
GAP
Release 4.5

October 2011

The gapmacro.tex

Manual Format

The GAP Group

https://www.gap-system.org

Contents

1 The gapmacro.tex Manual Format 3

1.1 The Main File . 3

1.2 Additional Typesetting Options . 6

1.3 Structuring the text: Chapters and Sections 7

1.4 Suppressing Indexing and Labelling of a Section and Resolving Label Clashes 8

1.5 Labels and References . 8

1.6 TeX Macros . 9

1.7 TeX Macros for Domains . 12

1.8 Examples, Lists, and Verbatim . 13

1.9 Tables, Displayed Mathematics and Mathematics Alignments 16

1.10 Testing the Examples . 16

1.11 Usage of the Percent Symbol . 17

1.12 Catering for Plain Text and HTML Formats 17

1.13 Umlauts . 18

1.14 Producing a Manual . 19

1.15 Using buildman.pe . 20

1 The gapmacro.tex
Manual Format

This document describes a restricted TEX format, which is defined by the of macros in the file

GAPPATH/doc/gapmacro.tex

and how to create the final documents (which can be printed or used by GAP’s online help) from it. Some GAP 4
package documentation is written in this format. Up to version 4.4, the same was true for the main GAP manuals.

See 1.6 and 1.8 for details on the restricted set of available TEX commands.

The first sections 1.1 and 1.3 describe the general layout of the files in case you need to write your own package
documentation.

If you are planning to write new documentation for a GAP package, one alternative to using the format described in
this document is to use the GAPDoc package, see Chapter “Introduction and Example” in the GAPDoc manual, for
example type

gap> ?GAPDoc:chapters

in GAP’s online help for a table of contents, or (if it is not available in your installation) see:

http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc/

If you want to use yet another document format you must provide certain information to the interface of GAP’s online
help. This is described in Chapter “Interface to the GAP Help System” of the GAP Reference Manual.

1.1 The Main File

The main TEX file is called manual.tex. This file should contain the following commands:

\input ../gapmacro

... (gapmacro.tex options, see "Additional Typesetting Options" below)

\Package{package-name}
\BeginningOfBook{name-of-book}

\UseReferences{book1}
...

\UseReferences{bookn}
\TitlePage{title}
\Colophon{text}
\TableOfContents

\FrontMatter

\immediate\write\citeout{\bs bibdata{mybibliography}}
\Input{file1}
...

\Input{filen}
\Chapters

\Input{file1}
...

\Input{filen}

4 Chapter 1. The gapmacro.tex Manual Format

\Appendices

\Input{file1}
...

\Input{filen}
\Bibliography

\Index

\EndOfBook

Now we describe what these commands do:

\input path/gapmacro.tex
inputs the GAP “style” and macros file gapmacro.tex. If you are writing a GAP package either copy this
file or use a relative path. The former method will always work but requires you to keep the file consistent
with the system while the latter forces users to change the manual.tex file if they are installing a package
in a private location. See also Section “GAP Root Directory” in the GAP Reference Manual.

\Package{package-name}
defines a macro \package-name so that when you type {\package-name} (please include the curly braces)
the text package-name is typeset in the right way for GAP packages, e.g. if you are writing a package
MyPackage then you should include the line

\Package{MyPackage}

in your manual.tex file and then in your chapter files use {\MyPackage} when you refer to MyPackage
by name. There is also the command \package{pkg} when you wish to refer to other GAP packages; don’t
confuse the two i.e. \Package{package-name} defines a macro \package-name but produces no text, and
\package{pkg} produces pkg set in the font that is right for GAP packages.

\BeginningOfBook{name-of-book}
starts the book name-of-book. It is used for cross-references, see 1.5. If you are writing a GAP package use
the name of your package here.

\UseReferences{booki}, \UseGapDocReferences{booki}
If your manual cross-refers to another manual, \UseReferences can be used to load the labels of the other
books in case cross-references occur. booki should be the path of the directory containing the book whose
references you want to load. However, as said above this requires changes to the manual.tex file if the
package is not installed in the standard location. \UseGapDocReferences can also be used to load GAPDoc
style references, but this function exists only for backward compatibility.
Just ensure you get the path to the other manual’s directory correct relative to the directory in which your
manual resides.
If your manual.tex file lives in pkg/qwer/doc and you want to use references to the GAP Tutorial use

\UseGapDocReferences{../../../doc/tut}

\TitlePage

produces a page containing the title. Please see the example.

\Colophon

\Colophon produces a page following the title that can be used for more explicit author information, ac-
knowledgements, dedications or whatsoever.

\TableOfContents

produces a table of contents in double-column format. For short manuals, the double-column format may be
inappropriate; in this case, use \OneColumnTableOfContents instead.

\FrontMatter

starts the front matter chapters such as a copyright notice or a preface.
The line

Section 1. The Main File 5

\immediate\write\citeout{\bs bibdata{mybibliography}}

is for users of BibTEX. It will use the file mybibliography.bib to fetch bibliography information.

\Chapters

starts the chapters of the manual, which are included via \Input. \Input{filei} inputs the file filei.tex,
i.e. filei should be the name of the file without the .tex extension. For the chapter format, see Section 1.3.

\Appendices

starts the appendices, i.e. it modifies the \Chapter command to use uppercase letters to number chapters.

\Bibliography

produces a bibliography, i.e. it reads and typesets the manual.bbl file produced by BibTEX.

\Index

produces an index, i.e. it reads and typesets the manual.ind file produced by the external manualindex
program.

\EndOfBook

Finally \EndOfBook closes the book.

Example

Assume you have a GAP package qwert with two chapters Qwert and Extending Qwert, a copyright notice, and a
preface, then your manual.tex would basically look like:

\input ../../../doc/gapmacro % The right path from pkg/qwert/doc

\Package{Qwert} % Defines macro {\Qwert}

\BeginningOfBook{qwert}

\TitlePage{

\centerline{\titlefont Qwert}\medskip % Package name

\centerline{\titlefont ---}\medskip

\centerline{\titlefont A GAP4 Package}\bigskip\bigskip

\centerline{\secfont Version 1.0}\medskip

% If the package interfaces with an external program ...

\centerline{\secfont Based on qwert Standalone Version 3.14}\vfill

\centerline{\secfont by}\vfill

\centerline{\secfont Q. Mustermensch}\medskip % Author

\centerline{Department of Mathematics}\medskip % Affiliation

\centerline{University of Erewhon}\medskip

\centerline{\secfont email: qmuster@erewhon.uxyz.edu.ut} % Email address

\vfill

\centerline{\secfont{\Month} \Year}

}

\TableOfContents

\FrontMatter

\Input{copyright}

\Input{preface}

\Chapters

\Input{qwert}

\Input{extend}

\Appendices

\Index

\EndOfBook

Occasionally there will be the need for additional commands over and above those shown above. The ones described
below should be the only exceptions.

