1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
|
############################################################################
#
# matobj2.gd
# by Max Neunhöffer
#
## Copyright (C) 2007 Max Neunhöffer, Lehrstuhl D f. Math., RWTH Aachen
## This file is free software, see license information at the end.
#
# This file together with matobj1.gd formally define the interface to the
# new style vectors and matrices in GAP.
# In this file all the operations, attributes and constructors are
# defined. It is read later in the GAP library reading process.
#
############################################################################
# TODO: make sure to document what exactly a new matrix obj implementation has to
# provide, and that we provide default implementations for everything else.
############################################################################
#
# Overview:
#
# <#GAPDoc Label="MatObj_Overview">
# The whole idea of this interface is that vectors and matrices must
# be proper objects with a stored type (i.e. created by Objectify allowing
# inheritance) to benefit from method selection. We therefore refer
# to the new style vectors and matrices as <Q>vector objects</Q> and
# <Q>matrix objects</Q> respectively.
# <P/>It should be possible to write
# (efficient) code that is independent of the actual representation (in
# the sense of &GAP;'s representation filters) and preserves it.
# <P/>
# This latter requirement makes it necessary to distinguish between
# (at least) two classes of matrices:
# <List>
# <Item><Q>RowList</Q>-Matrices which behave basically like lists of rows,
# in particular are the rows individual &GAP; objects that can
# be shared between different matrix objects.</Item>
# <Item><Q>Flat</Q> matrices which behave basically like one &GAP; object
# that cannot be split up further. In particular a row is only
# a part of a matrix and no GAP object in itself.</Item>
# </List>
# For various reasons these two classes have to be distinguished
# already with respect to the definition of the operations for them.
# <P/>
# In particular vectors and matrices know their BaseDomain and their
# dimensions. Note that the basic condition is that the elements of
# vectors and matrices must either lie in the BaseDomain or naturally
# embed in the sense that + and * and = automatically work with all elements
# of the base domain (example: integers in polynomials over integers).
# <P/>
# Vectors are equal with respect to "=" if they have the same length
# and the same entries. It is not necessary that they have the same
# BaseDomain. Matrices are equal with respect to "=" if they have the
# same dimensions and the same entries. It is possible that not for all
# pairs of representations methods exist.
# <P/>
# It is not guaranteed that all rows of a matrix have the same vector type!
# It is for example thinkable that a matrix stores some of its rows in a
# sparse representation and some in a dense one!
# However, it is guaranteed that the rows of matrices in the same
# representation are compatible in the sense that all vector operations
# defined in this interface can be applied to them and that new matrices
# in the same representation as the original matrix can be formed out of
# them.
# <P/>
# Note that there is neither a default mapping from the set of matrix
# representations to the set of vector representations nor one in the
# reverse direction! There is nothing like an "associated" vector
# representation to a matrix representation or vice versa.
# <P/>
# The way to write code that preserves the representation basically
# works by using constructing operations that take template objects
# to decide about the actual representation of the new object.
# <P/>
# Vectors do not have to be lists in the sense that they do not have
# to support all list operations. The same holds for matrices. However,
# RowList matrices behave nearly like lists of row vectors that insist
# on being dense and containing only vectors of the same length and
# with the same BaseDomain.
# <P/>
# There are some rules embedded in the comments to the following code.
# They are marked with the word "Rule". FIXME: Collect all rules here.
# <P/>
# <#/GAPDoc>
#
############################################################################
############################################################################
# If some operation has no comment it behaves as expected from
# the old vectors/matrices or as defined elsewhere.
############################################################################
############################################################################
############################################################################
# Attributes for vectors:
############################################################################
############################################################################
############################################################################
# Rule:
# A base domain must be a GAP object that has at least the following
# methods implemented:
# Zero
# One
# \in
# Characteristic
# IsFinite
# if finite: Size, and possibly DegreeOverPrimeField for fields
# Elements of the base domain must implement +, -, * and /.
# "Automatically" embedded elements may occur in vectors and matrices.
# Example: An integer may occur in a matrix with BaseDomain a polynomial
# ring over the Rationals.
############################################################################
#############################################################################
##
#A BaseDomain( <vector> )
##
## <#GAPDoc Label="MatObj_BaseDomain_IsVectorObj">
## <ManSection>
## <Attr Name="BaseDomain" Arg='vector'/>
##
## <Description>
## The object <A>vector</A> is defined over.
## Note that not all entries of <A>vector</A> necessarily lie in
## <C>BaseDomain( <A>vector</A> )</C> with respect to <C>in</C>.
## E.g. <A>vector</A> can be defined over a polynomial ring but also contain
## integers
## (see section <Ref Sect="Fundamental Ideas and Rules"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "BaseDomain", IsVectorObj );
# Typically, the base domain will be a ring, it need not be commutative
# nor associative. For non-associative base domains, the behavior of
# powering matrices is undefined.
DeclareAttribute( "OneOfBaseDomain", IsVectorObj );
DeclareAttribute( "ZeroOfBaseDomain", IsVectorObj );
# 'BaseDomain' shall work also for IsPlist objects (vectors and matrices),
# but it is regarded as expensive to call this function;
# fetching a one or zero is cheaper, and if one needs these values for a
# non-plist vector or matrix then calling 'OneOfBaseDomain' or
# 'ZeroOfBaseDomain' is not more expensive than calling 'BaseDomain' first.
#############################################################################
##
#A Length( <vector> )
##
## <#GAPDoc Label="MatObj_Length_IsVectorObj">
## <ManSection>
## <Attr Name="Length" Arg='vector'/>
##
## <Description>
## returns the length of the vector object <A>vector</A>, which is defined to
## be the number of entries of <A>vector</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "Length", IsVectorObj ); # can be zero
