom> )
##
##  <#GAPDoc Label="FusionsTom">
##  <ManSection>
##  <Attr Name="FusionsTom" Arg='tom'/>
##
##  <Description>
##  For a table of marks <A>tom</A>,
##  <Ref Attr="FusionsTom"/> is a list of fusions into other tables of marks.
##  Each fusion is a list of length  two, the  first  entry being the
##  <Ref Attr="Identifier" Label="for tables of marks"/>) value
##  of the image table, the second entry being the list of images of
##  the class positions of <A>tom</A> in the image table.
##  <P/>
##  This attribute is mainly used for tables of marks in the &GAP; library
##  (see&nbsp;<Ref Sect="The Library of Tables of Marks"/>).
##  <P/>
##  <Example><![CDATA[
##  gap> fus:= FusionsTom( a6 );;
##  gap> fus[1];
##  [ "L3(4)",
##    [ 1, 2, 3, 3, 14, 5, 9, 7, 15, 15, 24, 26, 27, 32, 33, 50, 57, 55,
##        63, 73, 77, 90 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "FusionsTom", IsTableOfMarks, "mutable" );


#############################################################################
##
#A  UnderlyingGroup( <tom> )
##
##  <#GAPDoc Label="UnderlyingGroup:tom">
##  <ManSection>
##  <Attr Name="UnderlyingGroup" Arg='tom' Label="for tables of marks"/>
##
##  <Description>
##  <Ref Attr="UnderlyingGroup" Label="for tables of marks"/> is used
##  to access an underlying group that is stored on the table of marks
##  <A>tom</A>.
##  There is no default method to compute an underlying group if it is not
##  stored.
##  <P/>
##  <Example><![CDATA[
##  gap> UnderlyingGroup( a6 );
##  Group([ (1,2)(3,4), (1,2,4,5)(3,6) ])
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "UnderlyingGroup", IsTableOfMarks );


#############################################################################
##
#A  IdempotentsTom( <tom> )
#A  IdempotentsTomInfo( <tom> )
##
##  <#GAPDoc Label="IdempotentsTom">
##  <ManSection>
##  <Attr Name="IdempotentsTom" Arg='tom'/>
##  <Attr Name="IdempotentsTomInfo" Arg='tom'/>
##
##  <Description>
##  <Ref Attr="IdempotentsTom"/> encodes the idempotents of the integral
##  Burnside ring described by the table of marks <A>tom</A>.
##  The return value is a list <M>l</M> of positive integers such that each
##  row vector describing a primitive idempotent has value <M>1</M> at all
##  positions with the same entry in <M>l</M>, and <M>0</M> at all other
##  positions.
##  <P/>
##  According to A.&nbsp;Dress&nbsp;<Cite Key="Dre69"/>
##  (see also&nbsp;<Cite Key="Pfe97"/>),
##  these idempotents correspond to the classes of perfect subgroups,
##  and each such idempotent is the characteristic function of all those
##  subgroups that arise by cyclic extension from the corresponding perfect
##  subgroup
##  (see&nbsp;<Ref Oper="CyclicExtensionsTom" Label="for a prime"/>).
##  <P/>
##  <Ref Attr="IdempotentsTomInfo"/> returns a record with components
##  <C>fixpointvectors</C> and <C>primidems</C>, both bound to lists.
##  The <M>i</M>-th entry of the <C>fixpointvectors</C> list is the
##  <M>0-1</M>-vector describing the <M>i</M>-th primitive idempotent,
##  and the <M>i</M>-th entry of <C>primidems</C> is the decomposition of this
##  idempotent in the rows of <A>tom</A>.
##  <P/>
##  <Example><![CDATA[
##  gap> IdempotentsTom( a5 );
##  [ 1, 1, 1, 1, 1, 1, 1, 1, 9 ]
##  gap> IdempotentsTomInfo( a5 );
##  rec(
##    fixpointvectors := [ [ 1, 1, 1, 1, 1, 1, 1, 1, 0 ],
##        [ 0, 0, 0, 0, 0, 0, 0, 0, 1 ] ],
##    primidems := [ [ 1, -2, -1, 0, 0, 1, 1, 1 ],
##        [ -1, 2, 1, 0, 0, -1, -1, -1, 1 ] ] )
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "IdempotentsTom", IsTableOfMarks );
DeclareAttribute( "IdempotentsTomInfo", IsTableOfMarks );


#############################################################################
##
#A  Identifier( <tom> )
##
##  <#GAPDoc Label="Identifier:tom">
##  <ManSection>
##  <Attr Name="Identifier" Arg='tom' Label="for tables of marks"/>
##
##  <Description>
##  The identifier of a table of marks <A>tom</A> is a string.
##  It is used for printing the table of marks
##  (see&nbsp;<Ref Sect="Printing Tables of Marks"/>)
##  and in fusions between tables of marks
##  (see&nbsp;<Ref Attr="FusionsTom"/>).
##  <P/>
##  If <A>tom</A> is a table of marks from the &GAP; library of tables of
##  marks (see&nbsp;<Ref Sect="The Library of Tables of Marks"/>)
##  then it has an identifier,
##  and if <A>tom</A> was constructed from a group with <Ref Attr="Name"/>
##  then this name is chosen as
##  <Ref Attr="Identifier" Label="for tables of marks"/> value.
##  There is no default method to compute an identifier in all other cases.
##  <P/>
##  <Example><![CDATA[
##  gap> Identifier( a5 );
##  "A5"
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "Identifier", IsTableOfMarks );


#############################################################################
##
#A  MatTom( <tom> )
##
##  <#GAPDoc Label="MatTom">
##  <ManSection>
##  <Attr Name="MatTom" Arg='tom'/>
##
##  <Description>
##  <Ref Attr="MatTom"/> returns the square matrix of marks
##  (see&nbsp;<Ref Sect="More about Tables of Marks"/>) of the table of marks
##  <A>tom</A> which is stored in a compressed form using the attributes
##  <Ref Attr="MarksTom"/> and <Ref Attr="SubsTom"/>
##  This may need substantially more space than the values of
##  <Ref Attr="MarksTom"/> and <Ref Attr="SubsTom"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> MatTom( a5 );
##  [ [ 60, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 30, 2, 0, 0, 0, 0, 0, 0, 0 ],
##    [ 20, 0, 2, 0, 0, 0, 0, 0, 0 ], [ 15, 3, 0, 3, 0, 0, 0, 0, 0 ],
##    [ 12, 0, 0, 0, 2, 0, 0, 0, 0 ], [ 10, 2, 1, 0, 0, 1, 0, 0, 0 ],
##    [ 6, 2, 0, 0, 1, 0, 1, 0, 0 ], [ 5, 1, 2, 1, 0, 0, 0, 1, 0 ],
##    [ 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "MatTom", IsTableOfMarks );


