File: clasperm.gi

package info (click to toggle)
gap 4r10p0-7
  • links: PTS
  • area: main
  • in suites: buster
  • size: 47,392 kB
  • sloc: ansic: 118,475; xml: 54,089; sh: 4,112; perl: 1,654; makefile: 274
file content (174 lines) | stat: -rw-r--r-- 6,404 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
#############################################################################
##
#W  clasperm.gi                 GAP library                    Heiko Theißen
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen, Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This   file contains the functions   that calculate ordinary and rational
##  classes for permutation groups.
##


#############################################################################
##
#M  Enumerator( <xorb> )  . . . . . . . . . for conj. classes in perm. groups
##
##  The only difference to the enumerator for external orbits is a better
##  `Position' (and `PositionCanonical') method.
##
BindGlobal( "NumberElement_ConjugacyClassPermGroup", function( enum, elm )
    local xorb, G, rep;

    xorb := UnderlyingCollection( enum );
    G := ActingDomain( xorb );
    rep := RepOpElmTuplesPermGroup( true, G, [ elm ],
                   [ Representative( xorb ) ],
                   TrivialSubgroup( G ), StabilizerOfExternalSet( xorb ) );
    if rep = fail  then
        return fail;
    else
        return PositionCanonical( enum!.rightTransversal, rep ^ -1 );
    fi;
end );

InstallMethod( Enumerator,
    [ IsConjugacyClassPermGroupRep ],
    xorb -> EnumeratorByFunctions( xorb, rec(
               NumberElement     := NumberElement_ConjugacyClassPermGroup,
               ElementNumber     := ElementNumber_ExternalOrbitByStabilizer,

               rightTransversal  := RightTransversal( ActingDomain( xorb ),
                   StabilizerOfExternalSet( xorb ) ) ) ) );


#############################################################################
##
#M  <cl1> = <cl2> . . . . . . . . . . . . . . . . . . . for conjugacy classes
##
InstallMethod( \=,"classes for perm group", IsIdenticalObj,
    [ IsConjugacyClassPermGroupRep, IsConjugacyClassPermGroupRep ],
    function( cl1, cl2 )
    if not IsIdenticalObj( ActingDomain( cl1 ), ActingDomain( cl2 ) )  then
        TryNextMethod();
    fi;
    return RepOpElmTuplesPermGroup( true, ActingDomain( cl1 ),
                   [ Representative( cl1 ) ],
                   [ Representative( cl2 ) ],
                   StabilizerOfExternalSet( cl1 ),
                   StabilizerOfExternalSet( cl2 ) ) <> fail;
end );

#############################################################################
##
#M  <g> in <cl> . . . . . . . . . . . . . . . . . . . . for conjugacy classes
##
InstallMethod( \in,"perm class rep", IsElmsColls,
  [ IsPerm, IsConjugacyClassPermGroupRep ],
function( g, cl )
local   G;

    if HasAsList(cl) or HasAsSSortedList(cl) then
      TryNextMethod();
    fi;
    G := ActingDomain( cl );
    return RepOpElmTuplesPermGroup( true, ActingDomain( cl ),
                   [ g ], [ Representative( cl ) ],
                   TrivialSubgroup( G ),
                   StabilizerOfExternalSet( cl ) ) <> fail;
end );


#############################################################################
##
#M  Enumerator( <rcl> ) . . . . . . . . .  of rational class in a perm. group
##
##  The only difference to the enumerator for rational classes is a better
##  `Position' (and `PositionCanonical') method.
##
BindGlobal( "NumberElement_RationalClassPermGroup", function( enum, elm )
    local   rcl,  G,  rep,  gal,  T,  pow,  t;

    rcl := UnderlyingCollection( enum );
    G   := ActingDomain( rcl );
    rep := Representative( rcl );
    gal := RightTransversalInParent( GaloisGroup( rcl ) );
    T := enum!.rightTransversal;
    for pow  in [ 1 .. Length( gal ) ]  do
	# if gal[pow]=0 then the rep is the identity , no need to worry.
        t := RepOpElmTuplesPermGroup( true, G,
                     [ elm ], [ rep ^ Int( gal[ pow ] ) ],
                     TrivialSubgroup( G ),
                     StabilizerOfExternalSet( rcl ) );
        if t <> fail  then
            break;
        fi;
    od;
    if t = fail  then
        return fail;
    else
        return ( pow - 1 ) * Length( T ) + PositionCanonical( T, t ^ -1 );
    fi;
end );

InstallMethod( Enumerator,
    [ IsRationalClassPermGroupRep ],
    rcl -> EnumeratorByFunctions( rcl, rec(
               NumberElement     := NumberElement_RationalClassPermGroup,
               ElementNumber     := ElementNumber_RationalClassGroup,

               rightTransversal  := RightTransversal( ActingDomain( rcl ),
                   StabilizerOfExternalSet( rcl ) ) ) ) );


InstallOtherMethod( CentralizerOp, [ IsRationalClassGroupRep ],
    StabilizerOfExternalSet );

#############################################################################
##
#M  <cl1> = <cl2> . . . . . . . . . . . . . . . . . . .  for rational classes
##
InstallMethod( \=, IsIdenticalObj, [ IsRationalClassPermGroupRep,
        IsRationalClassPermGroupRep ],
    function( cl1, cl2 )
    if ActingDomain( cl1 ) <> ActingDomain( cl2 )  then
        TryNextMethod();
    fi;
    # the Galois group of the identity is <0>, therefore we have to do this
    # extra test.
    return Order(Representative(cl1))=Order(Representative(cl2)) and
      ForAny( RightTransversalInParent( GaloisGroup( cl1 ) ), e ->
                   RepOpElmTuplesPermGroup( true, ActingDomain( cl1 ),
                           [ Representative( cl1 ) ],
                           [ Representative( cl2 ) ^ Int( e ) ],
                           StabilizerOfExternalSet( cl1 ),
                           StabilizerOfExternalSet( cl2 ) ) <> fail );
end );

#############################################################################
##
#M  <g> in <cl> . . . . . . . . . . . . . . . . . . . .  for rational classes
##
InstallMethod( \in, true, [ IsPerm, IsRationalClassPermGroupRep ], 0,
    function( g, cl )
    local   G;

    G := ActingDomain( cl );
    # the Galois group of the identity is <0>, therefore we have to do this
    # extra test.
    return Order(Representative(cl))=Order(g) and
     ForAny( RightTransversalInParent( GaloisGroup( cl ) ), e ->
                   RepOpElmTuplesPermGroup( true, G,
                           [ g ^ Int( e ) ],
                           [ Representative( cl ) ],
                           TrivialSubgroup( G ),
                           StabilizerOfExternalSet( cl ) ) <> fail );
end );


#############################################################################
##
#E