# We have to declare this since a row vector is not necessarily
# a list! Correspondingly we have to use InstallOtherMethod
# for those row vector types that are lists.
############################################################################
# Rule:
# Vectors v are always dense in the sense that all entries in the
# range [1..Length(v)] have defined values from BaseDomain(v).
############################################################################
############################################################################
############################################################################
# Operations for vectors:
############################################################################
############################################################################
############################################################################
# Rule:
# Vectors may be mutable or immutable. Of course all operations changing
# a vector are only allowed/implemented for mutable vectors.
############################################################################
############################################################################
# In the following sense vectors behave like lists:
############################################################################
DeclareOperation( "[]", [IsVectorObj,IsPosInt] );
# This is only defined for positions in [1..Length(VECTOR)].
DeclareOperation( "[]:=", [IsVectorObj,IsPosInt,IsObject] );
# This is only guaranteed to work for the position in [1..Length(VECTOR)]
# and only for elements in the BaseDomain(VECTOR)!
# Behaviour otherwise is undefined (from "unpacking" to Error all is possible)
DeclareOperation( "{}", [IsVectorObj,IsList] );
# Of course the positions must all lie in [1..Length(VECTOR)].
# Returns a vector in the same representation!
## <#GAPDoc Label="MatObj_PositionNonZero">
## <ManSection>
## <Oper Arg="V" Name="PositionNonZero" Label="for vectors"/>
## <Returns>An integer</Returns>
## <Description>
## Returns the index of the first entry in the vector <A>V</A> which is not
## zero. If all entries are zero, the function
## returns <C>Length(<A>V</A>) + 1</C>.
## </Description>
## </ManSection>
## <#/GAPDoc>
DeclareOperation( "PositionNonZero", [IsVectorObj] );
## <#GAPDoc Label="MatObj_PositionLastNonZero">
## <ManSection>
## <Oper Arg="V" Name="PositionLastNonZero"/>
## <Returns>An integer</Returns>
## <Description>
## Returns the index of the last entry in the vector <A>V</A> which is not
## zero. If all entries are zero, the function
## returns 0.
## </Description>
## </ManSection>
## <#/GAPDoc>
DeclareOperation( "PositionLastNonZero", [IsVectorObj] );
## <#GAPDoc Label="MatObj_ListOp">
## <ManSection>
## <Oper Arg="V[, func]" Name="ListOp"
## Label="for IsVectorObj, IsFunction"/>
## <Returns>A plain list</Returns>
## <Description>
## Applies <A>func</A> to each entry of the vector <A>V</A> and returns
## the results as a plain list. This allows for calling
## <Ref Func="List" Label="for a collection"/> on vectors.
## If the argument <A>func</A> is not provided, applies
## <Ref Func="IdFunc"/> to all entries.
## </Description>
## </ManSection>
## <#/GAPDoc>
DeclareOperation( "ListOp", [IsVectorObj] );
DeclareOperation( "ListOp", [IsVectorObj,IsFunction] );
# This is an unpacking operation returning a mutable copy in form of a list.
# It enables the "List" function to work.
## <#GAPDoc Label="MatObj_UnpackVector">
## <ManSection>
## <Oper Arg="V" Name="Unpack" Label="for IsVectorObj"/>
## <Returns>A plain list</Returns>
## <Description>
## Returns a new plain list containing the entries of <A>V</A>.
## Guarantees to return a new list which can be manipulated without
## changing <A>V</A>. The entries itself are not copied.
## </Description>
## </ManSection>
## <#/GAPDoc>
DeclareOperation( "Unpack", [IsVectorObj] );
# It guarantees to copy, that is changing the returned object does
# not change the original object.
# TODO: replace by AsList ?
# TODO: this is already used by the fining package
# "PositionNot" is intentionally left out here because it can rarely
# be implemented much more efficiently than by running through the vector.
# Note that vectors need not behave like lists with respect to the
# following operations:
# Add, Remove, IsBound[], Unbind[], \{\}\:\=, Append, Concatenation,
# Position, First, Filtered, ...
# Note that \{\}\:\= is left out here since it tempts the programmer
# to use constructions like A{[1..3]} := B{[4,5,6]} which produces
# an intermediate object. Use CopySubVector instead!
# The list operations Position and so on seem to be unnecessary for
# vectors and matrices and thus are left out to simplify the interface.
# TODO: actually -- why not allow `Position` anyway? What's the harm?
# Note that since Concatenation is a function using Append, it will
# not work for vectors and it cannot be overloaded!
# Thus we need:
## <#GAPDoc Label="MatObj_ConcatenationOfVectors">
## <ManSection>
## <Func Arg="V1,V2,..." Name="ConcatenationOfVectors"
## Label="for IsVectorObj"/>
## <Func Arg="Vlist" Name="ConcatenationOfVectors"
## Label="for list of IsVectorObj"/>
## <Returns>a vector object</Returns>
## <Description>
## Returns a new vector containing the entries of <A>V1</A>,
## <A>V2</A>, etc. As prototype <A>V1</A> is used.
## </Description>
## </ManSection>
## <#/GAPDoc>
DeclareGlobalFunction( "ConcatenationOfVectors" );
## <#GAPDoc Label="MatObj_ExtractSubVector">
## <ManSection>
## <Func Arg="V,l" Name="ExtractSubVector" Label="for IsVectorObj,IsList"/>
## <Returns>a vector object</Returns>
## <Description>
## Returns a new vector containing the entries of <A>V</A>
## at the positions in <A>l</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
DeclareOperation( "ExtractSubVector", [IsVectorObj,IsList] );