#############################################################################
##
#A  MoebiusTom( <tom> )
##
##  <#GAPDoc Label="MoebiusTom">
##  <ManSection>
##  <Attr Name="MoebiusTom" Arg='tom'/>
##
##  <Description>
##  <Ref Attr="MoebiusTom"/> computes the Möbius values both of the subgroup
##  lattice of the group <M>G</M> with table of marks <A>tom</A>
##  and of the poset of conjugacy classes of subgroups of <M>G</M>.
##  It returns a record where the component
##  <C>mu</C> contains the Möbius values of the subgroup lattice,
##  and the component <C>nu</C> contains the Möbius values of the poset.
##  <P/>
##  Moreover, according to an observation of Isaacs et al.
##  (see&nbsp;<Cite Key="HIO89"/>, <Cite Key="Pah93"/>),
##  the values on the subgroup lattice often can be derived
##  from those of the poset of conjugacy classes.
##  These <Q>expected values</Q> are returned in the component <C>ex</C>,
##  and the list of numbers of those subgroups where the expected value does
##  not coincide with the actual value are returned in the component
##  <C>hyp</C>.
##  For the computation of these values, the position of the derived subgroup
##  of <M>G</M> is needed (see&nbsp;<Ref Oper="DerivedSubgroupTom"/>).
##  If it is not uniquely determined then the result does not have the
##  components <C>ex</C> and <C>hyp</C>.
##  <P/>
##  <Example><![CDATA[
##  gap> MoebiusTom( a5 );
##  rec( ex := [ -60, 4, 2,,, -1, -1, -1, 1 ], hyp := [  ],
##    mu := [ -60, 4, 2,,, -1, -1, -1, 1 ],
##    nu := [ -1, 2, 1,,, -1, -1, -1, 1 ] )
##  gap> tom:= TableOfMarks( "M12" );;
##  gap> moebius:= MoebiusTom( tom );;
##  gap> moebius.hyp;
##  [ 1, 2, 4, 16, 39, 45, 105 ]
##  gap> moebius.mu[1];  moebius.ex[1];
##  95040
##  190080
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "MoebiusTom", IsTableOfMarks );


#############################################################################
##
#A  WeightsTom( <tom> )
##
##  <#GAPDoc Label="WeightsTom">
##  <ManSection>
##  <Attr Name="WeightsTom" Arg='tom'/>
##
##  <Description>
##  <Ref Attr="WeightsTom"/> extracts the <E>weights</E> from the table of
##  marks <A>tom</A>, i.e., the diagonal entries of the matrix of marks
##  (see&nbsp;<Ref Attr="MarksTom"/>),
##  indicating the index of a subgroup in its normalizer.
##  <P/>
##  <Example><![CDATA[
##  gap> wt:= WeightsTom( a5 );
##  [ 60, 2, 2, 3, 2, 1, 1, 1, 1 ]
##  ]]></Example>
##  <P/>
##  This information may be used to obtain the numbers of conjugate
##  supergroups from the marks.
##  <Example><![CDATA[
##  gap> marks:= MarksTom( a5 );;
##  gap> List( [ 1 .. 9 ], x -> marks[x] / wt[x] );
##  [ [ 1 ], [ 15, 1 ], [ 10, 1 ], [ 5, 1, 1 ], [ 6, 1 ], [ 10, 2, 1, 1 ],
##    [ 6, 2, 1, 1 ], [ 5, 1, 2, 1, 1 ], [ 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "WeightsTom", IsTableOfMarks );


#############################################################################
##
##  9. Properties of Tables of Marks
##
##  <#GAPDoc Label="[6]{tom}">
##  For a table of marks <A>tom</A> of a group <M>G</M>,
##  the following properties have the same meaning as the corresponding
##  properties for <M>G</M>.
##  Additionally, if a positive integer <A>sub</A> is given
##  as the second argument
##  then the value of the corresponding property for the <A>sub</A>-th class
##  of subgroups of <A>tom</A> is returned.
##  <P/>
##  <ManSection>
##  <Prop Name="IsAbelianTom" Arg='tom[, sub]'/>
##  <Prop Name="IsCyclicTom" Arg='tom[, sub]'/>
##  <Prop Name="IsNilpotentTom" Arg='tom[, sub]'/>
##  <Prop Name="IsPerfectTom" Arg='tom[, sub]'/>
##  <Prop Name="IsSolvableTom" Arg='tom[, sub]'/>
##
##  <Description>
##  <Example><![CDATA[
##  gap> tom:= TableOfMarks( "A5" );;
##  gap> IsAbelianTom( tom );  IsPerfectTom( tom );
##  false
##  true
##  gap> IsAbelianTom( tom, 3 );  IsNilpotentTom( tom, 7 );
##  true
##  false
##  gap> IsPerfectTom( tom, 7 );  IsSolvableTom( tom, 7 );
##  false
##  true
##  gap> for i in [ 1 .. 6 ] do
##  > Print( i, ": ", IsCyclicTom(a5, i), "  " );
##  > od;  Print( "\n" );
##  1: true  2: true  3: true  4: false  5: true  6: false
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##


#############################################################################
##
#P  IsAbelianTom( <tom>[, <sub>] )
##
##  <ManSection>
##  <Prop Name="IsAbelianTom" Arg='tom[, sub]'/>
##
##  <Description>
##  <Ref Func="IsAbelianTom"/> tests if the underlying group of the table of
##  marks <A>tom</A> is abelian.
##  If a second argument <A>sub</A> is given then <Ref Func="IsAbelianTom"/>
##  returns whether the groups in the <A>sub</A>-th class of subgroups in
##  <A>tom</A> are abelian.
##  </Description>
##  </ManSection>
##
DeclareProperty( "IsAbelianTom", IsTableOfMarks );
DeclareOperation( "IsAbelianTom", [ IsTableOfMarks, IsPosInt ] );


#############################################################################
##
#P  IsCyclicTom( <tom>[, <sub>] )
##
##  <ManSection>
##  <Prop Name="IsCyclicTom" Arg='tom[, sub]'/>
##
##  <Description>
##  <Ref Func="IsCyclicTom"/> tests if the underlying group of the table of
##  marks <A>tom</A> is cyclic.
##  If a second argument <A>sub</A> is given then <Ref Func="IsCyclicTom"/>
##  returns whether the groups in the <A>sub</A>-th class of subgroups in
##  <A>tom</A> are cyclic.
##  <P/>
##  A subgroup is cyclic if and only if the sum over the corresponding row of
##  the inverse table of marks is nonzero
##  (see&nbsp;<Cite Key="Ker91" Where="page 125"/>).
##  Thus we only have to decompose the corresponding idempotent.
##  </Description>
##  </ManSection>
##
DeclareProperty( "IsCyclicTom", IsTableOfMarks );
DeclareOperation( "IsCyclicTom", [ IsTableOfMarks, IsPosInt ] );


#############################################################################
##
#P  IsNilpotentTom( <tom>[, <sub>] )
##
##  <ManSection>
##  <Prop Name="IsNilpotentTom" Arg='tom[, sub]'/>
##
##  <Description>
##  <Ref Func="IsNilpotentTom"/> tests if the underlying group of the table
##  of marks <A>tom</A> is nilpotent.
##  If a second argument <A>sub</A> is given then
##  <Ref Func="IsNilpotentTom"/> returns whether the groups in the
##  <A>sub</A>-th class of subgroups in <A>tom</A> are nilpotent.
##  </Description>
##  </ManSection>
##
DeclareProperty( "IsNilpotentTom", IsTableOfMarks );
DeclareOperation( "IsNilpotentTom", [ IsTableOfMarks, IsPosInt ] );