6 Chapter 1. The gapmacro.tex Manual Format

– There may be other packages that are referred to a lot, so that it’s worthwhile to add more \Package commands.
(There’s nothing special about \Package, you can use it to define macros for other packages besides the package
being documented.)

– Besides the macros {\Month} and {\Year}, which typeset the current month (as an English word) and the year
(all four digits), respectively, there are also {\Day} and {\Today} which are mainly intended for drafts. {\Day}
typesets the day of the month as a number and {\Today} is equivalent to: {\Day} {\Month} {\Year}.

– Sometimes one desires a chapter to be unnumbered in the TEX-produced manuals, e.g. the Tutorial manual has
GAP’s Copyright Notice as an unnumbered chapter. To achieve this one inputs the file containing the chapter via
TEX’s \input command rather than \Input. However, neither the on-line help browser nor the HTML converter
“sees” such chapters. Thus if it is desired that the on-line help browser and the HTML manuals should also have
such chapters, they must be “input” again via the \PseudoInput command (not necessarily in the same manual).

– For chapters that should only appear via the on-line help browser or in the HTML manuals, one may use the
\PseudoInput command. Any \PseudoInput commands should come after all \Input commands; failure to
do this will result in different numbering of \Input chapters for TEX-produced and HTML manuals. The syntax
of this command is as follows:

\PseudoInput{filename}{six-entry}{chaptername}

where filename is the name of the file containing the chapter without the .tex extension, as for the \Input

command, six-entry is the section-index-entry for the chapter (written to the manual.six file) and chaptername
is the actual argument of the \Chapter command that appears at the beginning of filename.tex. The argument
six-entry enables the on-line text browser to reference the chapter by a name other than chaptername. Thus a
copyright chapter for the book with name name-of-book might have chaptername “Copyright Notice” but
six-entry “Copyright”, which would enable one to access the chapter “Copyright Notice” via ?name-of-
book:copyright via the on-line browser. The HTML converter adds an index entry for both six-entry and
chaptername.

Note
Usage of the commands \input and \PseudoInput in the way described above will necessitate special treatment
of references to such chapters. For such purposes, there is a special variant of the %display environment (see 1.12),
e.g. a copyright notice appearing via \input at the beginning of a TEX-produced manual and appearing in the non-
TEX manuals – the on-line help browser or HTML manual – via a \PseudoInput command as described above, may
be referenced via

%display{tex}

See the copyright notice at the beginning of this book.

%display{nontex}

%See "Copyright".

%enddisplay

1.2 Additional Typesetting Options

There are a number of additional options which you can activate/ deactivate by adding the following TEX just after the
line

\input ../gapmacro.

Of course, you need not set options which are marked as default.

\usepsfonts

(default) use the standard Postscript fonts for typesetting

\usecmfonts

use the TeX standard (Computer Modern) fonts (this was the behaviour until GAP 4.4).

Section 3. Structuring the text: Chapters and Sections 7

\addlinks

(default) This inserts pdf links within the document, so that you can click on a reference or citation. This will
only work with pdftex, otherwise this has no effect.

\nolinks

This switches off additional pdf links within the document (this was the behaviour until GAP 4.4.

\citebooksfalse

(default) References to external books will just print the chapter/section/subsection number(s).

\citebookstrue

References to external books will be printed as GAP Reference Manual, 2.7.12 instead of just 2.7.12,
similarly for the GAP tutorial. If you cite other books, you have to define for each book XXX a macro
\xxxManual which expands to the text which you want to be inserted before the number for package XXX.
(Note that the xxx in \xxxManual must always be lower case, regardless of the actual package name XXX.)
If you want to cite from the manual of a package “OtherPackage”, then you should add the line

\gdef\otherpackageManual{The OtherPackage Manual}

at the beginning of your main TEX input file.

\biblitemfalse

(default, same as in GAP 4.4) In the bibliography, print abbreviations for papers right-aligned

\biblitemtrue

Print abbreviations left-aligned in the bibliography. d Depending on the abbreviations you use, you may need
more indentation. You may set \bibindent to another value (the present default is 3 pc) if you get overfull
\hboxes. (This effect also exists if you use \bibitemsfalse but there is not very obvious because long
abbreviations will protrude into the left margin only.)

\casesensitivefalse

(default) labels are case insensitive

\casesensitivetrue

makes labels case sensitive (this is still experimental and not currently supported by the html converter)

1.3 Structuring the text: Chapters and Sections

The contents of each chapter must be in its own .tex file. The command \Chapter{chaptername} starts a new chap-
ter named chaptername; it should constitute the first non-comment (and non-blank) line of the file containing a chapter.
A chapter begins with an introduction to the chapter and is followed by sections created with the \Section{secname}
command. The strings chaptername and secname are automatically available as references (see Section 1.5).

There must be no further commands on the same line as the \Chapter or \Section line, and there must be an
empty line after a \Chapter or \Section command. This means that \index commands referring to the chapter or
section can be placed only after this empty line.

Finally, the HTML converter requires that each \Section line is preceded by a line starting with at least 16 percentage
signs (conventionally, one actually types a full line of percentage signs). The HTML converter stops converting a
section whenever it hits such a line; therefore do not add lines starting with 16 or more % signs which are not just
before a \Section command. Failure to include the line of percentage signs before a \Section line will cause the
converter to crash, due to the discovery of what it sees as two \Section commands within the one section.

8 Chapter 1. The gapmacro.tex Manual Format

1.4 Suppressing Indexing and Labelling of a Section and Resolving Label
Clashes
Sometimes one does not wish a section to be indexed. To suppress the indexing of a section, simply add the macro
\null after the \Section command, e.g.

\Section{section-name}\null

and then section-name will still generate a label (so that you can still refer to it via Section~"section-name"), but
section-name will not appear in the index.
Occasionally, one has a dedicated section for the description of a single function. If the label generated for the section
coincides with the label for a subsection (generated by a \> command) a multiply defined label results. In these cases,
one would generally rather that the section did not generate a label or an index entry. To suppress the generation of
both the label and the index entry of such a section, simply add the macro \nolabel immediately after the \Section
command, e.g. for a section dedicated to the function func:

\Section{func}\nolabel

Note: Labels are generated by converting to lowercase and removing whitespace. So coincidences can occur when
you might not have expected it. An alternative to index suppression to resolve label clashes is to include a sub-label
for the function in the \> command (see Section 1.6).