# Does the same as slicing v{l} but is here to be similar to
# ExtractSubMatrix.
############################################################################
# Standard operations for all objects:
############################################################################
# The following are implicitly there for all objects, we mention them here
# to have a complete interface description in one place. Of course, vectors
# have to implement those:
# DeclareOperation( "ShallowCopy", [IsVectorObj] );
# DeclareGlobalFunction( "StructuralCopy", [IsVectorObj] );
# DeclareOperation( "ViewObj", [IsVectorObj] );
# DeclareOperation( "PrintObj", [IsVectorObj] );
# This must produce GAP readable input reproducing the representation!
# DeclareAttribute( "String", IsVectorObj );
# DeclareOperation( "String", [IsVectorObj,IsInt] );
# DeclareOperation( "Display", [IsVectorObj] );
# DeclareOperation( "MakeImmutable", [IsVectorObj] );
# (this is a global function in the GAP library)
############################################################################
# Arithmetical operations for vectors:
############################################################################
# The following binary arithmetical operations are possible for vectors
# over the same BaseDomain with equal length:
# +, -, <, =
# Note1: It is not guaranteed that sorting is done lexicographically!
# Note2: If sorting is not done lexicographically then the objects
# in that representation cannot be lists!
# TODO: rename AddRowVector to AddVector; but keep in mind that
# historically there already was AddRowVector, so be careful to not break that
# The following "in place" operations exist with the same restrictions:
DeclareOperation( "AddRowVector",
[ IsVectorObj and IsMutable, IsVectorObj ] );
# vec = vec2 * scal
DeclareOperation( "AddRowVector",
[ IsVectorObj and IsMutable, IsVectorObj, IsObject ] );
# vec = scal * vec2
DeclareOperation( "AddRowVector",
[ IsVectorObj and IsMutable, IsObject, IsVectorObj ] );
# vec := vec2{[to..from]} * scal
DeclareOperation( "AddRowVector",
[ IsVectorObj and IsMutable, IsVectorObj, IsObject, IsPosInt, IsPosInt ] );
# vec := scal * vec2{[to..from]}
DeclareOperation( "AddRowVector",
[ IsVectorObj and IsMutable, IsObject, IsVectorObj, IsPosInt, IsPosInt ] );
# TODO: rename MultRowVector to MultVector; but keep in mind that
# historically there already was MultRowVector, so be careful to not break that
DeclareOperation( "MultRowVector",
[ IsVectorObj and IsMutable, IsObject ] );
#
# Also, make it explicit from which side we multiply
# DeclareOperation( "MultRowVectorFromLeft",
# [ IsVectorObj and IsMutable, IsObject ] );
# DeclareOperation( "MultRowVectorFromRight",
# [ IsVectorObj and IsMutable, IsObject ] );
#DeclareSynonym( "MultRowVector", MultRowVectorFromRight );
# do we really need the following? for what? is any code using this right now?
# ( a, pa, b, pb, s ) -> a{pa} := b{pb} * s;
DeclareOperation( "MultRowVector",
[ IsVectorObj and IsMutable, IsList, IsVectorObj, IsList, IsObject ] );
# maybe have this: vec := vec{[from..to]} * scal ?? cvec has it
# The following operations for scalars and vectors are possible for scalars in the BaseDomain
# (and often also for more, e.g. usually the scalar is allowed to be an integer regardless of the
# base domain):
# *, / (for <vector>/<scalar>, we do not define <scalar>/<vector>)
# The following unary arithmetical operations are possible for vectors, assuming
# they are possible in the base domain (so all of them in fields, but e.g. in
# a proper semiring, there is in general no additive inverse):
# AdditiveInverseImmutable, AdditiveInverseMutable,
# AdditiveInverseSameMutability, ZeroImmutable, ZeroMutable,
# ZeroSameMutability, IsZero, Characteristic
# ScalarProduct is already overloaded a lot, so perhaps we don't need to define
# it here, and just expect people to write vec1*vec2.
#
# TODO: document very explicitly that * for vectors does not care whether
# either vector is a row or column vector; it just always is the scalar product.
#
##DeclareOperation( "ScalarProduct", [ IsVectorObj, IsVectorObj ] );
# This is defined for two vectors of equal length, it returns the standard
# scalar product.
############################################################################
# The "representation-preserving" contructor methods:
############################################################################
## <#GAPDoc Label="MatObj_ZeroVector">
## <ManSection>
## <Oper Arg="l,V" Name="ZeroVector" Label="for IsInt,IsVectorObj"/>
## <Returns>a vector object</Returns>
## <Description>
## Returns a new vector of length <A>l</A> in the same representation
## as <A>V</A> containing only zeros.
## </Description>
## </ManSection>
## <#/GAPDoc>
DeclareOperation( "ZeroVector", [IsInt,IsVectorObj] );
# Returns a new mutable zero vector in the same rep as the given one with
# a possible different length.
DeclareOperation( "ZeroVector", [IsInt,IsMatrixObj] );
# Returns a new mutable zero vector in a rep that is compatible with
# the matrix but of possibly different length.
# Operation to create vector objects.
# The first just delegate to NewVector:
# TODO: replace IsOperation by something nicer, like IsFilter (but sadly that
# isn't a filter...)
# TODO: actually, should these be global functions instead of operations?
DeclareOperation( "Vector", [IsOperation, IsSemiring, IsList]);
DeclareOperation( "Vector", [IsOperation, IsSemiring, IsVectorObj]);
# Here we implement default choices for the representation, depending
# in base domain:
DeclareOperation( "Vector", [IsSemiring, IsList]);
DeclareOperation( "Vector", [IsSemiring, IsVectorObj]);
# And here are the variants with example object (as last argument):
DeclareOperation( "Vector", [IsList, IsVectorObj]);
DeclareOperation( "Vector", [IsVectorObj, IsVectorObj]);
# And here guess everything:
DeclareOperation( "Vector", [IsList]);
# Creates a new vector in the same representation but with entries from list.
# The length is given by the length of the first argument.
# It is *not* guaranteed that the list is copied!
# the following is gone again, use CompatibleVector instead:
#DeclareOperation( "Vector", [IsList,IsMatrixObj] );