#############################################################################
##
#P  IsPerfectTom( <tom>[, <sub>] )
##
##  <ManSection>
##  <Prop Name="IsPerfectTom" Arg='tom[, sub]'/>
##
##  <Description>
##  <Ref Func="IsPerfectTom"/> tests if the underlying group of the table of
##  marks <A>tom</A> is perfect.
##  If a second argument <A>sub</A> is given then <Ref Func="IsPerfectTom"/>
##  returns whether the groups in the <A>sub</A>-th class of subgroups in
##  <A>tom</A> are perfect.
##  </Description>
##  </ManSection>
##
DeclareProperty( "IsPerfectTom", IsTableOfMarks );
DeclareOperation( "IsPerfectTom", [ IsTableOfMarks, IsPosInt ] );


#############################################################################
##
#P  IsSolvableTom( <tom>[, <sub>] )
##
##  <ManSection>
##  <Prop Name="IsSolvableTom" Arg='tom[, sub]'/>
##
##  <Description>
##  <Ref Func="IsSolvableTom"/> tests if the underlying group of the table of
##  marks <A>tom</A> is solvable.
##  If a second argument <A>sub</A> is given then <Ref Func="IsSolvableTom"/>
##  returns whether the groups in the <A>sub</A>-th class of subgroups in
##  <A>tom</A> are solvable.
##  </Description>
##  </ManSection>
##
DeclareProperty( "IsSolvableTom", IsTableOfMarks );
DeclareOperation( "IsSolvableTom", [ IsTableOfMarks, IsPosInt ] );


#############################################################################
##
##  10. Other Operations for Tables of Marks
##
##  <#GAPDoc Label="[7]{tom}">
##  <ManSection>
##  <Meth Name="IsInternallyConsistent"
##   Arg='tom' Label="for tables of marks"/>
##
##  <Description>
##  For a table of marks <A>tom</A>,
##  <Ref Meth="IsInternallyConsistent" Label="for tables of marks"/>
##  decomposes all tensor products of rows of <A>tom</A>.
##  It returns <K>true</K> if all decomposition numbers are nonnegative
##  integers, and <K>false</K> otherwise.
##  This provides a strong consistency check for a table of marks.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##


#############################################################################
##
#O  DerivedSubgroupTom( <tom>, <sub> )
#F  DerivedSubgroupsTom( <tom> )
##
##  <#GAPDoc Label="DerivedSubgroupTom">
##  <ManSection>
##  <Oper Name="DerivedSubgroupTom" Arg='tom, sub'/>
##  <Func Name="DerivedSubgroupsTom" Arg='tom'/>
##
##  <Description>
##  For a table of marks <A>tom</A> and a positive integer <A>sub</A>,
##  <Ref Oper="DerivedSubgroupTom"/> returns either a positive integer
##  <M>i</M> or a list <M>l</M> of positive integers.
##  In the former case, the result means that the derived subgroups of the
##  subgroups in the <A>sub</A>-th class of <A>tom</A> lie in the
##  <M>i</M>-th class.
##  In the latter case, the class of the derived subgroups could not be
##  uniquely determined, and the position of the class of derived subgroups
##  is an entry of <M>l</M>.
##  <P/>
##  Values computed with <Ref Oper="DerivedSubgroupTom"/> are stored
##  using the attribute <Ref Attr="DerivedSubgroupsTomPossible"/>.
##  <P/>
##  <Ref Func="DerivedSubgroupsTom"/> is just the list of
##  <Ref Oper="DerivedSubgroupTom"/> values for all values of <A>sub</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "DerivedSubgroupTom", [ IsTableOfMarks, IsPosInt ] );

DeclareGlobalFunction( "DerivedSubgroupsTom");


#############################################################################
##
#A  DerivedSubgroupsTomPossible( <tom> )
#A  DerivedSubgroupsTomUnique( <tom> )
##
##  <#GAPDoc Label="DerivedSubgroupsTomPossible">
##  <ManSection>
##  <Attr Name="DerivedSubgroupsTomPossible" Arg='tom'/>
##  <Attr Name="DerivedSubgroupsTomUnique" Arg='tom'/>
##
##  <Description>
##  Let <A>tom</A> be a table of marks.
##  The value of the attribute <Ref Attr="DerivedSubgroupsTomPossible"/> is
##  a list in which the value at position <M>i</M> &ndash;if bound&ndash;
##  is a positive integer or a list; the meaning of the entry is the same as
##  in <Ref Oper="DerivedSubgroupTom"/>.
##  <P/>
##  If the value of the attribute <Ref Attr="DerivedSubgroupsTomUnique"/> is
##  known for <A>tom</A> then it is a list of positive integers,
##  the value at position <M>i</M> being the position of the class of derived
##  subgroups of the <M>i</M>-th class of subgroups in <A>tom</A>.
##  <P/>
##  The derived subgroups are in general not uniquely determined by the table
##  of marks if no <Ref Attr="UnderlyingGroup" Label="for tables of marks"/>
##  value is stored, so there is no default method for
##  <Ref Attr="DerivedSubgroupsTomUnique"/>.
##  But in some cases the derived subgroups are explicitly set when the table
##  of marks is constructed.
##  In this case, <Ref Oper="DerivedSubgroupTom"/> does not set values in
##  the <Ref Attr="DerivedSubgroupsTomPossible"/> list.
##  <P/>
##  The <Ref Attr="DerivedSubgroupsTomUnique"/> value is automatically set
##  when the last missing unique value is entered in the
##  <Ref Attr="DerivedSubgroupsTomPossible"/> list by
##  <Ref Oper="DerivedSubgroupTom"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
##  Currently the `DerivedSubgroupsTomUnique' value seems to be set
##  automatically in all cases.
##  Therefore, no example is shown.
##
DeclareAttribute( "DerivedSubgroupsTomPossible", IsTableOfMarks, "mutable" );
DeclareAttribute( "DerivedSubgroupsTomUnique", IsTableOfMarks );


#############################################################################
##
#O  NormalizerTom( <tom>, <sub> )
#A  NormalizersTom( <tom> )
##
##  <#GAPDoc Label="NormalizerTom">
##  <ManSection>
##  <Oper Name="NormalizerTom" Arg='tom, sub'/>
##  <Attr Name="NormalizersTom" Arg='tom'/>
##
##  <Description>
##  Let <A>tom</A> be the table of marks of a group <M>G</M>.
##  <Ref Oper="NormalizerTom"/> tries to find the conjugacy class of the
##  normalizer <M>N</M> in <M>G</M> of a subgroup <M>U</M> in the
##  <A>sub</A>-th class of <A>tom</A>.
##  The return value is either the list of class numbers of those subgroups
##  that have the right size and contain the subgroup and all subgroups that
##  clearly contain it as a normal subgroup, or the class number of the
##  normalizer if it is uniquely determined by these conditions.
##  If <A>tom</A> knows the subgroup lattice of <M>G</M>
##  (see&nbsp;<Ref Filt="IsTableOfMarksWithGens"/>)
##  then all normalizers are uniquely determined.
##  <Ref Oper="NormalizerTom"/> should never return an empty list.
##  <P/>
##  <Ref Attr="NormalizersTom"/> returns the list of positions of the classes
##  of normalizers of subgroups in <A>tom</A>.
##  In addition to the criteria for a single class of subgroup used by
##  <Ref Oper="NormalizerTom"/>,
##  the approximations of normalizers for several classes are used and thus
##  <Ref Attr="NormalizersTom"/> may return better approximations than
##  <Ref Oper="NormalizerTom"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> NormalizerTom( a5, 4 );
##  8
##  gap> NormalizersTom( a5 );
##  [ 9, 4, 6, 8, 7, 6, 7, 8, 9 ]
##  ]]></Example>
##  <P/>
##  The example shows that a subgroup with class number 4 in <M>A_5</M>
##  (which is a Kleinian four group)
##  is normalized by a subgroup in class 8.
##  This class contains the subgroups of <M>A_5</M> which are isomorphic to
##  <M>A_4</M>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "NormalizerTom", [ IsTableOfMarks, IsPosInt ] );
DeclareAttribute( "NormalizersTom", IsTableOfMarks );