1.5 Labels and References
Each \Chapter, \Section and \> command generates a (short) label label, which is extended by name-of-book (the
argument of \BeginningOfBook mentioned earlier in Section 1.1), to create a “long label” long-label, and emitted
to a file manual.lab. The construction of long-label is name-of-book:label, where the label generated by either of
the commands \Chapter or \Section is just its chaptername or secname argument. For \>, there are a few cases to
consider, and we’ll consider them in Section 1.6, where we meet the various forms of the \> command. To see how to
resolve problems with label clashes see Section 1.4.
A reference to a label any-label (long or short) is made by enclosing any-label in a pair of double quotation marks:
"any-label"; it is replaced by the number of the \Chapter, \Section or \> command that generated any-label in the
first place. Generally, one only needs to make references to long labels when referring to other manuals. For references
within the same manual, short labels are sufficient, except when the short label itself contains a colon.
Example
Since the \BeginningOfBook command for this manual defines name-of-book to be gapmacro, the long label for the
current section is gapmacro:Labels and References and so a reference to this section within this manual might
be: Section "Labels and References" (which is typeset as: Section 1.5). From another manual, a long label
reference is required.
Another example
A section of this document has the title “Structuring the text: Chapters and Sections”, which contains a colon. Hence,
to refer to that section, one must use a long label:

Section "gapmacro:Structuring the text: Chapters and Sections"

produces: Section 1.3.
Note
In actual fact long labels are first sanitised by conversion to lower case and removal of superfluous white space
(multiple blanks and new lines are converted to a single space). The same sanitisation process is applied to references.
Thus,

Section "gapmacro:Structuring the text: Chapters

and Sections"

also produces: Section 1.3. So, don’t worry about references to labels being broken over lines and think of them as be-
ing case-insensitive, except that the HTML converter requires that one respects case for the name-of-book component
of a long label.

Section 6. TeX Macros 9

1.6 TeX Macros

As the manual pages are also used as on-line help, and are automatically converted to HTML, the use of special TEX
commands should be avoided. The following macros can be used to structure the text, the mentioned fonts are used
when printing the manual, however the on-line help and HTML are free to use other fonts or even colour. Since, the
plain text on-line help, doesn’t have special fonts, it leaves in much of the markup, including the left and right quotes
that surround something intended to be displayed in typewriter type, the angle brackets that surround something
intended to appear in italics, and the dollar-signs enclosing mathematics; you will need to keep that in mind when
reading the following section.

‘text’
sets text in typewriter style. This is typically used to denote GAP keywords such as for and false or
variables that are not arguments to a function, e.g., ‘for’ produces for. See also <text>. Use \< to get a
“less than” sign.

‘‘text’’
encloses text in double quotes, e.g., ‘‘double-quoted text’’ produces “double-quoted text”. In particu-
lar, ‘‘text’’ does not set ‘text’ in typewriter style; use ‘{‘text’}’ to produce ‘text’. Double quotes are
mainly used to mark a phrase which will be defined later or is used in an uncommon way.

\lq

sets a single left quote: ‘. For a phrase text that is to be defined later or is used in an uncommon way, please
use ‘‘text’’ (which encloses text in double quotes rather than single quotes).

\rq, \pif
each set a single apostrophe (right quote): ’. For the HTML and on-line manuals \accent19{} also sets an
apostrophe; however the TEX-derived manuals produce an acute-d blankspace (what it in fact is).

\accent127

sets an umlaut, e.g. \accent127a produces ä. Do not use the shorthand \" (otherwise the HTML converter
will not translate it properly).

<text>
sets text in italics. This can also be used inside $...$ and ‘...’. Use \< to get a “less than” sign. <...>
is used to denote a variable which is an argument of a function; a typical application is the description of a
function:

\>Group(<gens>) F

The function ‘Group’ constructs a group generated by <gens>.

The F at the end of the first line in the above example indicates that Group is a function (see the \> entry,
below).

text
sets text in emphasized style.

$a.b$

Inside math mode, you can use . instead of \cdot (a centred multiplication dot). Use \. for a full stop inside
math mode. For example, $a.b$ produces a · b while $a\.b$ produces a.b.

\cite{...}

produces a reference to a bibliography entry (the \cite[...]{...} option of LaTEX is not supported).

"label"
produces a reference to label. Labels are generated by the commands \Chapter, \Section (see 1.5), and
\> commands (see below).

\index{index-entry}
defines an index entry index-entry. Besides appearing in the index, index-entry is also written to the section
index file manual.six used by the on-line help. An exclamation mark (!), if present, is used to partition

10 Chapter 1. The gapmacro.tex Manual Format

index-entry into main entry (left part) and subentry (right part) components, in the index. TEX converts index-
entry to lowercase and sets it in roman type, in the index. The HTML converter respects case and uses the
default font, in producing the HTML manual index. index-entry must be completely free of special characters
and font changing commands; if you need special fonts, characters or commands use one of \indextt or
\atindex.
Note that for the HTML converter to process indexing commands (\index, \indextt and \atindex) cor-
rectly they must be on lines of their own. There can be several indexing commands on the same line, but
there should be no horizontal whitespace before each indexing command, and if an indexing command needs
to be broken over lines place a % at the point of the break at the end of the line to mark a “continuation”.
For the HTML converter it works best to put indexing commands all together at the beginning of a paragraph,
rather than strewn between lines of a paragraph. However, for the TEX-produced manuals after a maths
display one gets a rogue space if you do this (this is a bug); you can work around the bug by putting at least
one word of the paragraph followed by your line(s) of indexing commands.
Note also that indexing commands do not produce labels for cross-references; they only produce entries for
the index. Labels are only produced by the chapter (\Chapter), section (\Section) and subsection (\>)
commands.

\indextt{index-entry}
is the same as \index{index-entry}, except that index-entry is set by TEX in typewriter style, respecting
case; the HTML converter sets index-entry in the default font. Again, index-entry should be completely free
of special characters and font changing commands, and ! may be used for sub-entries in the same way as
for \index. Note that a sub-entry component, if present, is not set in typewriter style for the TEX-produced
manuals; if you want that it is, use \atindex.

\atindex{sort-entry}{|indexit}
is simply a special form of the \index command that tells TEX to typeset the page number in italics.

\atindex{sort-entry}{@index-entry}
The HTML converter treats this command as if it was \index{index-entry}, except that it strips out any font
information and sets it in the default font, but nevertheless respects case. index-entry may have |indexit at
the end which is ignored by the HTML converter.
The TEX-produced manuals set the index entry as index-entry respecting font and case, and list it according
to sort-entry. If a sub-entry is required then it should be present behind a ! in both the sort-entry and index-
entry; the only difference between the sub-entry in sort-entry and that in index-entry, is that the sort-entry
sub-entry should be stripped of mark-up and font changing command. The index-entry component is ignored
when constructing the manual.six files, and is also ignored by the HTML converter. Anything after an !

in sort-entry is ignored when constructing the manual.idx file that is processed by MakeIndex. Macros
like {\GAP} are allowed in index-entry. However, any ‘ that appears in index-entry must be preceded by
\noexpand; sort-entry must be completely free of special characters and font changing commands.
In general, one should make sort-entry the same as index-entry modulo fonts and other mark-up, e.g.,

\atindex{Fred!Nerk}{@\noexpand‘Fred’!\noexpand‘Nerk’}

{\GAP}

typesets GAP.