## Returns a new mutable vector in a rep that is compatible with
## the matrix but of possibly different length given by the first
## argument. It is *not* guaranteed that the list is copied!
## <#GAPDoc Label="MatObj_ConstructingFilter_Vector">
## <ManSection>
## <Oper Arg="V" Name="ConstructingFilter" Label="for IsVectorObj"/>
## <Returns>a filter</Returns>
## <Description>
## Returns a filter <C>f</C> such that if <C>NewVector</C> is
## called with <C>f</C> a vector in the same representation as <A>V</A>
## is produced.
## </Description>
## </ManSection>
## <#/GAPDoc>
DeclareOperation( "ConstructingFilter", [IsVectorObj] );
DeclareConstructor( "NewVector", [IsVectorObj,IsSemiring,IsList] );
# A constructor. The first argument must be a filter indicating the
# representation the vector will be in, the second is the base domain.
# The last argument is guaranteed not to be changed!
DeclareSynonym( "NewRowVector", NewVector );
# FIXME: Declare NewRowVector for backwards compatibility, so that existing
# code which already used it keeps working (most notably, the cvec and fining
# packages). We should eventually remove this synonym.
DeclareConstructor( "NewZeroVector", [IsVectorObj,IsSemiring,IsInt] );
# A similar constructor to construct a zero vector, the last argument
# is the base domain.
DeclareOperation( "ChangedBaseDomain", [IsVectorObj,IsSemiring] );
# Changes the base domain. A copy of the row vector in the first argument is
# created, which comes in a "similar" representation but over the new
# base domain that is given in the second argument.
# example: given a vector over GF(2), create a new vector over GF(4) with "identical" content
# so it's kind of a type conversion / coercion
# TODO: better name, e.g. VectorWithChangedBasedDomain
# or maybe just turn this into a constructor resp. a new constructor special case :
# like
# DeclareConstructor( "NewVector", [IsVectorObj,IsSemiring,IsVectorObj] );
DeclareGlobalFunction( "MakeVector" );
# A convenience function for users to choose some appropriate representation
# and guess the base domain if not supplied as second argument.
# This is not guaranteed to be efficient and should never be used
# in library or package code.
# usage: MakeVector( <list> [,<basedomain>] )
# TODO: explain that this is not something you should use a lot;
# instead you should use NewVector, ZeroVector, Vector, ...
# explain a typical use case / scenario for this function..
# also: do we *really* need it? Max expects we'll find out as we convert the library
############################################################################
# Some things that fit nowhere else:
############################################################################
## <#GAPDoc Label="MatObj_Randomize_Vectors">
## <ManSection>
## <Oper Arg="V" Name="Randomize" Label="for IsVectorObj"/>
## <Oper Arg="V,Rs" Name="Randomize" Label="for IsVectorObj,IsRandomSources"/>
## <Description>
## Replaces every entry in <A>V</A> with a random one from the base
## domain. If given, the random source <A>Rs</A> is used to compute the
## random elements. Note that in this case, the random function for the
## base domain must support the random source argument.
## </Description>
## </ManSection>
## <#/GAPDoc>
DeclareOperation( "Randomize", [IsVectorObj and IsMutable] );
DeclareOperation( "Randomize", [IsVectorObj and IsMutable,IsRandomSource] );
# Changes the mutable argument in place, every entry is replaced
# by a random element from BaseDomain.
# The second argument is used to provide "randomness".
# The vector argument is also returned by the function.
# TODO: change this to use InstallMethodWithRandomSource; for this, we'll have
# to change the argument order (a method for the old order, to ensure backwards
# compatibility, could remain).
#############################################################################
##
#O CopySubVector( <src>, <dst>, <scols>, <dcols> )
##
## <#GAPDoc Label="CopySubVector">
## <ManSection>
## <Oper Name="CopySubVector" Arg='dst, dcols, src, scols'/>
## <Description>
## <Returns>nothing</Returns>
## Does <C><A>dst</A>{<A>dcols</A>} := <A>src</A>{<A>scols</A>}</C>
## without creating an intermediate object and thus - at least in
## special cases - much more efficiently. For certain objects like
## compressed vectors this might be significantly more efficient if
## <A>scols</A> and <A>dcols</A> are ranges with increment 1.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
## TODO: link to ExtractSubVector
##
## TODO: In AddRowVector and MultRowVector, the destination is always the first argument;
## it would be better if we were consistent...
##
## TODO: Maybe also have a version of this as follows:
## CopySubVector( dst, dst_from, dst_to, src, src_form, src_to );
DeclareOperation( "CopySubVector",
[IsVectorObj and IsMutable, IsList, IsVectorObj, IsList] );
## TODO: the following declaration is deprecated and only kept for compatibility
DeclareOperation( "CopySubVector",
[IsVectorObj,IsVectorObj and IsMutable, IsList,IsList] );
## <#GAPDoc Label="MatObj_WeightOfVector">
## <ManSection>
## <Oper Arg="V" Name="WeightOfVector" Label="for IsVectorObj"/>
## <Returns>an integer</Returns>
## <Description>
## Computes the Hamming weight of the vector <A>V</A>, i.e., the number of
## nonzero entries.
## </Description>
## </ManSection>
## <#/GAPDoc>
DeclareOperation( "WeightOfVector", [IsVectorObj] );
## <#GAPDoc Label="MatObj_DistanceOfVectors">
## <ManSection>
## <Oper Arg="V1,V2" Name="DistanceOfVectors"
## Label="for IsVectorObj,IsVectorObj"/>
## <Returns>an integer</Returns>
## <Description>
## Computes the Hamming distance of the vectors <A>V1</A> and <A>V2</A>,
## i.e., the number of entries in which the vectors differ. The vectors
## must be of equal length.
## </Description>
## </ManSection>
## <#/GAPDoc>
DeclareOperation( "DistanceOfVectors", [IsVectorObj, IsVectorObj] );
############################################################################
############################################################################
# Operations for all matrices in IsMatrixObj:
############################################################################
############################################################################
############################################################################
# Attributes of matrices:
############################################################################
#############################################################################
##
#A BaseDomain( <matrix> )