#############################################################################
##
#O  ContainedTom( <tom>, <sub1>, <sub2> )
##
##  <#GAPDoc Label="ContainedTom">
##  <ManSection>
##  <Oper Name="ContainedTom" Arg='tom, sub1, sub2'/>
##
##  <Description>
##  <Ref Oper="ContainedTom"/> returns the number of subgroups in class
##  <A>sub1</A> of the table of marks <A>tom</A> that are contained in one
##  fixed member of the class <A>sub2</A>.
##  <P/>
##  <Example><![CDATA[
##  gap> ContainedTom( a5, 3, 5 );  ContainedTom( a5, 3, 8 );
##  0
##  4
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "ContainedTom", [IsTableOfMarks, IsPosInt, IsPosInt ] );


#############################################################################
##
#O  ContainingTom( <tom>, <sub1>, <sub2> )
##
##  <#GAPDoc Label="ContainingTom">
##  <ManSection>
##  <Oper Name="ContainingTom" Arg='tom, sub1, sub2'/>
##
##  <Description>
##  <Ref Oper="ContainingTom"/> returns the number of subgroups in class
##  <A>sub2</A> of the table of marks <A>tom</A> that contain one fixed
##  member of the class <A>sub1</A>.
##  <P/>
##  <Example><![CDATA[
##  gap> ContainingTom( a5, 3, 5 );  ContainingTom( a5, 3, 8 );
##  0
##  2
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "ContainingTom", [ IsTableOfMarks, IsPosInt, IsPosInt ] );


#############################################################################
##
#O  CyclicExtensionsTom( <tom>, <p> )
#A  CyclicExtensionsTom( <tom>[, <list>] )
##
##  <#GAPDoc Label="CyclicExtensionsTom">
##  <ManSection>
##  <Oper Name="CyclicExtensionsTom" Arg='tom, p' Label="for a prime"/>
##  <Attr Name="CyclicExtensionsTom" Arg='tom[, list]'
##   Label="for a list of primes"/>
##
##  <Description>
##  According to A.&nbsp;Dress&nbsp;<Cite Key="Dre69"/>,
##  two columns of the table of marks <A>tom</A> are equal modulo the prime
##  <A>p</A> if and only if the corresponding subgroups are connected by a
##  chain of normal extensions of order <A>p</A>.
##  <P/>
##  Called with <A>tom</A> and <A>p</A>,
##  <Ref Oper="CyclicExtensionsTom" Label="for a prime"/>
##  returns the classes of this equivalence relation.
##  <P/>
##  In the second form, <A>list</A> must be a list of primes,
##  and the return value is the list of classes of the relation obtained by
##  considering chains of normal extensions of prime order where all primes
##  are in <A>list</A>.
##  The default value for <A>list</A> is the set of prime divisors of the
##  order of the group of <A>tom</A>.
##  <P/>
##  (This information is <E>not</E> used by <Ref Oper="NormalizerTom"/>
##  although it might give additional restrictions in the search of
##  normalizers.)
##  <P/>
##  <Example><![CDATA[
##  gap> CyclicExtensionsTom( a5, 2 );
##  [ [ 1, 2, 4 ], [ 3, 6 ], [ 5, 7 ], [ 8 ], [ 9 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "CyclicExtensionsTom", IsTableOfMarks );
DeclareOperation( "CyclicExtensionsTom", [ IsTableOfMarks, IsPosInt ] );
DeclareOperation( "CyclicExtensionsTom", [ IsTableOfMarks, IsList ] );


#############################################################################
##
#A  ComputedCyclicExtensionsTom( <tom> )
#O  CyclicExtensionsTomOp( <tom>, <p> )
#O  CyclicExtensionsTomOp( <tom>, <list> )
##
##  <ManSection>
##  <Attr Name="ComputedCyclicExtensionsTom" Arg='tom'/>
##  <Oper Name="CyclicExtensionsTomOp" Arg='tom, p'/>
##  <Oper Name="CyclicExtensionsTomOp" Arg='tom, list'/>
##
##  <Description>
##  The attribute <Ref Func="ComputedCyclicExtensionsTom"/> is used by the
##  default <Ref Func="CyclicExtensionsTom"/> method to store the computed
##  equivalence classes for the table of marks <A>tom</A> and access them in
##  subsequent calls.
##  <P/>
##  The operation <Ref Func="CyclicExtensionsTomOp"/> does the real work for
##  <Ref Func="CyclicExtensionsTom"/>.
##  </Description>
##  </ManSection>
##
DeclareAttribute( "ComputedCyclicExtensionsTom", IsTableOfMarks, "mutable" );
DeclareOperation( "CyclicExtensionsTomOp", [ IsTableOfMarks, IsPosInt ] );
DeclareOperation( "CyclicExtensionsTomOp", [ IsTableOfMarks, IsList ] );


#############################################################################
##
#O  DecomposedFixedPointVector( <tom>, <fix> )
##
##  <#GAPDoc Label="DecomposedFixedPointVector">
##  <ManSection>
##  <Oper Name="DecomposedFixedPointVector" Arg='tom, fix'/>
##
##  <Description>
##  Let <A>tom</A> be the table of marks of a group <M>G</M>
##  and let <A>fix</A> be a vector of fixed point numbers w.r.t.&nbsp;an
##  action of <M>G</M>, i.e., a vector which contains for each class of
##  subgroups the number of fixed points under the given action.
##  <Ref Oper="DecomposedFixedPointVector"/> returns the decomposition of
##  <A>fix</A> into rows of the table of marks.
##  This decomposition  corresponds to a decomposition of the action into
##  transitive constituents.
##  Trailing zeros in <A>fix</A> may be omitted.
##  <P/>
##  <Example><![CDATA[
##  gap> DecomposedFixedPointVector( a5, [ 16, 4, 1, 0, 1, 1, 1 ] );
##  [ 0, 0, 0, 0, 0, 1, 1 ]
##  ]]></Example>
##  <P/>
##  The vector <A>fix</A> may be any vector of integers.
##  The resulting decomposition, however, will not be integral, in general.
##  <Example><![CDATA[
##  gap> DecomposedFixedPointVector( a5, [ 0, 0, 0, 0, 1, 1 ] );
##  [ 2/5, -1, -1/2, 0, 1/2, 1 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "DecomposedFixedPointVector",
    [ IsTableOfMarks, IsList ] );