\package{pkg}
typesets pkg in the font correct for GAP packages (respecting case). This is intended for cross-referencing
other GAP packages. There is also the command \Package{mypkg} command which defines a macro
\mypkg so that when you type {\mypkg} (please include the curly braces) the text mypkg is typeset in the
right way for GAP packages. The \Package command should normally be included in one’s manual.tex
file (see 1.1) and just allows one to type {\mypkg} rather than the longer \Package{mypkg} as one is fre-
quently likely to do when formulating one’s own GAP package documentation. So, just to be clear about the
difference between \Package and \package, \Package{mypkg} defines a macro \mypkg but produces no
text, and \package{pkg} produces pkg set in the font that is right for GAP packages.

Section 6. TeX Macros 11

\>

produces a subsection. The line following the \> entry must either contain another \> entry (in which case
the further entries are assumed to be variants and do not start a new subsection) or must be empty. The
description text will follow this empty line.
There are several forms of the \> command. In all forms, a label and index entry are generated; the HTML
converter uses the label to form an index entry, respecting case and setting in roman type. If the next non-
space character is not a left quote (‘) it is assumed that the subsection is for a “function”; we exhibit these
forms first.

\>func
While this form is supported; it is discouraged. If func is a 0-argument function, func should be followed by
an empty pair of brackets (see \>func(args) below). If func is actually a global variable then \>‘global-var’
V should be used instead (see below). In order for this form to be parsed correctly the remainder of the line
to the right of func must be empty. It generates func as both a label and index entry; func appears as is, in
typewriter type in the TEX-derived manual index.

\>func(args)
The macro uses the brackets after func to parse the arguments args. Thus, it is necessary for the function to
use brackets and for the arguments to have none. (We use the term “function” loosely here to mean “a GAP
command with arguments”; we really mean an object that GAP knows as a: “Function”, “Property”, “Oper-
ation”, “Category”, or “Representation” — but not “Variable”, since a “Variable” does not have arguments.)
The label and index entry generated consists of the text between the > and opening bracket. The index entry
is set as is (i.e. without conversion to lowercase) in typewriter type in the TEX-derived manual index. Here is
an example of how to use \>; the index entry is “Size” (in typewriter type, with mixed case preserved).

\>Size(<obj>) A

The A indicates that Size is an “Attribute”. Instead of A there can be F, P, O, C, or R which indicate that a
command is a “Function” (probably the most common), “Property”, “Operation”, “Category”, or “Repre-
sentation”, respectively. For the forms of the \> command followed by a left quote, V indicating “Variable”
(an object without arguments), is also possible. (See Section “Manual Conventions” and Chapter “Types of
Objects” in the GAP Reference Manual).

\>func(args)!{sub-entry}
This is a special form of the previous command, that forms a label func!sub-entry and an index entry with
main entry func (set in typewriter type and respecting case) and sub-entry sub-entry (set in roman type but
also respecting case).
The remaining forms of the command \> expect to be followed by a ‘.

\>‘command’{label}
works as \> without ‘...’, but will not use bracket matching; it simply displays command as a header,
which appears in typewriter type. It will use label as both the label and index entry, and the index entry is
set in roman type. Whenever label contains a !, it is used to partition label into main entry (left part) and
subentry (right part) components, in the index.

\>‘<a> + ’{addition}

\>‘Size(<obj>)’{size} A

In the first of the examples immediately above, the first form of \> cannot be used because no brackets occur.
Also, observe that there is no command type (it’s not appropriate here); TEX does not need it to correctly
parse a \> entry, in general. The second example differs from our previous Size example, in that the index
entry will be typeset as “size” (in roman type), rather than “Size”. Also, the index entry is always converted
to lowercase, no matter what case or mixed case was used.

\>‘command’{label}!{sub-entry}
is equivalent to: \>‘command’{label!sub-entry}.

12 Chapter 1. The gapmacro.tex Manual Format

\>‘command’{label}@{index-entry}
works as \>‘command’{label}, except that it uses label for sorting the index entry and the index entry itself
is printed as index-entry. References to the subsection use label. (Note that the HTML converter ignores
everything after an @ symbol in these commands, essentially treating the command as if it were \>‘com-
mand’{label}. However, the HTML converter also always preserves the case in a label.) Here are two
examples.

\>‘Size(<obj>)’{size}@{‘Size’} A

\>‘Size(GL(<n>, <q>))’{Size!GL(n, q)}@{‘Size’! ‘GL’(\noexpand<n>, \noexpand<q>)} A

The first of these examples is equivalent to “\>Size(<obj>)”. For the second example, it was necessary
to use ‘ and ’, since the argument contained brackets. Note that \noexpand is needed before < here, but
not needed before ‘ in the index-entry argument. Otherwise, the rules for sub-entries are the same as for
\atindex.

\>‘global-var’ V

This is actually a short-hand for: “\>‘global-var’{global-var}@{‘global-var’} V” to save you some typing
when creating subsections for global variables, i.e., global-var is the label and the index entry appears in
typewriter type, with mixed case preserved.

\){\fmark ...}

is like \> except that it produces no label and index entry. It is \fmark that produces the filled in right arrow.
Omitting it produces a line in typewriter type.

\){\kernttindent ...}

is useful for producing a line in typewriter type, that you might otherwise have typed between \begintt and
\endtt, but where you actually want the TEX macros and variables <...> to be interpreted.

\URL{url}
prints the WWW URL url. In the HTML version this will be a HREF link.

\Mailto{email}
prints the email address email. In the HTML version this will be a mailto link.

Note: When a TEX macro is followed by a space, TEX generally swallows up the space; one way, and it is the GAP-
preferred way, of preventing the space being swallowed up, is by enclosing the macro in {...}. When a macro is
often followed by a space, it’s a good habit to get into to always enclose that macro in {...} (the braces do nothing
when the macro is not followed by a space, and prevent TEX from swallowing up the space, otherwise). Thus the
macro for GAP should always be typed {\GAP}. Similarly, macros like \lq, \rq and \pif should probably always
appear in braces; moreover the word “don’t” typeset via “don{\pif}t” will actually be interpreted correctly by the
on-line browser.

1.7 TeX Macros for Domains

The following macros are required for the following common domains:

\N the natural numbers (you should probably indicate whether by your convention N includes zero or not, when
using this);

\Z the integers;

\Q the rational numbers;

\R the real numbers;

\C the complex numbers;

\F a field; and

\calR a general domain e.g. a ring.

Section 8. Examples, Lists, and Verbatim 13

1.8 Examples, Lists, and Verbatim

In order to produce a list of items with descriptions use the \beginitems, \enditems environment, i.e. this is a
“description” environment in the parlance of LaTEX and HTML.

