File: obsolete.gi

package info (click to toggle)
gap 4r10p0-7
  • links: PTS
  • area: main
  • in suites: buster
  • size: 47,392 kB
  • sloc: ansic: 118,475; xml: 54,089; sh: 4,112; perl: 1,654; makefile: 274
file content (924 lines) | stat: -rw-r--r-- 29,143 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
#############################################################################
##
#W  obsolete.gi                  GAP library                     Steve Linton
##
##
#Y  Copyright (C)  1996,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  See the comments in `lib/obsolete.gd'.
##


#############################################################################
##
#F  DiagonalizeIntMatNormDriven(<mat>)  . . . . diagonalize an integer matrix
##
#T  Should this test for mutability? SL
##
# InstallGlobalFunction( DiagonalizeIntMatNormDriven, function ( mat )
#     local   nrrows,     # number of rows    (length of <mat>)
#             nrcols,     # number of columns (length of <mat>[1])
#             rownorms,   # norms of rows
#             colnorms,   # norms of columns
#             d,          # diagonal position
#             pivk, pivl, # position of a pivot
#             norm,       # product of row and column norms of the pivot
#             clear,      # are the row and column cleared
#             row,        # one row
#             col,        # one column
#             ent,        # one entry of matrix
#             quo,        # quotient
#             h,          # gap width in shell sort
#             k, l,       # loop variables
#             max, omax;  # maximal entry and overall maximal entry
#             
#     # give some information
#     Info( InfoMatrix, 1, "DiagonalizeMat called" );
#     omax := 0;
# 
#     # get the number of rows and columns
#     nrrows := Length( mat );
#     if nrrows <> 0  then
#         nrcols := Length( mat[1] );
#     else
#         nrcols := 0;
#     fi;
#     rownorms := [];
#     colnorms := [];
# 
#     # loop over the diagonal positions
#     d := 1;
#     Info( InfoMatrix, 2, "  divisors:" );
# 
#     while d <= nrrows and d <= nrcols  do
# 
#         # find the maximal entry
#         Info( InfoMatrix, 3, "    d=", d );
#         if 3 <= InfoLevel( InfoMatrix ) then
#             max := 0;
#             for k  in [ d .. nrrows ]  do
#                 for l  in [ d .. nrcols ]  do
#                     ent := mat[k][l];
#                     if   0 < ent and max <  ent  then
#                         max :=  ent;
#                     elif ent < 0 and max < -ent  then
#                         max := -ent;
#                     fi;
#                 od;
#             od;
#             Info( InfoMatrix, 3, "    max=", max );
#             if omax < max  then omax := max;  fi;
#         fi;
# 
#         # compute the Euclidean norms of the rows and columns
#         for k  in [ d .. nrrows ]  do
#             row := mat[k];
#             rownorms[k] := row * row;
#         od;
#         for l  in [ d .. nrcols ]  do
#             col := mat{[d..nrrows]}[l];
#             colnorms[l] := col * col;
#         od;
#         Info( InfoMatrix, 3, "    n" );
# 
#         # push rows containing only zeroes down and forget about them
#         for k  in [ nrrows, nrrows-1 .. d ]  do
#             if k < nrrows and rownorms[k] = 0  then
#                 row         := mat[k];
#                 mat[k]      := mat[nrrows];
#                 mat[nrrows] := row;
#                 norm             := rownorms[k];
#                 rownorms[k]      := rownorms[nrrows];
#                 rownorms[nrrows] := norm;
#             fi;
#             if rownorms[nrrows] = 0  then
#                 nrrows := nrrows - 1;
#             fi;
#         od;
# 
#         # quit if there are no more nonzero entries
#         if nrrows < d  then
#             #N  1996/04/30 mschoene should 'break'
#             Info( InfoMatrix, 3, "  overall maximal entry ", omax );
#             Info( InfoMatrix, 1, "DiagonalizeMat returns" );
#             return;
#         fi;
# 
#         # push columns containing only zeroes right and forget about them
#         for l  in [ nrcols, nrcols-1 .. d ]  do
#             if l < nrcols and colnorms[l] = 0  then
#                 col                      := mat{[d..nrrows]}[l];
#                 mat{[d..nrrows]}[l]      := mat{[d..nrrows]}[nrcols];
#                 mat{[d..nrrows]}[nrcols] := col;
#                 norm             := colnorms[l];
#                 colnorms[l]      := colnorms[nrcols];
#                 colnorms[nrcols] := norm;
#             fi;
#             if colnorms[nrcols] = 0  then
#                 nrcols := nrcols - 1;
#             fi;
#         od;
# 
#         # sort the rows with respect to their norms
#         h := 1;  while 9 * h + 4 < nrrows-(d-1)  do h := 3 * h + 1;  od;
#         while 0 < h  do
#             for l  in [ h+1 .. nrrows-(d-1) ]  do
#                 norm := rownorms[l+(d-1)];
#                 row := mat[l+(d-1)];
#                 k := l;
#                 while h+1 <= k  and norm < rownorms[k-h+(d-1)]  do
#                     rownorms[k+(d-1)] := rownorms[k-h+(d-1)];
#                     mat[k+(d-1)] := mat[k-h+(d-1)];
#                     k := k - h;
#                 od;
#                 rownorms[k+(d-1)] := norm;
#                 mat[k+(d-1)] := row;
#             od;
#             h := QuoInt( h, 3 );
#         od;
# 
#         # choose a pivot in the '<mat>{[<d>..]