#############################################################################
##
#O  EulerianFunctionByTom( <tom>, <n>[, <sub>] )
##
##  <#GAPDoc Label="EulerianFunctionByTom">
##  <ManSection>
##  <Oper Name="EulerianFunctionByTom" Arg='tom, n[, sub]'/>
##
##  <Description>
##  Called with two arguments, <Ref Oper="EulerianFunctionByTom"/> computes
##  the Eulerian function (see&nbsp;<Ref Oper="EulerianFunction"/>) of the
##  underlying group <M>G</M> of the table of marks <A>tom</A>,
##  that is, the number of <A>n</A>-tuples of elements in <M>G</M> that
##  generate <M>G</M>.
##  If the optional argument <A>sub</A> is given then
##  <Ref Oper="EulerianFunctionByTom"/> computes the Eulerian function
##  of each subgroup in the <A>sub</A>-th class of subgroups of <A>tom</A>.
##  <P/>
##  For a group <M>G</M> whose table of marks is known,
##  <Ref Oper="EulerianFunctionByTom"/>
##  is installed as a method for <Ref Oper="EulerianFunction"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> EulerianFunctionByTom( a5, 2 );
##  2280
##  gap> EulerianFunctionByTom( a5, 3 );
##  200160
##  gap> EulerianFunctionByTom( a5, 2, 3 );
##  8
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "EulerianFunctionByTom", [ IsTableOfMarks, IsPosInt ] );
DeclareOperation( "EulerianFunctionByTom",
    [ IsTableOfMarks, IsPosInt, IsPosInt ] );


#############################################################################
##
#O  IntersectionsTom( <tom>, <sub1>, <sub2> )
##
##  <#GAPDoc Label="IntersectionsTom">
##  <ManSection>
##  <Oper Name="IntersectionsTom" Arg='tom, sub1, sub2'/>
##
##  <Description>
##  The intersections of the groups in the <A>sub1</A>-th conjugacy class of
##  subgroups of the table of marks <A>tom</A> with the groups in the
##  <A>sub2</A>-th conjugacy classes of subgroups of <A>tom</A>
##  are determined up to conjugacy by the decomposition of the tensor product
##  of their rows of marks.
##  <Ref Oper="IntersectionsTom"/> returns a list <M>l</M> that describes
##  this decomposition.
##  The <M>i</M>-th entry in <M>l</M> is the multiplicity of groups in the
##  <M>i</M>-th conjugacy class as an intersection.
##  <P/>
##  <Example><![CDATA[
##  gap> IntersectionsTom( a5, 8, 8 );
##  [ 0, 0, 1, 0, 0, 0, 0, 1 ]
##  ]]></Example>
##  Any two subgroups of class number 8 (<M>A_4</M>) of <M>A_5</M> are either
##  equal and their intersection has again class number 8,
##  or their intersection has class number <M>3</M>,
##  and is a cyclic subgroup of order 3.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "IntersectionsTom",
    [ IsTableOfMarks, IsPosInt, IsPosInt ] );


#############################################################################
##
#O  FactorGroupTom( <tom>, <n> )
##
##  <#GAPDoc Label="FactorGroupTom">
##  <ManSection>
##  <Oper Name="FactorGroupTom" Arg='tom, n'/>
##
##  <Description>
##  For a table of marks <A>tom</A> of a group <M>G</M>
##  and the normal subgroup <M>N</M> of <M>G</M> corresponding to the
##  <A>n</A>-th class of subgroups of <A>tom</A>,
##  <Ref Oper="FactorGroupTom"/> returns the table of marks of the factor
##  group <M>G / N</M>.
##  <P/>
##  <Example><![CDATA[
##  gap> s4:= TableOfMarks( SymmetricGroup( 4 ) );
##  TableOfMarks( Sym( [ 1 .. 4 ] ) )
##  gap> LengthsTom( s4 );
##  [ 1, 3, 6, 4, 1, 3, 3, 4, 3, 1, 1 ]
##  gap> OrdersTom( s4 );
##  [ 1, 2, 2, 3, 4, 4, 4, 6, 8, 12, 24 ]
##  gap> s3:= FactorGroupTom( s4, 5 );
##  TableOfMarks( Group([ f1, f2 ]) )
##  gap> Display( s3 );
##  1:  6
##  2:  3 1
##  3:  2 . 2
##  4:  1 1 1 1
##
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "FactorGroupTom", [ IsTableOfMarks, IsPosInt ] );


#############################################################################
##
#A  MaximalSubgroupsTom( <tom>[, <sub>] )
##
##  <#GAPDoc Label="MaximalSubgroupsTom">
##  <ManSection>
##  <Attr Name="MaximalSubgroupsTom" Arg='tom[, sub]'/>
##
##  <Description>
##  Called with a table of marks <A>tom</A>,
##  <Ref Attr="MaximalSubgroupsTom"/> returns a list of length two,
##  the first entry being the list of positions of the classes of maximal
##  subgroups of the whole group of <A>tom</A>,
##  the second entry being the list of class lengths of these groups.
##  <P/>
##  Called with a table of marks <A>tom</A> and a position <A>sub</A>,
##  the same information for the <A>sub</A>-th class of subgroups is
##  returned.
##  <P/>
##  <Example><![CDATA[
##  gap> MaximalSubgroupsTom( s4 );
##  [ [ 10, 9, 8 ], [ 1, 3, 4 ] ]
##  gap> MaximalSubgroupsTom( s4, 10 );
##  [ [ 5, 4 ], [ 1, 4 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "MaximalSubgroupsTom", IsTableOfMarks );
DeclareOperation( "MaximalSubgroupsTom", [ IsTableOfMarks, IsPosInt ] );


#############################################################################
##
#O  MinimalSupergroupsTom( <tom>, <sub> )
##
##  <#GAPDoc Label="MinimalSupergroupsTom">
##  <ManSection>
##  <Oper Name="MinimalSupergroupsTom" Arg='tom, sub'/>
##
##  <Description>
##  For a table of marks <A>tom</A>,
##  <Ref Oper="MinimalSupergroupsTom"/> returns a list of length two,
##  the first entry being the list of positions of the classes
##  containing the minimal supergroups of the groups in the <A>sub</A>-th
##  class of subgroups of <A>tom</A>,
##  the second entry being the list of class lengths of these groups.
##  <P/>
##  <Example><![CDATA[
##  gap> MinimalSupergroupsTom( s4, 5 );
##  [ [ 9, 10 ], [ 3, 1 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "MinimalSupergroupsTom", [ IsTableOfMarks, IsPosInt ] );