For example, the following list describes base, knownBase, and reduced. The different item/description pairs must
be separated by blank lines.

\beginitems

‘base’ &

must be a list of points ...

‘knownBase’ &

If a base for <G> is known in advance ...

‘reduced’ (default ‘true’) &

If this is ‘true’ the resulting stabilizer chain will be ...

\enditems

This will be printed as

base

must be a list of points ...

knownBase

If a base for G is known in advance ...

reduced (default true)
If this is true the resulting stabilizer chain will be ...

In order to produce a list in a more compact format, use the \beginlist, \endlist environment.

An example is the following list.

\beginlist

\item{(a)}

first entry

\item{(b)}

second entry

\itemitem{--}

a sub-item of the second entry

\itemitem{--}

another sub-item of the second entry

\item{(c)}

third entry

\endlist

It is printed as follows.

(a) first entry

(b) second entry

– a sub-item of the second entry

– another sub-item of the second entry

(c) third entry

14 Chapter 1. The gapmacro.tex Manual Format

The above example will take advantage of the ordered and unordered list environments in the HTML version, with
the addition of slightly more mark-up. First, we present the example again with that additional mark-up, and then we
explain how it works.

\beginlist%ordered{a}

\item{(a)}

first entry

\item{(b)}

second entry

\itemitem{--}%unordered

a sub-item of the second entry

\itemitem{--}

another sub-item of the second entry

\item{(c)}

third entry

\endlist

It is printed as follows (of course, you should see no difference in the TEX-produced and on-line versions of this
manual).

(a) first entry

(b) second entry

– a sub-item of the second entry

– another sub-item of the second entry

(c) third entry

In the HTML version the above example is interpreted as a nested list. The outer list is interpreted as an ordered list.
The HTML standard provides 5 different types of ordered list, and these mirror the types provided by the enumerate
LaTEX package. To signify that the outer list was ordered the comment %ordered was added after \beginlist.
If there is no further markup the list is numbered in the default manner, namely with integers. Otherwise, following
%ordered there should be one of the following:

{1} indicates the list should be numbered with integers (the default obtained when there is nothing following %or-

dered);

{a} indicates the list should be numbered with lowercase letters (a, b, . . .);

{A} indicates the list should be numbered with uppercase letters (A, B, . . .);

{i} indicates the list should be numbered with lowercase roman numerals (i, ii, . . .); and finally

{I} indicates the list should be numbered with uppercase roman numerals (I, II, . . .).

The \beginlist of the above example was followed by %ordered{a} and so the list is numbered using lowercase
letters in the HTML version and using the ordered list environment (rather than the description environment).

Occasionally, it is necessary to break from a list, add some explanatory text and then restart the list, and resume
numbering the items from where you left off. To do this follow the comment mark-up already mentioned by an
integer in curly braces, i.e. if the outer list should actually start at c then you would need to have %ordered{a}{3}
after \beginlist because c is the 3rd letter of our alphabet. Note that, for an integer-numbered list not starting at 1,
you must have the full markup; you cannot omit the {1} after %ordered in this case.

The inner list of the above example is an unordered list (this corresponds to a plain itemize environment in LaTEX).
To indicate this the first \itemitem above was followed by %unordered.

Of course, to get an unordered outer list, one would start the list with \beginlist%ordered, and to get an ordered
inner list numbered with lowercase letters the first \itemitem would need to be followed by %ordered{a}, i.e. the

Section 8. Examples, Lists, and Verbatim 15

same syntax is used for the comment added after a \beginlist and after the first \itemitem in a sequence of
\itemitems.

Notes

1. Only lists to a maximum depth of two are supported.

2. You cannot change the type of a sublist halfway through. Only the comment after the first \itemitem in a
sequence is interpreted.

There are two types of verbatim environments. Example GAP sessions are typeset in typewriter style using the \be-
ginexample, \endexample environment. Make sure that\beginexample, \endexample, \begintt and \endtt

are on lines of their own.

\beginexample

gap> 1+2;

3

\endexample

typesets the example

gap> 1+2;

3

All examples in a chapter will also be written to files with the extension .example-chapno.tst, where chapno is the
chapter number. These .tst files can be used to verify the examples in the manual. See 1.10 below for details.

Examples whose output may vary can be excluded from these test files, by using the command \testexamplefalse,
e. g.

\testexamplefalse

\beginexample

gap> Exec("date");

Sun Oct 7 16:23:45 CEST 2001

\endexample

\testexamplefalse is only valid for the example immediately following.

Non-GAP examples should be typeset in typewriter style using the \begintt, \endtt environment.

Notes

1. The manual style will automatically indent examples. It also will break examples which become too long to fit on
one page. If you want to encourage breaks at specific points in an example, end the example with \endexample

and immediately start a new example environment with \beginexample on the next line.

2. To typeset a pipe symbol | in the \begintt, \endtt environment or \beginexample, \endexample you need
to actually type ||.

16 Chapter 1. The gapmacro.tex Manual Format

1.9 Tables, Displayed Mathematics and Mathematics Alignments
Tables should normally be set using the \begintt, \endtt environment. This means that one should enter the appro-
priate white space so that columns line up. Note that to get a vertical line | in the \begintt, \endtt environment one
must actually type ||. The reason for setting tables this way is so that both the HTML converter and GAP’s built-in
text browser have no trouble in displaying them correctly.
The HTML converter when used with its -t option (which causes it to use TtH to translate mathematics) usually
does a reasonable job of converting mathematics displays and mathematics alignments. To help GAP’s built-in text
browser, however, one should follow a few rules:

– Place the $$s that begin and end the mathematics display on lines of their own. (If you don’t do this it will be
displayed in the same way as ordinary in-line mathematics.)

– Use only the \matrix{ .. } environment for mathematics alignments. The \matrix{ starting the alignment
should be on a line on its own, (flush left and no trailing whitespace). The } closing the environment should also
be on a line of its own. The built-in browser doesn’t do anything special to line things up; you must insert the
whitespace where it’s needed. Any \hfill macros you add to help the line things up in the TEX and HTML
formats is ignored by the GAP’s built-in text browser. The \matrix{ .. } environment should be used even
when one might like to use TEX’s \cases{ .. } environment.

The following example shows a typical usage of the \matrix{ .. } environment (in particular, it shows how one
can use it to avoid using the \cases{ .. } environment). Observe, how sufficient whitespace has been added in
order that alignment is maintained by GAP’s built-in text browser. (Recall that \right. which produces nothing is
required to match \left\{.)

