1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
#@local br,c,d,dom,e,ec,el,er,er1,er2,g,j1,j2,m,m1,m2,n,r,rc,rel,sc,sgs,tc,tup
gap> START_TEST("relation.tst");
gap> ##################################################
gap> ##
gap> ## Categories
gap> ## IsBinaryRelation (IsEndoGeneralMapping)
gap> ## IsEquivalenceClass
gap> ##
gap> ##################################################
gap> dom := Domain([1..10]);;
gap> m := GeneralMappingByElements(dom,dom,List(dom,x->DirectProductElement([x,x])));;
gap> IsBinaryRelation(m);
true
gap> IsEndoGeneralMapping(m);
true
gap> IsReflexiveBinaryRelation(m);
true
gap> HasIsTotal(m);
true
gap> IsSymmetricBinaryRelation(m);
true
gap> IsTransitiveBinaryRelation(m);
true
gap> m=IdentityMapping(dom);
true
gap> e := EquivalenceRelationByRelation(m);;
gap> r := Random(dom);;
gap> c := EquivalenceClassOfElement(e,r);;
gap> IsEquivalenceClass(c);
true
gap> ##################################################
gap> ##
gap> ## Properties
gap> ## IsEquivalenceRelation
gap> ## IsSymmetricBinaryRelation
gap> ## IsTransitiveBinaryRelation
gap> ## IsReflexiveBinaryRelation (implies IsTotal)
gap> ##
gap> ##################################################
gap> dom := Domain([1..10]);; tup:=[DirectProductElement([2,4])];;
gap> m := GeneralMappingByElements(dom,dom,Concatenation(List(dom,x->DirectProductElement([x,x])),tup));;
gap> IsReflexiveBinaryRelation(m);
true
gap> HasIsTotal(m);
true
gap> IsTotal(m);
true
gap> IsSymmetricBinaryRelation(m);
false
gap> IsTransitiveBinaryRelation(m);
true
gap> tup := [DirectProductElement([3,4]),DirectProductElement([4,3])];;
gap> m := GeneralMappingByElements(dom,dom,Concatenation(List(dom,x->DirectProductElement([x,x])),tup));;
gap> IsTransitiveBinaryRelation(m);
true
gap> IsReflexiveBinaryRelation(m);
true
gap> IsSymmetricBinaryRelation(m);
true
gap> IsEquivalenceRelation(m);
true
gap> m := GeneralMappingByElements(dom,dom,Concatenation(List(dom,x->DirectProductElement([x,x])),tup));;
gap> IsEquivalenceRelation(m);
true
gap> e := EquivalenceRelationByPairs(dom,[[3,4]]);;
gap> m=e;
true
gap> IsEquivalenceRelation(e);
true
gap> ##################################################
gap> ##
gap> ## Attributes
gap> ## EquivalenceRelationPartition
gap> ## GeneratorsOfEquivalenceRelationPartition
gap> ## EquivalenceClassRelation
gap> ## EquivalenceClasses
gap> ## ImagesListOfBinaryRelation
gap> ##
gap> ##################################################
gap> dom := Domain([1..10]);; tup:=[DirectProductElement([2,4]),DirectProductElement([4,2])];;
gap> m := GeneralMappingByElements(dom,dom,Concatenation(List(dom,x->DirectProductElement([x,x])),tup));;
gap> IsReflexiveBinaryRelation(m);; IsSymmetricBinaryRelation(m);;
gap> IsTransitiveBinaryRelation(m);; IsEquivalenceRelation(m);;
gap> e := EquivalenceRelationByPairs(dom,[[2,4]]);;
gap> EquivalenceRelationPartition(e);
[ [ 2, 4 ] ]
gap> GeneratorsOfEquivalenceRelationPartition(e);
[ [ 2, 4 ] ]
gap> e := EquivalenceRelationByPairs(dom,[[2,4],[4,5], [4,5],[1,1]]);;
gap> GeneratorsOfEquivalenceRelationPartition(e);
[ [ 2, 4 ], [ 4, 5 ] ]
gap> r := Random(dom);;
gap> c:= EquivalenceClassOfElement(e,r);;
gap> e = EquivalenceClassRelation(c);
true
gap> ec := EquivalenceClassOfElement(e,2);
{2}
gap> 4 in ec;
true
gap> 1 in ec;
false
gap> Images(e,2);