##
## <#GAPDoc Label="MatObj_BaseDomain_IsMatrixObj">
## <ManSection>
## <Attr Name="BaseDomain" Arg='matrix'/>
##
## <Description>
## The object <A>matrix</A> is defined over.
## Note that not all entries of <A>matrix</A> necessarily lie in
## <C>BaseDomain( <A>matrix</A> )</C> with respect to <C>in</C>.
## E.g. <A>matrix</A> can be defined over a polynomial ring but also contain
## integers
## (see section <Ref Sect="Fundamental Ideas and Rules"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "BaseDomain", IsMatrixObj );
# Typically, the base domain will be a ring, it need not be commutative
# nor associative. For non-associative base domains, the behavior of
# powering matrices is undefined.
DeclareAttribute( "NumberRows", IsMatrixObj );
DeclareAttribute( "NumberColumns", IsMatrixObj );
DeclareSynonymAttr( "NrRows", NumberRows );
DeclareSynonymAttr( "NrCols", NumberColumns );
DeclareAttribute( "OneOfBaseDomain", IsMatrixObj );
DeclareAttribute( "ZeroOfBaseDomain", IsMatrixObj );
# HACK: Length and RowLength were in the old version of MatrixObj. We want
# to get rid of them, but for now, keep thm to allow the few packages
# already using this to continue working.
DeclareAttribute( "Length", IsMatrixObj ); # ????
DeclareSynonymAttr( "RowLength", NumberColumns );
# WARNING: the following attributes should not be stored if the matrix is mutable...
DeclareAttribute( "DimensionsMat", IsMatrixObj );
# returns [NrRows(mat),NrCols(mat)]
# for backwards compatibility with existing code
DeclareAttribute( "RankMat", IsMatrixObj );
DeclareOperation( "RankMatDestructive", [ IsMatrixObj ] );
# TODO: danger: RankMat should not be stored for mutable matrices...
#
############################################################################
# In the following sense matrices behave like lists:
############################################################################
DeclareOperation( "[]", [IsMatrixObj,IsPosInt] ); # <mat>, <pos>
# This is guaranteed to return a vector object that has the property
# that changing it changes <pos>th row (?) of the matrix <mat>!
# A matrix which is not a row-lists internally has to create an intermediate object that refers to some
# row within it to allow the old GAP syntax M[i][j] for read and write
# access to work. Note that this will never be particularly efficient
# for matrices which are not row-lists. Efficient code will have to use MatElm and
# SetMatElm instead.
# TODO: ... resp. it will use use M[i,j]
# TODO: provide a default method which creates a proxy object for the given row
# and translates accesses to it to corresponding MatElm / SetMatElm calls;
# creating such a proxy object prints an InfoWarning;
# but for the method for plist matrices, no warning is shown, as it is efficient
# anyway
# TODO: maybe also add GetRow(mat, i) and GetColumn(mat, i) ???
# these return IsVectorObj objects.
# these again must be objects which are "linked" to the original matrix, as above...
# TODO: perhaps also have ExtractRow(mat, i) and ExtractColumn(mat, i)
# Note that arbitrary matrices need not behave like lists with respect to the
# following operations:
# Add, Remove, IsBound, Unbind, \{\}\:\=, Append, Concatenation,
# However, see below for matrices in the subcategory IsRowListMatrix.
############################################################################
# Explicit copying operations:
############################################################################
# The following are already in the library, these declarations should be
# adjusted:
#############################################################################
##
#O ExtractSubMatrix( <mat>, <rows>, <cols> )
##
## <#GAPDoc Label="ExtractSubMatrix">
## <ManSection>
## <Oper Name="ExtractSubMatrix" Arg='mat, rows, cols'/>
##
## <Description>
## Creates a fully mutable copy of the submatrix described by the two
## lists, which mean subset of rows and subset of columns respectively.
## This does <A>mat</A>{<A>rows</A>}{<A>cols</A>} and returns the result.
## It preserves the representation of the matrix.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "ExtractSubMatrix", [IsMatrixObj,IsList,IsList] );
# TODO: perhaps also add ExtractSubMatrix( mat, row_from, row_to, col_from, col_to ) ???
# probably not needed... one can use ranges + TryNextMethod ...
# but let's look at some places where this function is used
# Creates a fully mutable copy of the matrix.
DeclareOperation( "MutableCopyMat", [IsMatrixObj] );
# so this amounts roughly to `mat -> List( mat, ShallowCopy )`
# except that it produce an object in the same representation
# TODO: perhaps also add a recursive version of ShallowCopy with a parameter limiting the depth..
# TODO: can we also have a version of ShallowCopy which has a name starting with "Mutable"
# to make it easier to discover??? Like MutableCopyVec (which might just be an alias
# for ShallowCopy).
# Or at least mention ShallowCopy in the MutableCopyMat
#############################################################################
##
#O CopySubMatrix( <src>, <dst>, <srows>, <drows>, <scols>, <dcols> )
##
## <#GAPDoc Label="CopySubMatrix">
## <ManSection>
## <Oper Name="CopySubMatrix" Arg='src, dst, srows, drows, scols, dcols'/>
##
## <Description>
## <Returns>nothing</Returns>
## Does <C><A>dst</A>{<A>drows</A>}{<A>dcols</A>} :=
## <A>src</A>{<A>srows</A>}{<A>scols</A>}</C>
## without creating an intermediate object and thus - at least in
## special cases - much more efficiently. For certain objects like
## compressed vectors this might be significantly more efficient if
## <A>scols</A> and <A>dcols</A> are ranges with increment 1.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "CopySubMatrix", [IsMatrixObj,IsMatrixObj,
IsList,IsList,IsList,IsList] );
# TODO: order of arguments? dst before src??? perhaps:
# dst, drows, dcols, src, srows, scols
############################################################################
# New element access for matrices
############################################################################
DeclareOperation( "MatElm", [IsMatrixObj,IsPosInt,IsPosInt] );
DeclareOperation( "[]", [IsMatrixObj,IsPosInt,IsPosInt] );
# second and third arguments are row and column index
DeclareOperation( "SetMatElm", [IsMatrixObj,IsPosInt,IsPosInt,IsObject] );
DeclareOperation( "[]:=", [IsMatrixObj,IsPosInt,IsPosInt,IsObject] );