From a theorem of Gauss we know that

$$

b_N = \left\{

\matrix{

\frac{1}{2}(-1+\sqrt{N}) &{\rm if} &N \equiv 1 &\pmod 4\cr

\frac{1}{2}(-1+i \sqrt{N}) &{\rm if} &N \equiv -1 &\pmod 4\cr

}

\right.

$$

The example produces . . .
From a theorem of Gauss we know that

bN =

{ 1
2 (−1 +

√
N) if N ≡ 1 (mod 4)

1
2 (−1 + i

√
N) if N ≡ −1 (mod 4)

1.10 Testing the Examples
Ideally, the GAP examples (the text between \beginexample and \endexample) should be chosen such that every
user obtains the same output (up to line breaks and whitespace) when typing in your example.
This is often difficult to achieve, or can only be achieved at the cost of writing unnecessarily complicated examples.
Therefore, it is recommended that you choose examples in such a way that when a user starts GAP, loads your package
and types the examples of a chapter in the given order, then (s)he will see the same output as in the manual examples.
(This will ensure that the global random number generator is initialized to the same values. For more details, see the
last paragraph of “Starting and Leaving GAP” in the GAP Tutorial.) In cases where this is impossible, you may use
\testexamplefalse before \beginexample, see 1.8.
As mentioned above, a TEX run of the manual produces files manual.example-chapno.tst, one for each chapter
containing at least one GAP example (the text between \beginexample and \endexample). These files can be read
into GAP using ReadTest (see ?ReadTest), to ensure that the GAP output for the examples hasn’t changed.
The test also requires that examples are not indented in the TEX files; in the typeset manual, the lines between \be-

ginexample and \endexample and the lines between \begintt and \endtt are automatically indented.

Section 12. Catering for Plain Text and HTML Formats 17

1.11 Usage of the Percent Symbol

The % symbol has a number of very specific uses. Take care that you use it correctly. These uses are:

1. A line beginning with 16 (or more) % symbols marks the end of a section, or the end of a chapter introduction
(which may be empty). Such a line must precede every \Section (see 1.3).

2. A % at the beginning of a line tells TEX that the line is a comment and is to be ignored by TEX, except in
the verbatim environments: \begintt..\endtt and \beginexample..\endexample. However, %display or
%enddisplay commands have special meaning for the on-line text help browser and for the HTML converter
and may temporarily alter the meaning of an initial % for these (see 1.12 for details); otherwise the meaning of
an initial % is the same as for TEX.

3. A % at the end of a line marks a “continuation”, except in the situation mentioned in item 4. A “continuation” may
be needed for lines of indexing commands (\index, \indextt or \atindex). Such commands must occur on
lines of their own (see 1.6), not mixed with text, and there must not be any superfluous whitespace (modulo the
next statement). Occasionally an indexing command is too long to easily fit on a line; this is where a continuation
is desirable; a % at the end of such a line indicates that the line is to be joined with the next line after removal of
the % symbol and any initial whitespace on the next line (this is what TEX does! . . . and we mimic this behaviour
for both the on-line text help browser and the HTML manuals).

A “continuation” may also be necessary for subsections, i.e. lines beginning with \> or \) (again see 1.6); the
usage is as for indexing line continuations.

4. A line ending with a % that is not an indexing command line or a subsection line that after any initial whitespace
is removed matches exactly {% or }%, or begins with {\ or \ and is followed by a letter, is ignored by both the
on-line browser and the HTML converter. This is intended to screen the on-line browser and HTML converter
from TEX commands such as \obeylines, \begingroup, \def etc., without having to resort to using the
%display{tex}..%enddisplay environment.

Warning. In view of items 3. and 4. above, avoid using a % at the end of a line unless you really need it, and it fits into
those categories. In particular, do not put a % at the end of an indexing command line that is immediately followed
by a line of text; otherwise, the text line will not appear in the HTML manual or on-line via the text help browser.
Similarly, do not put a % line at the end of a text line that is immediately followed by an indexing command line; this
causes the indexing command line to be ignored by the HTML converter. For the HTML converter it works best to
put indexing commands all together at the beginning of a paragraph, rather than strewn between lines of a paragraph.
However, for the TEX-produced manuals after a maths display one gets a rogue space if you do this (this is a bug);
you can work around the bug by putting at least one word of the paragraph followed by your lines(s) of indexing
commands.

1.12 Catering for Plain Text and HTML Formats

As described in 1.6, the use of macros should be restricted to the ones given in the previous sections. By doing so,
you should find that the documentation you write will still look ok in GAP’s on-line help (plain text format) and in
the translated HTML. However, in rare situations one might be forced to use other TEX macros, for example in order
to typeset a lattice. In this case you should provide an alternative for the on-line help, and possibly also for the HTML
version. This can be done by putting in guiding commands as TEX comments:

%display{tex}

TeX version (only used by TeX manual)

%display{html}

%HTML version (only used by HTML manual)

%display{text}

%Text version (only used by the built-in manual browser)

%enddisplay

18 Chapter 1. The gapmacro.tex Manual Format

Observe that the lines that should appear only in the TEX-produced manuals do not begin with a %. For the HTML
(resp. text) version the lines begin with a %; each line of a %display{html} (resp. %display{text}) environment
is printed verbatim, after removing the initial % symbol. The above example produces:

TeX version (only used by TeX manual)

(Note the above example will vary according to whether you are viewing it as a TEX-produced manual, or as an HTML
manual, or via the built-in manual browser — as it should!)

Sometimes one needs a %display environment to be not seen by TEX, but still interpreted normally (i.e. not printed
verbatim). The following variant of the above provides this capability.

%display{tex}

TeX version (only used by TeX manual)

%display{nontex}

%HTML and Text version (interpreted normally, after removing the \% symbol)

%enddisplay

The above example produces:

TeX version (only used by TeX manual)

It is permissible to abbreviate any of the above by omitting %display{tex}, %display{html}, or %display{text}
if that portion of the environment would be empty.

There are yet two more variants of conditional display. Firstly,

%display{nonhtml}

%Text version (interpreted normally by built-in browser, after removing the

%\% symbol)

%enddisplay

is normally used to ensure text only appears via the on-line help browser. If there is no initial % it also appears in the
TEX-produced manuals. The above example produces:

Finally, there is

%display{nontext}

%HTML version (interpreted normally by HTML converter, after removing the

%\% symbol)

%enddisplay

which excludes text from the on-line help browser. Like the %display{nonhtml} environment, if there is no initial
% it also appears in the TEX-produced manuals. The example produces:

However, the use of these special environments should be avoided as much as possible, since it is much more difficult
to maintain such pseudo-duplicated documentation.

1.13 Umlauts

To produce umlauts, use \accent127 and not the shorthand \" (otherwise the HTML converter will not translate it
properly).

