File: relation.tst

package info (click to toggle)
gap 4.15.1-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 110,212 kB
  • sloc: ansic: 97,261; xml: 48,343; cpp: 13,946; sh: 4,900; perl: 1,650; javascript: 255; makefile: 252; ruby: 9
file content (186 lines) | stat: -rw-r--r-- 6,687 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
#@local br,c,d,dom,e,ec,el,er,er1,er2,g,j1,j2,m,m1,m2,n,r,rc,rel,sc,sgs,tc,tup
gap> START_TEST("relation.tst");
gap> ##################################################
gap> ##
gap> ##  Categories
gap> ##      IsBinaryRelation   (IsEndoGeneralMapping)
gap> ##      IsEquivalenceClass
gap> ##
gap> ##################################################
gap> dom := Domain([1..10]);;  
gap> m := GeneralMappingByElements(dom,dom,List(dom,x->DirectProductElement([x,x])));;
gap> IsBinaryRelation(m);
true
gap> IsEndoGeneralMapping(m);
true
gap> IsReflexiveBinaryRelation(m);
true
gap> HasIsTotal(m);
true
gap> IsSymmetricBinaryRelation(m);
true
gap> IsTransitiveBinaryRelation(m);
true
gap> m=IdentityMapping(dom);
true
gap> e := EquivalenceRelationByRelation(m);;
gap> r := Random(dom);;
gap> c := EquivalenceClassOfElement(e,r);;
gap> IsEquivalenceClass(c);
true
gap> ##################################################
gap> ##
gap> ##  Properties
gap> ##      IsEquivalenceRelation
gap> ##      IsSymmetricBinaryRelation
gap> ##      IsTransitiveBinaryRelation
gap> ##      IsReflexiveBinaryRelation (implies IsTotal)
gap> ##
gap> ##################################################
gap> dom := Domain([1..10]);; tup:=[DirectProductElement([2,4])];;
gap> m := GeneralMappingByElements(dom,dom,Concatenation(List(dom,x->DirectProductElement([x,x])),tup));;
gap> IsReflexiveBinaryRelation(m);
true
gap> HasIsTotal(m);
true
gap> IsTotal(m);
true
gap> IsSymmetricBinaryRelation(m);
false
gap> IsTransitiveBinaryRelation(m);
true
gap> tup := [DirectProductElement([3,4]),DirectProductElement([4,3])];;
gap> m := GeneralMappingByElements(dom,dom,Concatenation(List(dom,x->DirectProductElement([x,x])),tup));;
gap> IsTransitiveBinaryRelation(m);
true
gap> IsReflexiveBinaryRelation(m);
true
gap> IsSymmetricBinaryRelation(m);
true
gap> IsEquivalenceRelation(m);
true
gap> m := GeneralMappingByElements(dom,dom,Concatenation(List(dom,x->DirectProductElement([x,x])),tup));;
gap> IsEquivalenceRelation(m);
true
gap> e := EquivalenceRelationByPairs(dom,[[3,4]]);;
gap> m=e;
true
gap> IsEquivalenceRelation(e);
true
gap> ##################################################
gap> ##
gap> ##  Attributes
gap> ##      EquivalenceRelationPartition
gap> ##      GeneratorsOfEquivalenceRelationPartition
gap> ##      EquivalenceClassRelation
gap> ##      EquivalenceClasses
gap> ##      ImagesListOfBinaryRelation
gap> ##     
gap> ##################################################
gap> dom := Domain([1..10]);; tup:=[DirectProductElement([2,4]),DirectProductElement([4,2])];;
gap> m := GeneralMappingByElements(dom,dom,Concatenation(List(dom,x->DirectProductElement([x,x])),tup));;
gap> IsReflexiveBinaryRelation(m);; IsSymmetricBinaryRelation(m);; 
gap> IsTransitiveBinaryRelation(m);; IsEquivalenceRelation(m);;
gap> e := EquivalenceRelationByPairs(dom,[[2,4]]);;
gap> EquivalenceRelationPartition(e);
[ [ 2, 4 ] ]
gap> GeneratorsOfEquivalenceRelationPartition(e);
[ [ 2, 4 ] ]
gap> e := EquivalenceRelationByPairs(dom,[[2,4],[4,5], [4,5],[1,1]]);;
gap> GeneratorsOfEquivalenceRelationPartition(e);
[ [ 2, 4 ], [ 4, 5 ] ]
gap> r := Random(dom);;
gap> c:= EquivalenceClassOfElement(e,r);;