#############################################################################
##
##  11. Accessing Subgroups via Tables of Marks
##
##  <#GAPDoc Label="[8]{tom}">
##  Let <A>tom</A> be the table of marks of the group <M>G</M>,
##  and assume that <A>tom</A> has access to <M>G</M> via the
##  <Ref Attr="UnderlyingGroup" Label="for tables of marks"/> value.
##  Then it makes sense to use <A>tom</A> and its ordering of conjugacy
##  classes of subgroups of <M>G</M> for storing information for constructing
##  representatives of these classes.
##  The group <M>G</M> is in general not sufficient for this,
##  <A>tom</A> needs more information;
##  this is available if and only if the <Ref Filt="IsTableOfMarksWithGens"/>
##  value of <A>tom</A> is <K>true</K>.
##  In this case, <Ref Oper="RepresentativeTom"/> can be used
##  to get a subgroup of the <M>i</M>-th class, for all <M>i</M>.
##  <P/>
##  &GAP; provides two different possibilities to store generators of the
##  representatives of classes of subgroups.
##  The first is implemented by the attribute
##  <Ref Attr="GeneratorsSubgroupsTom"/>, which uses explicit generators
##  of the subgroups.
##  The second, more general, possibility is implemented by the attribute
##  <Ref Attr="StraightLineProgramsTom"/>, which encodes the generators as
##  straight line programs (see&nbsp;<Ref Sect="Straight Line Programs"/>)
##  that evaluate to the generators in question when applied to
##  <E>standard generators</E> of <M>G</M>.
##  <!--, see <Ref Sect="Standard Generators of Groups" BookName="tomlib"/>. -->
##  This means that on the one hand, standard generators of <M>G</M> must be
##  known in order to use <Ref Attr="StraightLineProgramsTom"/>.
##  On the other hand, the straight line programs allow one to compute easily
##  generators not only of a subgroup <M>U</M> of <M>G</M> but also
##  generators of the image of <M>U</M> in any representation of <M>G</M>,
##  provided that one knows standard generators of the image of <M>G</M>
##  under this representation.
##  See the manual of the package <Package>TomLib</Package> for details
##  and an example.
##  <#/GAPDoc>
##


#############################################################################
##
#A  GeneratorsSubgroupsTom( <tom> )
##
##  <#GAPDoc Label="GeneratorsSubgroupsTom">
##  <ManSection>
##  <Attr Name="GeneratorsSubgroupsTom" Arg='tom'/>
##
##  <Description>
##  Let <A>tom</A> be a table of marks with
##  <Ref Filt="IsTableOfMarksWithGens"/> value <K>true</K>.
##  Then <Ref Attr="GeneratorsSubgroupsTom"/> returns a list of length two,
##  the first entry being a list <M>l</M> of elements of the group stored as
##  <Ref Attr="UnderlyingGroup" Label="for tables of marks"/> value of
##  <A>tom</A>,
##  the second entry being a list that contains at position <M>i</M> a list
##  of positions in <M>l</M> of generators of a representative of a subgroup
##  in class <M>i</M>.
##  <P/>
##  The <Ref Attr="GeneratorsSubgroupsTom"/> value is known for all tables of
##  marks that have been computed with
##  <Ref Attr="TableOfMarks" Label="for a group"/> from a group,
##  and there is a method to compute the value for a table of marks that
##  admits <Ref Oper="RepresentativeTom"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "GeneratorsSubgroupsTom", IsTableOfMarks );


#############################################################################
##
#A  StraightLineProgramsTom( <tom> )
##
##  <#GAPDoc Label="StraightLineProgramsTom">
##  <ManSection>
##  <Attr Name="StraightLineProgramsTom" Arg='tom'/>
##
##  <Description>
##  For a table of marks <A>tom</A> with <Ref Filt="IsTableOfMarksWithGens"/>
##  value <K>true</K>,
##  <Ref Attr="StraightLineProgramsTom"/> returns a list that contains at
##  position <M>i</M> either a list of straight line programs or a
##  straight line program (see&nbsp;<Ref Sect="Straight Line Programs"/>),
##  encoding the generators of a representative of the <M>i</M>-th conjugacy
##  class of subgroups of <C>UnderlyingGroup( <A>tom</A> )</C>;
##  in the former case, each straight line program returns a generator,
##  in the latter case, the program returns the list of generators.
##  <P/>
##  There is no default method to compute the
##  <Ref Attr="StraightLineProgramsTom"/> value
##  of a table of marks if they are not yet stored.
##  The value is known for all tables of marks that belong to the
##  &GAP; library of tables of marks
##  (see&nbsp;<Ref Sect="The Library of Tables of Marks"/>).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "StraightLineProgramsTom", IsTableOfMarks );


#############################################################################
##
#F  IsTableOfMarksWithGens( <tom> )
##
##  <#GAPDoc Label="IsTableOfMarksWithGens">
##  <ManSection>
##  <Filt Name="IsTableOfMarksWithGens" Arg='tom'/>
##
##  <Description>
##  This filter shall express the union of the filters
##  <C>IsTableOfMarks and HasStraightLineProgramsTom</C> and
##  <C>IsTableOfMarks and HasGeneratorsSubgroupsTom</C>.
##  If a table of marks <A>tom</A> has this filter set then <A>tom</A> can be
##  asked to compute information that is in general not uniquely determined
##  by a table of marks,
##  for example the positions of derived subgroups or normalizers of
##  subgroups
##  (see&nbsp;<Ref Oper="DerivedSubgroupTom"/>, <Ref Oper="NormalizerTom"/>).
##  <P/>
##  <Example><![CDATA[
##  gap> a5:= TableOfMarks( "A5" );;  IsTableOfMarksWithGens( a5 );
##  true
##  gap> HasGeneratorsSubgroupsTom( a5 );  HasStraightLineProgramsTom( a5 );
##  false
##  true
##  gap> alt5:= TableOfMarks( AlternatingGroup( 5 ) );;
##  gap> IsTableOfMarksWithGens( alt5 );
##  true
##  gap> HasGeneratorsSubgroupsTom(alt5); HasStraightLineProgramsTom(alt5);
##  true
##  false
##  gap> progs:= StraightLineProgramsTom( a5 );;
##  gap> OrdersTom( a5 );
##  [ 1, 2, 3, 4, 5, 6, 10, 12, 60 ]
##  gap> IsCyclicTom( a5, 4 );
##  false
##  gap> Length( progs[4] );
##  2
##  gap> progs[4][1];
##  <straight line program>
##  gap> # first generator of an el. ab group of order 4:
##  gap> Display( progs[4][1] );
##  # input:
##  r:= [ g1, g2 ];
##  # program:
##  r[3]:= r[2]*r[1];
##  r[4]:= r[3]*r[2]^-1*r[1]*r[3]*r[2]^-1*r[1]*r[2];
##  # return value:
##  r[4]
##  gap> x:= [ [ Z(2)^0, 0*Z(2) ], [ Z(2^2), Z(2)^0 ] ];;
##  gap> y:= [ [ Z(2^2), Z(2)^0 ], [ 0*Z(2), Z(2^2)^2 ] ];;
##  gap> res1:= ResultOfStraightLineProgram( progs[4][1], [ x, y ] );
##  [ [ Z(2)^0, 0*Z(2) ], [ Z(2^2)^2, Z(2)^0 ] ]
##  gap> res2:= ResultOfStraightLineProgram( progs[4][2], [ x, y ] );
##  [ [ Z(2)^0, 0*Z(2) ], [ Z(2^2), Z(2)^0 ] ]
##  gap> w:= y*x;;
##  gap> res1 = w*y^-1*x*w*y^-1*x*y;
##  true
##  gap> subgrp:= Group( res1, res2 );;  Size( subgrp );  IsCyclic( subgrp );
##  4
##  false
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareFilter( "IsTableOfMarksWithGens" );

InstallTrueMethod( IsTableOfMarksWithGens,
    IsTableOfMarks and HasStraightLineProgramsTom );
InstallTrueMethod( IsTableOfMarksWithGens,
    IsTableOfMarks and HasGeneratorsSubgroupsTom);