Section 14. Producing a Manual 19

1.14 Producing a Manual

To produce a manual you will need the following files:

manual.tex

contains the body of the manual (as described in Section 1.1) and an \Input command for each chap-
ter/appendix file.

file1.tex, file2.tex, . . .
the chapter/appendix files. There must be one file for each chapter or appendix, and each such file should
have a \Chapter or \PreliminaryChapter command. Alternatively, one can write .msk files and use
buildman.pe to generate the corresponding .tex files (see 1.15).

gapmacro.tex

contains the macros for the manual. It must be input by an \input statement (not and \Input statement,
which creates a Table of Contents entry) in manual.tex. You can either use the version in the doc directory
of GAP (use a relative path then) or make a copy.

manual.mst

is a “configure” file used by makeindexwhen processing index information in a TEX-generated and manualindex-
preprocessed manual.idx file. It must reside in your manual directory.

GAPDOCPATH/manualindex

is used to call makeindex. GAPDOCPATH is the path of the doc directory of your GAP distribution.

For bibliography information you will need a file manual.bbl. If you intend to create it with BibTEX, you will need
to indicate the appropriate .bib file (as described in section 1.1). Then after running TEX once over the manual, run
BibTEX to create the manual.bbl file.

Assuming that all necessary files are there (a manual.lab file for each book argument of a \UseReferences com-
mand, mrabbrev.bib and manualindex in the GAP doc directory), on a Unix system the following calls will
then produce a file manual.dvi as well as a file manual.six which is used by the GAP help functions. If you
are missing some of the needed files and don’t have CVS access to GAP, just send an email request for them to
support@gap-system.org.

Go to the directory holding the manual. Call

tex manual

to produce bibliography information. Unless you provide a manual.bbl file which is not produced by BibTEX, call

bibtex manual

to produce the manual.bbl file. Then run TEX twice over the manual to fill all references and produce a stable table
of contents:

tex manual

tex manual

If you have sections which are named like commands, you may get messages about redefined labels. At this point you
can ignore these.

Now it is time to produce the index. Call

GAPDOCPATH/manualindex manual

which preprocesses the manual.idx file and then runs makeindex. Provided that manual.mst exists, this produces
a file manual.ind. Finally, once again run

tex manual

to incorporate the index. The manual is ready.

20 Chapter 1. The gapmacro.tex Manual Format

1.15 Using buildman.pe

Rather than write the chapter/appendix .tex files directly, one may incorporate one’s documentation in comments in
one’s GAP code. To do it this way, there are four ingredients:

.gd files
GAP files with .gd suffixes that have the documentation in comments (actually files with .g or .gi or any
other extension are also possible, but files with extension .gd are the default);

.msk files
which are just like the .tex files, and must obey all the rules given for .tex files previously, but additionally
may have \FileHeader or \Declaration commands at places where text should be inserted from a .gd

file, and with {{variable}} patterns which are replaced by replacement when written to the .tex file, if the
configuration file configfile has a line of form: variable=replacement;

configfile
a file which defines msfiles (the list of .msk files), gdfiles (the list of .gd files), LIB (the directory
containing the .gd files), DIR (the directory in which to put the constructed .tex files, one .tex file for each
.msk file), and optionally a line check (see below) and variable=replacement lines; and

buildman.pe

a perl program (in the etc directory for those with CVS access to GAP), which strips the comments from
the .gd files according to the \FileHeader or \Declaration commands in the .msk files, translates any
{{variable}} patterns defined by the file configfile and constructs the .tex files.

If you don’t have CVS access and want to use buildman.pe, just email support@gap-system.org and ask
for it. Please note that there is no obligation for package authors to buildman.pe; nor does it attract the same level
of support as the rest of GAP; in general, bugs can be expected to be fixed (eventually), but no new features will be
added. Also, note that the GAPDoc package provides a similar facility.

The perl program buildman.pe is called as follows:

buildman.pe -f configfile

The form of configfile

There is no restriction on how to name configfile, but by convention it is of form config.something or build-
man.config; configfile should contain lines of form:

msfiles=msfile1,msfile2,...,msfilem;

gdfiles=gdfile1,gdfile2,...,gdfilen;
LIB=gdfile dir;
DIR=TeX dir;

Optionally, as mentioned above, one may also have:

check;

which says to construct a notfound file that lists missing expected data, and any number of lines of form

variable=replacement

Section 15. Using buildman.pe 21

The file configfile should obey the following syntactic rules:

– After msfiles= there should be a comma-separated and semicolon-terminated list of .msk files with the .msk

extensions removed; buildman.pe assumes that the .msk files are all in, or at least have path relative to, the
directory in which buildman.pe is called.

– Similar to the msfiles definition, after gdfiles= there should be a comma-separated and semicolon-terminated
list of “.gd” files. If a “.gd” file really does have a .gd extension, it may be listed without extension; otherwise
the extension must be included. All the “.gd” files must be listed with path relative to the directory defined by
LIB.

– For both the msfiles and gdfiles definitions, the lists following the = may continue over several lines if
necessary, and any whitespace, parentheses (round brackets) or double-quotes characters are ignored.

– The paths after LIB= and DIR= are assumed relative to the “current directory”, i.e. the directory in which build-

man.pe is executed. For each msfilei listed after the msfiles keyword, buildman.pe constructs from ms-
filei.msk a corresponding msfilei.tex in TeX dir. The LIB and DIR definitions must be on a single line.

– The terminating ; is optional on the lines containing the keywords LIB, DIR or check.

– Superfluous characters around any of the keywords msfiles, gdfiles, LIB, DIR or check, but before the = on
the lines where = is required, are ignored. Whitespace and double-quotes characters are ignored, everywhere.

– The variable=replacement lines (if there are any) should have no other punctuation or whitespace. These lines
direct buildman.pe to replace any string of form {{variable}} in a .msk file with replacement.

Special .msk file commands

Now we describe the special (non-TEX) commands that direct buildman.pe to extract text from “.gd” files.

\FileHeader[n]{gdfile}
This command is replaced by the text following a #n line (for positive integer n) in file gdfile.gd (or gdfile if
gdfile already contains a suffix). The argument [n] of \FileHeader is optional; if it is omitted n is taken to
be 1. See below for the typical form of a fileheader extracted by the \FileHeader command; the comments
in the example describe its required format.

\Declaration{func}[gdfile]{label}!{sub-entry}@{index-entry}
This command is replaced by a \> subsection declaration or block of \> declarations, and their description
extracted from a block in a “.gd” file that starts with a line matching #X func, for some letter X in F, M, A,
P, O, C, R or V. The line “matches” if there is a (, space, or newline after func. The argument func (in {..})
is the only mandatory argument.
If present, [gdfile], says that func is to be found in the file gdfile.gd (or gdfile if gdfile already contains a
suffix); it is required only if func appears in more than one of the “.gd” files listed in the file configfile. The
gdfile argument is typically required for distinguishing methods of operations.
The remaining arguments (if present) have exactly the purpose that they have in subsection declarations,
i.e. lines of the following forms:

\>func!{sub-entry}
\>‘command’{label}
\>‘command’!{sub-entry}
\>‘command’@{index-entry}

(see Section 1.6), and are used to build subsection declaration lines of these forms. Note that the label, sub-
entry and index-entry arguments, if needed, should follow the \Declaration command (and not be in the
“.gd” file #X func... lines, where they will be indistinguishable from comments). If in the “.gd” file the
#X func line is followed by other #Xi funci lines, then each \> subsection declaration formed has the same
label, sub-entry and index-entry arguments appended.