gap> e = EquivalenceClassRelation(c);
true
gap> ec := EquivalenceClassOfElement(e,2);
{2}
gap> 4 in ec;
true
gap> 1 in ec;
false
gap> Images(e,2); 
[ 2, 4, 5 ]
gap> Images(e,10);
[ 10 ]
gap> br:=BinaryRelationOnPoints([[1],[2,4,5],[3],[4,2,5],[2,4,5],[6],[7],[8],[9],[10]]);;
gap> e=br;
true
gap> Successors(br);
[ [ 1 ], [ 2, 4, 5 ], [ 3 ], [ 2, 4, 5 ], [ 2, 4, 5 ], [ 6 ], [ 7 ], [ 8 ], 
  [ 9 ], [ 10 ] ]
gap> EquivalenceRelationPartition(br);
[ [ 2, 4, 5 ] ]
gap> ##################################################
gap> ##  Operations   (Constructors)
gap> ##      ReflexiveClosureBinaryRelation
gap> ##      SymmetricClosureBinaryRelation
gap> ##      TransitiveClosureBinaryRelation
gap> ##      JoinEquivalenceRelations
gap> ##      MeetEquivalenceRelations
gap> ##      EquivalenceClassOfElement
gap> ##################################################
gap> br := BinaryRelationOnPoints([[2],[3],[4],[5],[6],[7],[8],[9],[10],[]]);;
gap> rc := ReflexiveClosureBinaryRelation(br);;
gap> Successors(rc);
[ [ 1, 2 ], [ 2, 3 ], [ 3, 4 ], [ 4, 5 ], [ 5, 6 ], [ 6, 7 ], [ 7, 8 ], 
  [ 8, 9 ], [ 9, 10 ], [ 10 ] ]
gap> sc := SymmetricClosureBinaryRelation(br);;
gap> Successors(sc);
[ [ 2 ], [ 1, 3 ], [ 2, 4 ], [ 3, 5 ], [ 4, 6 ], [ 5, 7 ], [ 6, 8 ], 
  [ 7, 9 ], [ 8, 10 ], [ 9 ] ]
gap> tc := TransitiveClosureBinaryRelation(br);;
gap> Successors(tc);
[ [ 2, 3, 4, 5, 6, 7, 8, 9, 10 ], [ 3, 4, 5, 6, 7, 8, 9, 10 ], 
  [ 4, 5, 6, 7, 8, 9, 10 ], [ 5, 6, 7, 8, 9, 10 ], [ 6, 7, 8, 9, 10 ], 
  [ 7, 8, 9, 10 ], [ 8, 9, 10 ], [ 9, 10 ], [ 10 ], [  ] ]
gap> er := EquivalenceRelationByRelation(br);;
gap> er1 := EquivalenceRelationByPairs(dom,[[2,3],[4,5],[6,5]]);;
gap> UnderlyingRelation(MeetEquivalenceRelations(er,er1))=Intersection(UnderlyingRelation(er),UnderlyingRelation(er1));
true
gap> er2 := EquivalenceRelationByPairs(dom,[[1,2],[3,4],[6,7],[7,8],[8,9],[9,10]]);;
gap> j1 := JoinEquivalenceRelations(er1,er2);;
gap> j2 := JoinEquivalenceRelations(er,er1);;
gap> j1=j2; 
true
gap> m1 := MeetEquivalenceRelations(j1,er2);;
gap> m1=er2;
true
gap> m2 := MeetEquivalenceRelations (er1,er2);;
gap> EquivalenceRelationByPairs(dom,[]) = m2;
true
gap> ##################################################
gap> ##      
gap> ##  Functions    (Constructors)
gap> ##      BinaryRelationByListOfImages
gap> ##      EquivalenceRelationsByProperty
gap> ##      EquivalenceRelationByRelation
gap> ##      EquivalenceRelationByPairs
gap> ##
gap> ##################################################
gap> n:=10;; dom := Domain([1..n]);;
gap> el := List([1..n-1],x->DirectProductElement([x,x+1]));;
gap> e := EquivalenceRelationByRelation(IdentityMapping(dom));;
gap> EquivalenceRelationPartition(e)=[];
true
gap> er := EquivalenceRelationByPairs(dom,el);;
gap> Size(EquivalenceRelationPartition(er))=1;
true
gap> er := EquivalenceRelationByPairs(dom, el);;
gap> Size(EquivalenceClasses(er)) =1;
true
gap> g := SymmetricGroup(4);;
gap> sgs := Domain(NormalSubgroups(g));;
gap> d := Size(sgs);;
gap> el :=  List([1..d-1],x->DirectProductElement([AsList(sgs)[x],AsList(sgs)[x+1]]));;
gap> er1 := EquivalenceRelationByRelation(GeneralMappingByElements(sgs,sgs,el));;
gap> er := EquivalenceRelationByPairs(sgs,el);;
gap> er=er1;
true
gap> el := List([1..n-1],x->DirectProductElement([x,x+1]));;
gap> rel := TransitiveClosureBinaryRelation(GeneralMappingByElements(dom,dom,el));;
gap> Size(UnderlyingRelation(rel));
45
gap> Size(GeneratorsOfEquivalenceRelationPartition(EquivalenceRelationByPairs(dom,el)));
9
gap> STOP_TEST("relation.tst");