# second and third arguments are row and column index
############################################################################
# Standard operations for all objects:
############################################################################
# The following are implicitly there for all objects, we mention them here
# to have a complete interface description in one place:
# ShallowCopy is missing here since its behaviour depends on the internal
# representation of the matrix objects (e.g. list-of-lists resp. list-of-vectors
# versus a "flat" matrix, or a shallow matrix, or ...)!
# TODO: for mutable matrices, a difference between StructuralCopy and MutableCopyMat
# occurs if the matrix is a row list, and one row is immutable, another mutable;
# then StructuralCopy will return a new list of vectors, which again contains the
# same (identical) immutable vectors, and mutable copies of the other vectors.
# Whereas with MutableCopyMat, all new rows will be mutable
# DeclareGlobalFunction( "StructuralCopy", [IsMatrixObj] );
# DeclareOperation( "ViewObj", [IsMatrixObj] );
# DeclareOperation( "PrintObj", [IsMatrixObj] );
# This must produce GAP-readable input reproducing the representation.
# DeclareAttribute( "String", IsMatrixObj );
# DeclareOperation( "String", [IsMatrixObj,IsInt] );
# DeclareOperation( "Display", [IsMatrixObj] );
# DeclareOperation( "MakeImmutable", [IsMatrixObj] );
# (this is a global function in the GAP library)
# Matrices have to implement "PostMakeImmutable" if necessary!
############################################################################
# Arithmetical operations:
############################################################################
# The following binary arithmetical operations are possible for matrices
# over the same BaseDomain with fitting dimensions:
# +, *, -
# The following are also allowed for different dimensions:
# <, =
# Note1: It is not guaranteed that sorting is done lexicographically!
# Note2: If sorting is not done lexicographically then the objects
# in that representation cannot be lists!
# For non-empty square matrices we have:
# ^ integer
# (this is only well-defined over associative base domains,
# do not use it over non-associative base domains.
# // The behavior of ^ on non-associative base domains is undefined.
# The following unary arithmetical operations are possible for matrices:
# AdditiveInverseImmutable, AdditiveInverseMutable,
# AdditiveInverseSameMutability, ZeroImmutable, ZeroMutable,
# ZeroSameMutability, IsZero, Characteristic
# The following unary arithmetical operations are possible for non-empty
# square matrices (inversion returns fail if not invertible):
# OneMutable, OneImmutable, OneSameMutability,
# InverseMutable, InverseImmutable, InverseSameMutability, IsOne,
# Problem: How about inverses of integer matrices that exist as
# elements of rationals matrix?
# TODO: how to deal with this? If you have e.g. the integer matrix [[2]],
# then our generic inversion code produces the inverse [[1/2]] -- but that
# is not defined over the base domain (the integers).
#
# So perhaps the default method for inversion has to be careful...
# there is no problem over fields.
# For non-commutative or non-assoc domains, we don't provid a default.
# For commutative rings, we could compute the determinant alongside
# the inverse ("almost" for free), and then only need to check that
# the determinant is a unit in the base domain
# But be careful regarding zero divisors -- so perhaps use a different
# default method for non-fields, which avoids division
#
# Also, we can have other methods for e.g. subdomains of the cyclotomics.
#
DeclareOperation( "TraceMat", [IsMatrixObj] );
# The sum of the diagonal entries. Error for a non-square matrix.
#DeclareOperation( "DeterminantMat", [IsMatrixObj] );
# TODO: this only makes sense over commutative domains;
# be careful regarding default implementation (base domain = field vs.
# base domain = any commutative ring, possibly with zero divisors)
############################################################################
# Rule:
# Operations not sensibly defined return fail and do not trigger an error:
# In particular this holds for:
# One for non-square matrices.
# Inverse for non-square matrices
# Inverse for square, non-invertible matrices.
# FIXME: what is the rationale for the above? OK, inverting a square matrix:
# it is non-trivial to decide if the matrix is invertible, so it might be
# useful to be able to just try and invert it, and do something else if that "fail"s
# But it is cheap to verify that a matrix is non-square, so why not error for that?
# Same for One, ...
#
# An exception are properties:
# IsOne for non-square matrices returns false.
#
# To detect errors more easily:
# Matrix/vector and matrix/matrix product run into errors if not defined
# mathematically (like for example a 1x2 - matrix times itself.
############################################################################
############################################################################
# The "representation-preserving" contructor methods:
############################################################################
DeclareOperation( "ZeroMatrix", [IsInt,IsInt,IsMatrixObj] );
DeclareOperation( "ZeroMatrix", [IsSemiring, IsInt,IsInt] ); # warning: NullMat has ring arg last
DeclareOperation( "ZeroMatrix", [IsOperation, IsSemiring, IsInt,IsInt] );
# Returns a new fully mutable zero matrix in the same rep as the given one with
# possibly different dimensions. First argument is number of rows, second
# is number of columns.
DeclareConstructor( "NewZeroMatrix", [IsMatrixObj,IsSemiring,IsInt,IsInt]);
# constructor -> first argument must be a filter, like e.g. IsPlistMatrixRep
#
# Returns a new fully mutable zero matrix over the base domain in the
# 2nd argument. The integers are the number of rows and columns.
DeclareOperation( "IdentityMatrix", [IsInt,IsMatrixObj] );
DeclareOperation( "IdentityMatrix", [IsSemiring, IsInt] ); # warning: IdentityMat has ring arg last
DeclareOperation( "IdentityMatrix", [IsOperation, IsSemiring, IsInt] );
# Returns a new mutable identity matrix in the same rep as the given one with
# possibly different dimensions.
DeclareConstructor( "NewIdentityMatrix", [IsMatrixObj,IsSemiring,IsInt]);