Corresponding to \FileHeader[n]{gdfile}, in the “.gd” file denoted by gdfile, there should be:

22 Chapter 1. The gapmacro.tex Manual Format

#n
Text for \FileHeader[n]{gdfile}. Each line

should have two # characters followed by 2 blank

space characters at the left margin. The text

can and should include any necessary {\TeX}

mark-up and indexing commands.

##

A fileheader may consist of any number of paragraphs.

It is terminated by a totally empty line (i.e.~a

line devoid even of # characters).

##

Corresponding to each \Declaration{func}... line of a .msk file there should be in one of the “.gd” files, a block
of form:

#X func(args) comment
#Y func2(args2) comment2
.

.

#Z funcn(argsn) commentn
##

description of func, func2, ..., funcn.
##

Declare...("func" ...);

Declare...("func2" ...);

.

.

Declare...("funcn" ...);

The above block should comply with the following syntactic rules. Below we use the term “function” in a general
sense to mean any one of function (in the strict sense), attribute, category, method, representation, operation, property
or variable.

– X,Y, . . . ,Z ∈ {A, C, F, M, R, O, P, V}. If the letter is V then no parentheses or arguments should follow the “function
name” funci.

– The letters, X, Y , . . . , Z are printed in the manual. If a letter is A or P, then also the letters S and T are printed if
the setter and the tester are available. If the letter is A, then the letter M is printed if the attribute is mutable.

– The comments comment, comment2, . . . , commentn (by convention starting with spaced dots) which do not
appear in the manual, are optional.

– The X, Y , . . . , Z “function name” lines must appear on consecutive lines, i.e. not intermingled with text lines.

– After the “function name” lines there should be text lines describing the “functions”. As with fileheader text
these text lines should contain any TEX mark-up and indexing commands that are necessary, and there should be
two blank space characters between the ## and the text. Lines starting with #T (or some other non-# character in
place of T) are ignored.

– It is assumed that for each “function name” func, func2, . . . , funcn there is a corresponding GAP declaration
(which need not be via a Declare... command, e.g. it might be BindGlobal) after the ## text lines (and
comment lines), and that they appear in the same order.

Section 15. Using buildman.pe 23

Example

Suppose we have a manual whose .msk files are in the directory doc/build, whose .tex files are created in the
directory doc/ref, and whose GAP code files are in the directory lib, one of them being the file lib/algebra.gd,
which contains the following declaration:

###

##

#O DirectSumOfAlgebras(<A1>, <A2>)

#O DirectSumOfAlgebras(<list>)

##

is the direct sum of the two algebras <A1> and <A2> respectively of the

algebras in the list <list>.

##

If all involved algebras are associative algebras then the result is also

known to be associative.

If all involved algebras are Lie algebras then the result is also known

to be a Lie algebra.

##

All involved algebras must have the same left acting domain.

##

The default case is that the result is a structure constants algebra.

If all involved algebras are matrix algebras, and either both are Lie

algebras or both are associative then the result is again a

matrix algebra of the appropriate type.

##

DeclareOperation("DirectSumOfAlgebras", [IsDenseList]);

Further suppose that the file doc/build/algebra.msk contains the line:

\Declaration{DirectSumOfAlgebras}

The “config” file doc/build/config.alg:

@msfiles = ("algebra","algfp","alglie","mgmring");

@gdfiles = ("algebra","alghom","alglie","object","liefam","mgmring","algrep",

"lierep");

DIR = "../ref";

LIB = "../../lib";

specifies algebra.msk via the first entry of msfiles and lib/algebra.gd via the first entry of gdfiles and (its di-
rectory by) the definition of LIB. Observe that there are @ and " symbols, as well as parentheses and whitespace, in the
above “config” file; none of these is necessary, but they don’t do any harm either. Generally, one calls buildman.pe
in the same directory that contains the msfiles (which is why one doesn’t need to specify the directory containing
the msfiles) and the “config” file. Since DIR = "../ref", buildman.pe constructs algebra.tex from alge-

bra.msk in directory doc/ref. The subsection generated in algebra.tex by the above \Declaration command
starts with the header:

\>DirectSumOfAlgebras(<A1>, <A2>) O

\>DirectSumOfAlgebras(<list>) O

and is followed by its description, i.e. the lines beginning with two hashes and two blanks, but with the hashes and
blanks stripped away, so that when it is processed the resulting subsection appears as:

I DirectSumOfAlgebras(A1, A2) O

24 Chapter 1. The gapmacro.tex Manual Format

I DirectSumOfAlgebras(list) O

is the direct sum of the two algebras A1 and A2 respectively of the algebras in the list list.

If all involved algebras are associative algebras then the result is also known to be associative. If all involved algebras
are Lie algebras then the result is also known to be a Lie algebra.

All involved algebras must have the same left acting domain.

The default case is that the result is a structure constants algebra. If all involved algebras are matrix algebras, and
either both are Lie algebras or both are associative then the result is again a matrix algebra of the appropriate type.

Variable replacement

As mentioned above the “config” file may also contain lines that assign variables, e.g.

versionnumber=4.3

versionsuffix=4r3

Occurrences of these variables in double curly braces will be replaced by their value. For example the lines

When ‘unzoo -x’ is applied to {\GAP}~{{versionnumber}}’s ‘zoo’ file

‘gap{{versionsuffix}}.zoo’ a directory ‘gap{{versionsuffix}}’ is formed.

in a .msk file will be replaced by:

When ‘unzoo -x’ is applied to {\GAP}~4.3’s ‘zoo’ file

‘gap4r3.zoo’ a directory ‘gap4r3’ is formed.

in the corresponding .tex file. This feature is very handy for information that changes over time.

Final note

There is a document for version 0.0 of buildman.pe that describes features that have either never been used or have
since been disabled. Only the features described in this section can be relied upon to have currency.

	Contents
	The gapmacro.tex Manual Format
	The Main File
	Additional Typesetting Options
	Structuring the text: Chapters and Sections
	Suppressing Indexing and Labelling of a Section and Resolving Label Clashes
	Labels and References
	TeX Macros
	TeX Macros for Domains
	Examples, Lists, and Verbatim
	Tables, Displayed Mathematics and Mathematics Alignments
	Testing the Examples
	Usage of the Percent Symbol
	Catering for Plain Text and HTML Formats
	Umlauts
	Producing a Manual
	Using buildman.pe

