File: 2024_10_24_WreathProductWIthTrivialGroups.tst

package info (click to toggle)
gap 4.15.1-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 110,212 kB
  • sloc: ansic: 97,261; xml: 48,343; cpp: 13,946; sh: 4,900; perl: 1,650; javascript: 255; makefile: 252; ruby: 9
file content (60 lines) | stat: -rw-r--r-- 1,457 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#
gap> START_TEST("WreathProductWithTrivialGroups.tst");
gap> P := SymmetricGroup(3);;
gap> IP := Group( One(P) );;
gap> M := GL(6, 5);;
gap> IM := Group( One(M) );;

# Generators should not contain the identity element,
# unless the group is trivial.
gap> checkGens := function(G)
>      local gens;
>      gens := GeneratorsOfGroup(G);
>      return gens = [One(G)] or ForAll(gens, g -> g <> One(G));
>    end;;

# imprimitive perm, trivial top
gap> checkGens( WreathProduct(P, IP) );
true

# imprimitive perm, trivial base
gap> checkGens( WreathProduct(IP, P) );
true

# imprimitive perm, trivial base and top
gap> checkGens( WreathProduct(IP, IP) );
true

# imprimitive mat, trivial top
gap> checkGens( WreathProduct(M, IP) );
true

# imprimitive mat, trivial base
gap> checkGens( WreathProduct(IM, P) );
true

# imprimitive mat, trivial base and top
gap> checkGens( WreathProduct(IM, IP) );
true

# product action perm, trivial top
gap> checkGens( WreathProductProductAction(P, IP) );
true

# product action perm, trivial base
gap> checkGens( WreathProductProductAction(IP, P) );
true

# product action perm, trivial base and top
gap> checkGens( WreathProductProductAction(IP, IP) );
true

#
gap> K := Group([ () ]);;
gap> H := Group([ (1,2,3,4,5,6,7), (6,7,8) ]);;
gap> G := WreathProduct(K, H);;
gap> WreathProductInfo(G).components;
[ [ 1 ], [ 2 ], [ 3 ], [ 4 ], [ 5 ], [ 6 ], [ 7 ], [ 8 ] ]

#
gap> STOP_TEST("WreathProductWithTrivialGroups.tst");