# Returns a new fully mutable identity matrix over the base domain in the
# 2nd argument. The integer is the number of rows and columns.
# TODO: perhaps imitate what we do for e.g. group constructors, and allow
# user to omit the filter; in that case, try to choose a "good" default
# representation ????
# TODO: perhaps add DiagonalMatrix?
# TODO: convert (New)IdentityMatrix and (New)ZeroMatrix to be more similar to Matrix()
DeclareOperation( "CompanionMatrix", [IsUnivariatePolynomial,IsMatrixObj] );
# Returns the companion matrix of the first argument in the representation
# of the second argument. Uses row-convention. The polynomial must be
# monic and its coefficients must lie in the BaseDomain of the matrix.
DeclareConstructor( "NewCompanionMatrix",
[IsMatrixObj, IsUnivariatePolynomial, IsSemiring] );
# The constructor variant of <Ref Oper="CompanionMatrix"/>.
# TODO: get rid of NewCompanionMatrix, at least for now -- if somebody *REALLY*
# needs it, we can still reconsider... Instead allow this:
# DeclareOperation( "CompanionMatrix", [IsFilter, IsUnivariatePolynomial, IsSemiring] );
# which roughly does this:
# InstallMethod( CompanionMatrix, ...
# function(filt, f, R)
# n := Degree(f);
# mat := NewZeroMatrix(filt, R, n, n);
# ... set entries of mat ...
# end);
# The following are already declared in the library:
# Eventually here will be the right place to do this.
# variant with new filter + base domain (dispatches to NewMatrix)
DeclareOperation( "Matrix", [IsOperation, IsSemiring, IsList, IsInt]);
DeclareOperation( "Matrix", [IsOperation, IsSemiring, IsList]);
DeclareOperation( "Matrix", [IsOperation, IsSemiring, IsMatrixObj]);
# variant with new base domain -> "guesses" good rep, then dispatches to NewMatrix
DeclareOperation( "Matrix", [IsSemiring, IsList, IsInt]);
DeclareOperation( "Matrix", [IsSemiring, IsList]);
DeclareOperation( "Matrix", [IsSemiring, IsMatrixObj]);
# the following two operations use DefaultFieldOfMatrix to "guess" the base domain
DeclareOperation( "Matrix", [IsList, IsInt]);
DeclareAttribute( "Matrix", IsList, "mutable"); # HACK: because there already is an attribute Matrix
# variant with example object at end (input is first)
DeclareOperation( "Matrix", [IsList, IsInt, IsMatrixObj]);
DeclareOperation( "Matrix", [IsList, IsMatrixObj]); # <- no need to overload this one
DeclareOperation( "Matrix", [IsMatrixObj, IsMatrixObj]);
# perhaps also (or instead?) have this:
#DeclareOperation( "MatrixWithRows", [IsList (of vectors),IsMatrixObj]); ??
#DeclareOperation( "MatrixWithColumns", [IsList (of vectors),IsMatrixObj]); ??
DeclareConstructor( "NewMatrix", [IsMatrixObj, IsSemiring, IsInt, IsList] );
# Constructs a new fully mutable matrix. The first argument has to be a filter
# indicating the representation, the second the base domain, the third
# the row length. The last argument can be:
# - a plain list of vector objects of correct length
# - a plain list of plain lists of correct length
# - a flat plain list with rows*cols entries in row major order
# (FoldList turns a flat list into a list of lists)
# where the corresponding entries must be in or compatible with the base domain.
# If the last argument already contains vector objects, they are copied.
# The last argument is guaranteed not to be changed!
# TODO: what does "flat" above mean???
# TODO: from an old comment on Matrix / NewMatrix, wrt to the last argument
# The outer list is guaranteed to be copied, however, the entries of that
# list (the rows) need not be copied.
# TODO: Isn't it inconsistent to copy the rows if they are vector objects, but otherwise not? Also: matobjplist.gi uses NewVector, which copies its list-argument
# FIXME: why is IsInt,IsList reversed compared to Matrix(), where it is IsList,IsInt
# given a matrix <m>, produce a filter such that NewMatrix called with this filter
# will produce a matrix in the same representation as <m>
DeclareOperation( "ConstructingFilter", [IsMatrixObj] );
# TODO: what does this do?
# Implementation: given an n x m matrix <m>, create a new zero vector <v> of
# length n (= NrRows) in a representation "compatible" with that of <m>, i.e.
# there "should be" a fast action <v>*<m>
# FIXME: is this really useful? Compare to, say, `ExtractRow(mat,1)` etc. ???
DeclareOperation( "CompatibleVector", [IsMatrixObj] );
DeclareOperation( "ChangedBaseDomain", [IsMatrixObj,IsSemiring] );
# Changes the base domain. A copy of the matrix in the first argument is
# created, which comes in a "similar" representation but over the new
# base domain that is given in the second argument.
# TODO: better name, e.g. MatrixWithChangedBasedDomain
# or maybe just turn this into a constructor resp. a new constructor special case :
# like
# DeclareConstructor( "NewMatrix", [IsMatrixObj,IsSemiring,IsMatrixObj] );
# usage: MakeVector( <list> [,<basedomain>] )
# A convenience function for users to choose some appropriate representation
# and guess the base domain if not supplied as second argument.
# This is not guaranteed to be efficient and should never be used
# in library or package code.
# It is mainly useful to help migrate existing code incrementally to use
# the new MatrixObj interface.
# TODO: how useful are all these constructors in practice?
# Ideally we should try to limit their number, focusing on a few useful ones..
# best to see what actual code needs
############################################################################
# Some things that fit nowhere else:
############################################################################
DeclareOperation( "Randomize", [IsMatrixObj and IsMutable] );
DeclareOperation( "Randomize", [IsMatrixObj and IsMutable,IsRandomSource] );