#############################################################################
##
#O  RepresentativeTom( <tom>, <sub> )
#O  RepresentativeTomByGenerators( <tom>, <sub>, <gens> )
#O  RepresentativeTomByGeneratorsNC( <tom>, <sub>, <gens> )
##
##  <#GAPDoc Label="RepresentativeTom">
##  <ManSection>
##  <Oper Name="RepresentativeTom" Arg='tom, sub'/>
##  <Oper Name="RepresentativeTomByGenerators" Arg='tom, sub, gens'/>
##  <Oper Name="RepresentativeTomByGeneratorsNC" Arg='tom, sub, gens'/>
##
##  <Description>
##  Let <A>tom</A> be a table of marks with
##  <Ref Filt="IsTableOfMarksWithGens"/> value <K>true</K>,
##  and <A>sub</A> a positive integer.
##  <Ref Oper="RepresentativeTom"/> returns a representative of the
##  <A>sub</A>-th conjugacy class of subgroups of <A>tom</A>.
##  <P/>
##  If the attribute <Ref Attr="StraightLineProgramsTom"/> is set in
##  <A>tom</A> then methods for the operations
##  <Ref Oper="RepresentativeTomByGenerators"/> and
##  <Ref Oper="RepresentativeTomByGeneratorsNC"/> are available, which
##  return a representative of the <A>sub</A>-th conjugacy class of subgroups
##  of <A>tom</A>, as a subgroup of the group generated by <A>gens</A>.
##  This means that the standard generators of <A>tom</A> are replaced by
##  <A>gens</A>.
##  <P/>
##  <Ref Oper="RepresentativeTomByGenerators"/> checks whether mapping the
##  standard generators of <A>tom</A> to <A>gens</A> extends to a group
##  isomorphism, and returns <K>fail</K> if not.
##  <Ref Oper="RepresentativeTomByGeneratorsNC"/> omits all checks.
##  So <Ref Oper="RepresentativeTomByGenerators"/> is thought mainly for
##  debugging purposes;
##  note that when several representatives are constructed, it is cheaper to
##  construct (and check) the isomorphism once, and to map the groups
##  returned by <Ref Oper="RepresentativeTom"/> under this isomorphism.
##  The idea behind <Ref Oper="RepresentativeTomByGeneratorsNC"/>, however,
##  is to avoid the overhead of using isomorphisms when <A>gens</A> are known
##  to be standard generators.
##  In order to proceed like this, the attribute
##  <Ref Attr="StraightLineProgramsTom"/> is needed.
##  <P/>
##  <Example><![CDATA[
##  gap> RepresentativeTom( a5, 4 );
##  Group([ (2,3)(4,5), (2,4)(3,5) ])
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "RepresentativeTom", [ IsTableOfMarks, IsPosInt ] );

DeclareOperation( "RepresentativeTomByGenerators",
    [ IsTableOfMarks and HasStraightLineProgramsTom, IsPosInt,
      IsHomogeneousList ] );

DeclareOperation( "RepresentativeTomByGeneratorsNC",
    [ IsTableOfMarks and HasStraightLineProgramsTom, IsPosInt,
      IsHomogeneousList ] );


#############################################################################
##
##  12. The Interface between Tables of Marks and Character Tables
##


#############################################################################
##
#O  FusionCharTableTom( <tbl>, <tom> )  . . . . . . . . . . .  element fusion
#O  PossibleFusionsCharTableTom( <tbl>, <tom>[, <options>] ) .  element fusion
##
##  <#GAPDoc Label="FusionCharTableTom">
##  <ManSection>
##  <Oper Name="FusionCharTableTom" Arg='tbl, tom'/>
##  <Oper Name="PossibleFusionsCharTableTom" Arg='tbl, tom[, options]'/>
##
##  <Description>
##  Let <A>tbl</A> be the ordinary character table of the group <M>G</M>,
##  say, and <A>tom</A> the table of marks of <M>G</M>.
##  <Ref Oper="FusionCharTableTom"/> determines the fusion of the classes of
##  elements from <A>tbl</A> to the classes of cyclic subgroups on
##  <A>tom</A>, that is, a list that contains at position <M>i</M> the
##  position of the class of cyclic subgroups in <A>tom</A> that are
##  generated by elements in the <M>i</M>-th conjugacy class of elements in
##  <A>tbl</A>.
##  <P/>
##  Three cases are handled differently.
##  <Enum>
##  <Item>
##    The fusion is explicitly stored on <A>tbl</A>.
##    Then nothing has to be done.
##    This happens only if both <A>tbl</A> and <A>tom</A> are tables from the
##    &GAP; library (see&nbsp;<Ref Sect="The Library of Tables of Marks"/>
##    and the manual of the &GAP; Character Table Library).
##  </Item>
##  <Item>
##    The <Ref Attr="UnderlyingGroup" Label="for tables of marks"/> values of
##    <A>tbl</A> and <A>tom</A> are known and equal.
##    Then the group is used to compute the fusion.
##  </Item>
##  <Item>
##    There is neither fusion nor group information available.
##    In this case only necessary conditions can be checked,
##    and if they are not sufficient to determine the fusion uniquely then
##    <K>fail</K> is returned by <Ref Oper="FusionCharTableTom"/>.
##  </Item>
##  </Enum>
##  <P/>
##  <Ref Oper="PossibleFusionsCharTableTom"/> computes the list of possible
##  fusions from <A>tbl</A> to <A>tom</A>,
##  according to the criteria that have been checked.
##  So if <Ref Oper="FusionCharTableTom"/> returns a unique fusion then the
##  list returned by <Ref Oper="PossibleFusionsCharTableTom"/> for the same
##  arguments contains exactly this fusion,
##  and if <Ref Oper="FusionCharTableTom"/> returns <K>fail</K> then the
##  length of this list is different from <M>1</M>.
##  <!-- this is fishy!-->
##  <P/>
##  The optional argument <A>options</A> must be a record that may have the
##  following components.
##  <List>
##  <Mark><C>fusionmap</C></Mark>
##  <Item>
##    a parametrized map which is an approximation of the desired map,
##  </Item>
##  <Mark><C>quick</C></Mark>
##  <Item>
##    a Boolean;
##    if <K>true</K> then as soon as only one possibility remains
##    this possibility is returned immediately;
##    the default value is <K>false</K>.
##  </Item>
##  </List>
##  <P/>
##  <Example><![CDATA[
##  gap> a5c:= CharacterTable( "A5" );;
##  gap> fus:= FusionCharTableTom( a5c, a5 );
##  [ 1, 2, 3, 5, 5 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "FusionCharTableTom",
    [ IsOrdinaryTable, IsTableOfMarks ] );

DeclareOperation( "PossibleFusionsCharTableTom",
    [ IsOrdinaryTable, IsTableOfMarks ] );

DeclareOperation( "PossibleFusionsCharTableTom",
    [ IsOrdinaryTable, IsTableOfMarks, IsRecord ] );