[ 2, 4, 5 ]
gap> Images(e,10);
[ 10 ]
gap> br:=BinaryRelationOnPoints([[1],[2,4,5],[3],[4,2,5],[2,4,5],[6],[7],[8],[9],[10]]);;
gap> e=br;
true
gap> Successors(br);
[ [ 1 ], [ 2, 4, 5 ], [ 3 ], [ 2, 4, 5 ], [ 2, 4, 5 ], [ 6 ], [ 7 ], [ 8 ],
[ 9 ], [ 10 ] ]
gap> EquivalenceRelationPartition(br);
[ [ 2, 4, 5 ] ]
gap> ##################################################
gap> ## Operations (Constructors)
gap> ## ReflexiveClosureBinaryRelation
gap> ## SymmetricClosureBinaryRelation
gap> ## TransitiveClosureBinaryRelation
gap> ## JoinEquivalenceRelations
gap> ## MeetEquivalenceRelations
gap> ## EquivalenceClassOfElement
gap> ##################################################
gap> br := BinaryRelationOnPoints([[2],[3],[4],[5],[6],[7],[8],[9],[10],[]]);;
gap> rc := ReflexiveClosureBinaryRelation(br);;
gap> Successors(rc);
[ [ 1, 2 ], [ 2, 3 ], [ 3, 4 ], [ 4, 5 ], [ 5, 6 ], [ 6, 7 ], [ 7, 8 ],
[ 8, 9 ], [ 9, 10 ], [ 10 ] ]
gap> sc := SymmetricClosureBinaryRelation(br);;
gap> Successors(sc);
[ [ 2 ], [ 1, 3 ], [ 2, 4 ], [ 3, 5 ], [ 4, 6 ], [ 5, 7 ], [ 6, 8 ],
[ 7, 9 ], [ 8, 10 ], [ 9 ] ]
gap> tc := TransitiveClosureBinaryRelation(br);;
gap> Successors(tc);
[ [ 2, 3, 4, 5, 6, 7, 8, 9, 10 ], [ 3, 4, 5, 6, 7, 8, 9, 10 ],
[ 4, 5, 6, 7, 8, 9, 10 ], [ 5, 6, 7, 8, 9, 10 ], [ 6, 7, 8, 9, 10 ],
[ 7, 8, 9, 10 ], [ 8, 9, 10 ], [ 9, 10 ], [ 10 ], [ ] ]
gap> er := EquivalenceRelationByRelation(br);;
gap> er1 := EquivalenceRelationByPairs(dom,[[2,3],[4,5],[6,5]]);;
gap> UnderlyingRelation(MeetEquivalenceRelations(er,er1))=Intersection(UnderlyingRelation(er),UnderlyingRelation(er1));
true
gap> er2 := EquivalenceRelationByPairs(dom,[[1,2],[3,4],[6,7],[7,8],[8,9],[9,10]]);;
gap> j1 := JoinEquivalenceRelations(er1,er2);;
gap> j2 := JoinEquivalenceRelations(er,er1);;
gap> j1=j2;
true
gap> m1 := MeetEquivalenceRelations(j1,er2);;
gap> m1=er2;
true
gap> m2 := MeetEquivalenceRelations (er1,er2);;
gap> EquivalenceRelationByPairs(dom,[]) = m2;
true
gap> ##################################################
gap> ##
gap> ## Functions (Constructors)
gap> ## BinaryRelationByListOfImages
gap> ## EquivalenceRelationsByProperty
gap> ## EquivalenceRelationByRelation
gap> ## EquivalenceRelationByPairs
gap> ##
gap> ##################################################
gap> n:=10;; dom := Domain([1..n]);;
gap> el := List([1..n-1],x->DirectProductElement([x,x+1]));;
gap> e := EquivalenceRelationByRelation(IdentityMapping(dom));;
gap> EquivalenceRelationPartition(e)=[];
true
gap> er := EquivalenceRelationByPairs(dom,el);;
gap> Size(EquivalenceRelationPartition(er))=1;
true
gap> er := EquivalenceRelationByPairs(dom, el);;
gap> Size(EquivalenceClasses(er)) =1;
true
gap> g := SymmetricGroup(4);;
gap> sgs := Domain(NormalSubgroups(g));;
gap> d := Size(sgs);;
gap> el := List([1..d-1],x->DirectProductElement([AsList(sgs)[x],AsList(sgs)[x+1]]));;
gap> er1 := EquivalenceRelationByRelation(GeneralMappingByElements(sgs,sgs,el));;
gap> er := EquivalenceRelationByPairs(sgs,el);;
gap> er=er1;
true
gap> el := List([1..n-1],x->DirectProductElement([x,x+1]));;
gap> rel := TransitiveClosureBinaryRelation(GeneralMappingByElements(dom,dom,el));;
gap> Size(UnderlyingRelation(rel));
45
gap> Size(GeneratorsOfEquivalenceRelationPartition(EquivalenceRelationByPairs(dom,el)));
9
gap> STOP_TEST("relation.tst");
|