# Changes the mutable argument in place, every entry is replaced
# by a random element from BaseDomain.
# The second version will come when we have random sources.
# TODO: only keep the first operation and suggest using InstallMethodWithRandomSource
DeclareAttribute( "TransposedMatImmutable", IsMatrixObj );
DeclareOperation( "TransposedMatMutable", [IsMatrixObj] );
# TODO: one problem with DeclareAttribute: it only really makes sense if the
# matrix is immutable; but we have no way of declaring this; so it is very
# easy to end up having a mutable, attribute storing matrix, which stores
# its transpose "by accident", and then gets modified later on
#
DeclareOperation( "IsDiagonalMat", [IsMatrixObj] );
DeclareOperation( "IsUpperTriangularMat", [IsMatrixObj] );
DeclareOperation( "IsLowerTriangularMat", [IsMatrixObj] );
# TODO: if we allow attributes, we might just as well do the above to be
# declared as properties, so that this information is stored; but once
# again, we would only want to allow this for immutable matrix objects.
# ...
# TODO: what about the following (and also note the names...):
# - IsScalarMat, IsSquareMat, ... ?
# TODO: Why do we call them RankMat, IsDiagonalMat, etc.
# and not RankMatrix, IsDiagonalMatrix, etc. ?
# in contrast to Matrix(), NewMatrix(), ExtractSubMatrix(), ...
#
# One reasons is backwards compatibility of course, but this could
# also be achieved with synonyms.
# Another argument for "Mat" is brevity, but is that really so important/useful
# versus "clarity"
# Still, we could unify these names, always using "Matrix".
#
# Of course we could also introduce a rule when to use "Matrix" and when to use "Mat",
# but this rule will invariably be ignored or forgotten and inconsistency will
# occur.
#
# So new plan: Always use "Matrix", but provide "Mat" aliases for
# backwards compatibility (if the operation already exists with that name),
# and perhaps (????) for "convenience"
#
DeclareOperation( "KroneckerProduct", [IsMatrixObj,IsMatrixObj] );
# The result is fully mutable.
# FIXME: what is the purpose of Unfold and Fold?
# Maybe remove them, and wait if somebody asks for / needs this
DeclareOperation( "Unfold", [IsMatrixObj, IsVectorObj] );
# Concatenates all rows of a matrix to one single vector in the same
# representation as the given template vector. Usually this must
# be compatible with the representation of the matrix given.
DeclareOperation( "Fold", [IsVectorObj, IsPosInt, IsMatrixObj] );
# Cuts the row vector into pieces of length the second argument
# and forms a matrix out of the pieces in the same representation
# as the third argument. The length of the vector must be a multiple
# of the second argument.
# The following unwraps a matrix to a list of lists:
DeclareOperation( "Unpack", [IsRowListMatrix] );
# It guarantees to copy, that is changing the returned object does
# not change the original object.
# TODO: this is already used by the fining package
############################################################################
############################################################################
# Operations for RowList-matrices:
############################################################################
############################################################################
############################################################################
# List operations with some restrictions:
############################################################################
# TODO: what is this good for? Theory: it would probably help when migrating
# existing code to MatrixObj, as you could change your lists-of-list matrices
# to MatrixObjs, and then incrementally adapt your code to *not* use the
# following operations.
#
# In that case, we should make it very clear that using these functions is
# discouraged....
# TODO: let's see if this is really useful when e.g. adapting the library.
# If not, then we might not even need `IsRowListMatrix`
DeclareOperation( "[]:=", [IsRowListMatrix,IsPosInt,IsObject] );
# Only guaranteed to work for the position in [1..Length(VECTOR)] and only
# for elements in a suitable vector type.
# Behaviour otherwise is undefined (from "unpacking" to Error all is possible)
DeclareOperation( "{}", [IsRowListMatrix,IsList] );
# Produces *not* a list of rows but a matrix in the same rep as the input!
DeclareOperation( "Add", [IsRowListMatrix,IsVectorObj] );
DeclareOperation( "Add", [IsRowListMatrix,IsVectorObj,IsPosInt] );
DeclareOperation( "Remove", [IsRowListMatrix] );
DeclareOperation( "Remove", [IsRowListMatrix,IsPosInt] );
DeclareOperation( "IsBound[]", [IsRowListMatrix,IsPosInt] );
DeclareOperation( "Unbind[]", [IsRowListMatrix,IsPosInt] );
# Only works for last row to preserve denseness.
DeclareOperation( "{}:=", [IsRowListMatrix,IsList,IsRowListMatrix] );
# This is only guaranteed to work if the result is dense and the matrices
# are compatible. For efficiency reasons the third argument must be a
# matrix and cannot be a list of vectors.
DeclareOperation( "Append", [IsRowListMatrix,IsRowListMatrix] );
# Again only for compatible matrices
# ==> Concatenation works then automatically!
# Implicitly there, creates a new matrix sharing the same rows:
# DeclareOperation( "ShallowCopy", [IsRowListMatrix] );
# The following unwraps a matrix to a list of vectors:
DeclareOperation( "ListOp", [IsRowListMatrix] );
DeclareOperation( "ListOp", [IsRowListMatrix, IsFunction] );
############################################################################
# Rule:
# This all means that objects in IsRowListMatrix behave like lists that
# insist on being dense and having only IsVectorObjs over the right
# BaseDomain and with the right length as entries. However, formally
# they do not have to lie in the filter IsList.
############################################################################
############################################################################
# Arithmetic involving vectors and matrices:
############################################################################
# DeclareOperation( "*", [IsVectorObj, IsMatrixObj] );
# DeclareOperation( "*", [IsMatrixObj, IsVectorObj] );
# TODO: the following does the same as "*", but is useful
# as convenience for Orbit-ish operations.
# We otherwise discourage its use in "naked" code -- use * instead
# DeclareOperation( "^", [IsVectorObj, IsMatrixObj] );
############################################################################
# Further candidates for the interface:
############################################################################
# AsList
# AddCoeffs
# while we are at it also make the naming of following more uniform ???
# TriangulizeIntegerMat
# TriangulizedIntegerMat(Transform)
# HermiteNormalFormIntegerMat(Transform)
# SmithNormalFormIntegerMat(Transform)
# and contrast them to these:
# BaseIntMat
# BaseIntersectionIntMats
# ComplementIntMat
# DeterminantIntMat
# DiagonalizeIntMat
# NormalFormIntMat
# NullspaceIntMat
# SolutionIntMat
# SolutionNullspaceIntMat
|