#############################################################################
##
#O  PermCharsTom( <fus>, <tom> )
#O  PermCharsTom( <tbl>, <tom> )
##
##  <#GAPDoc Label="PermCharsTom">
##  <ManSection>
##  <Oper Name="PermCharsTom" Arg='fus, tom' Label="via fusion map"/>
##  <Oper Name="PermCharsTom" Arg='tbl, tom' Label="from a character table"/>
##
##  <Description>
##  <Ref Oper="PermCharsTom" Label="via fusion map"/> returns the list of
##  transitive permutation characters from the table of marks <A>tom</A>.
##  In the first form, <A>fus</A> must be the fusion map from the ordinary
##  character table of the group of <A>tom</A> to <A>tom</A>
##  (see&nbsp;<Ref Oper="FusionCharTableTom"/>).
##  In the second form, <A>tbl</A> must be the character table of the group
##  of which <A>tom</A> is the table of marks.
##  If the fusion map is not uniquely determined
##  (see&nbsp;<Ref Oper="FusionCharTableTom"/>) then <K>fail</K> is returned.
##  <P/>
##  If the fusion map <A>fus</A> is given as first argument then each
##  transitive permutation character is represented by its values list.
##  If the character table <A>tbl</A> is given then the permutation
##  characters are class function objects
##  (see Chapter&nbsp;<Ref Chap="Class Functions"/>).
##  <P/>
##  <Example><![CDATA[
##  gap> PermCharsTom( a5c, a5 );
##  [ Character( CharacterTable( "A5" ), [ 60, 0, 0, 0, 0 ] ),
##    Character( CharacterTable( "A5" ), [ 30, 2, 0, 0, 0 ] ),
##    Character( CharacterTable( "A5" ), [ 20, 0, 2, 0, 0 ] ),
##    Character( CharacterTable( "A5" ), [ 15, 3, 0, 0, 0 ] ),
##    Character( CharacterTable( "A5" ), [ 12, 0, 0, 2, 2 ] ),
##    Character( CharacterTable( "A5" ), [ 10, 2, 1, 0, 0 ] ),
##    Character( CharacterTable( "A5" ), [ 6, 2, 0, 1, 1 ] ),
##    Character( CharacterTable( "A5" ), [ 5, 1, 2, 0, 0 ] ),
##    Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] ) ]
##  gap> PermCharsTom( fus, a5 )[1];
##  [ 60, 0, 0, 0, 0 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "PermCharsTom", [ IsList, IsTableOfMarks ] );
DeclareOperation( "PermCharsTom", [ IsOrdinaryTable, IsTableOfMarks ] );


#############################################################################
##
##  13. Generic Construction of Tables of Marks
##
##  <#GAPDoc Label="[9]{tom}">
##  The following three operations construct a table of marks only from the
##  data given, i.e., without underlying group.
##  <#/GAPDoc>
##


#############################################################################
##
#O  TableOfMarksCyclic( <n> )
##
##  <#GAPDoc Label="TableOfMarksCyclic">
##  <ManSection>
##  <Oper Name="TableOfMarksCyclic" Arg='n'/>
##
##  <Description>
##  <Ref Oper="TableOfMarksCyclic"/> returns the table of marks of the cyclic
##  group of order <A>n</A>.
##  <P/>
##  A cyclic group of order <A>n</A> has as its subgroups for each divisor
##  <M>d</M> of <A>n</A> a cyclic subgroup of order <M>d</M>.
##  <P/>
##  <Example><![CDATA[
##  gap> Display( TableOfMarksCyclic( 6 ) );
##  1:  6
##  2:  3 3
##  3:  2 . 2
##  4:  1 1 1 1
##
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "TableOfMarksCyclic", [ IsPosInt ] );


#############################################################################
##
#O  TableOfMarksDihedral( <n> )
##
##  <#GAPDoc Label="TableOfMarksDihedral">
##  <ManSection>
##  <Oper Name="TableOfMarksDihedral" Arg='n'/>
##
##  <Description>
##  <Ref Oper="TableOfMarksDihedral"/> returns the table of marks of the
##  dihedral group of order <A>m</A>.
##  <P/>
##  For each divisor <M>d</M> of <A>m</A>, a dihedral group of order
##  <M>m = 2n</M> contains subgroups of order <M>d</M> according to the
##  following rule.
##  If <M>d</M> is odd and divides <M>n</M> then there is only one cyclic
##  subgroup of order <M>d</M>.
##  If <M>d</M> is even and divides <M>n</M> then there are a cyclic subgroup
##  of order <M>d</M> and two classes of dihedral subgroups of order <M>d</M>
##  (which are cyclic, too, in the case <M>d = 2</M>, see the example below).
##  Otherwise (i.e., if <M>d</M> does not divide <M>n</M>) there is just one
##  class of dihedral subgroups of order <M>d</M>.
##  <P/>
##  <Example><![CDATA[
##  gap> Display( TableOfMarksDihedral( 12 ) );
##   1:  12
##   2:   6 6
##   3:   6 . 2
##   4:   6 . . 2
##   5:   4 . . . 4
##   6:   3 3 1 1 . 1
##   7:   2 2 . . 2 . 2
##   8:   2 . 2 . 2 . . 2
##   9:   2 . . 2 2 . . . 2
##  10:   1 1 1 1 1 1 1 1 1 1
##
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "TableOfMarksDihedral", [ IsPosInt ] );


#############################################################################
##
#O  TableOfMarksFrobenius( <p>, <q> )
##
##  <#GAPDoc Label="TableOfMarksFrobenius">
##  <ManSection>
##  <Oper Name="TableOfMarksFrobenius" Arg='p, q'/>
##
##  <Description>
##  <Ref Oper="TableOfMarksFrobenius"/> computes the table of marks of a
##  Frobenius group of order <M>p q</M>, where <M>p</M> is a prime and
##  <M>q</M> divides <M>p-1</M>.
##  <P/>
##  <Example><![CDATA[
##  gap> Display( TableOfMarksFrobenius( 5, 4 ) );
##  1:  20
##  2:  10 2
##  3:   5 1 1
##  4:   4 . . 4
##  5:   2 2 . 2 2
##  6:   1 1 1 1 1 1
##
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "TableOfMarksFrobenius", [ IsPosInt, IsPosInt ] );


#############################################################################
##
#V  TableOfMarksComponents
##
##  <#GAPDoc Label="TableOfMarksComponents">
##  <ManSection>
##  <Var Name="TableOfMarksComponents"/>
##
##  <Description>
##  The list <Ref Var="TableOfMarksComponents"/> is used when a
##  table of marks object is created from a record via
##  <Ref Func="ConvertToTableOfMarks"/>.
##  <Ref Var="TableOfMarksComponents"/> contains at position <M>2i-1</M>
##  a name of an attribute and at position <M>2i</M> the corresponding
##  attribute getter function.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
BindGlobal( "TableOfMarksComponents", MakeImmutable([
      "Identifier",                 Identifier,
      "SubsTom",                    SubsTom,
      "MarksTom",                   MarksTom,
      "NrSubsTom",                  NrSubsTom,
      "OrdersTom",                  OrdersTom,
      "NormalizersTom",             NormalizersTom,
      "DerivedSubgroupsTomUnique",  DerivedSubgroupsTomUnique,
      "UnderlyingGroup",            UnderlyingGroup,
      "StraightLineProgramsTom",    StraightLineProgramsTom,
      "GeneratorsSubgroupsTom",     GeneratorsSubgroupsTom,
      "PermutationTom",             PermutationTom,
      "ClassNamesTom",              ClassNamesTom,
    ]) );