}{[<d>..]}' submatrix
#         # the pivot must be the topmost nonzero entry in its column,
#         # now that the rows are sorted with respect to their norm
#         pivk := 0;  pivl := 0;
#         norm := Maximum(rownorms) * Maximum(colnorms) + 1;
#         for l  in [ d .. nrcols ]  do
#             k := d;
#             while mat[k][l] = 0  do
#                 k := k + 1;
#             od;
#             if rownorms[k] * colnorms[l] < norm  then
#                 pivk := k;  pivl := l;
#                 norm := rownorms[k] * colnorms[l];
#             fi;
#         od;
#         Info( InfoMatrix, 3, "    p" );
# 
#         # move the pivot to the diagonal and make it positive
#         if d <> pivk  then
#             row       := mat[d];
#             mat[d]    := mat[pivk];
#             mat[pivk] := row;
#         fi;
#         if d <> pivl  then
#             col                    := mat{[d..nrrows]}[d];
#             mat{[d..nrrows]}[d]    := mat{[d..nrrows]}[pivl];
#             mat{[d..nrrows]}[pivl] := col;
#         fi;
#         if mat[d][d] < 0  then
#             MultRowVector(mat[d],-1);
#         fi;
# 
#         # now perform row operations so that the entries in the
#         # <d>-th column have absolute value at most pivot/2
#         clear := true;
#         row := mat[d];
#         for k  in [ d+1 .. nrrows ]  do
#             quo := BestQuoInt( mat[k][d], mat[d][d] );
#             if quo = 1  then
#                 AddRowVector(mat[k], row, -1);
#             elif quo = -1  then
#                 AddRowVector(mat[k], row);
#             elif quo <> 0  then
#                 AddRowVector(mat[k], row, -quo);
#             fi;
#             clear := clear and mat[k][d] = 0;
#         od;
#         Info( InfoMatrix, 3, "    c" );
# 
#         # now perform column operations so that the entries in
#         # the <d>-th row have absolute value at most pivot/2
#         col := mat{[d..nrrows]}[d];
#         for l  in [ d+1 .. nrcols ]  do
#             quo := BestQuoInt( mat[d][l], mat[d][d] );
#             if quo = 1  then
#                 mat{[d..nrrows]}[l] := mat{[d..nrrows]}[l] - col;
#             elif quo = -1  then
#                 mat{[d..nrrows]}[l] := mat{[d..nrrows]}[l] + col;
#             elif quo <> 0  then
#                 mat{[d..nrrows]}[l] := mat{[d..nrrows]}[l] - quo * col;
#             fi;
#             clear := clear and mat[d][l] = 0;
#         od;
#         Info( InfoMatrix, 3, "    r" );
# 
#         # repeat until the <d>-th row and column are totally cleared
#         while not clear  do
# 
#             # compute the Euclidean norms of the rows and columns
#             # that have a nonzero entry in the <d>-th column resp. row
#             for k  in [ d .. nrrows ]  do
#                 if mat[k][d] <> 0  then
#                     row := mat[k];
#                     rownorms[k] := row * row;
#                 fi;
#             od;
#             for l  in [ d .. nrcols ]  do
#                 if mat[d][l] <> 0  then
#                     col := mat{[d..nrrows]}[l];
#                     colnorms[l] := col * col;
#                 fi;
#             od;
#             Info( InfoMatrix, 3, "    n" );
# 
#             # choose a pivot in the <d>-th row or <d>-th column
#             pivk := 0;  pivl := 0;
#             norm := Maximum(rownorms) * Maximum(colnorms) + 1;
#             for l  in [ d+1 .. nrcols ]  do
#                 if 0 <> mat[d][l] and rownorms[d] * colnorms[l] < norm  then
#                     pivk := d;  pivl := l;
#                     norm := rownorms[d] * colnorms[l];
#                 fi;
#             od;
#             for k  in [ d+1 .. nrrows ]  do
#                 if 0 <> mat[k][d] and rownorms[k] * colnorms[d] < norm  then
#                     pivk := k;  pivl := d;
#                     norm := rownorms[k] * colnorms[d];
#                 fi;
#             od;
#             Info( InfoMatrix, 3, "    p" );
# 
#             # move the pivot to the diagonal and make it positive
#             if d <> pivk  then
#                 row       := mat[d];
#                 mat[d]    := mat[pivk];
#                 mat[pivk] := row;
#             fi;
#             if d <> pivl  then
#                 col                    := mat{[d..nrrows]}[d];
#                 mat{[d..nrrows]}[d]    := mat{[d..nrrows]}[pivl];
#                 mat{[d..nrrows]}[pivl] := col;
#             fi;
#             if mat[d][d] < 0  then
#                 MultRowVector(mat[d],-1);
#             fi;
# 
#             # now perform row operations so that the entries in the
#             # <d>-th column have absolute value at most pivot/2
#             clear := true;
#             row := mat[d];
#             for k  in [ d+1 .. nrrows ]  do
#                 quo := BestQuoInt( mat[k][d], mat[d][d] );
# 	        if quo = 1  then
#                     AddRowVector(mat[k],row,-1);
#                 elif quo = -1  then
#                     AddRowVector(mat[k],row);
#                 elif quo <> 0  then
#                     AddRowVector(mat[k], row, -quo);
#                 fi;
#                 clear := clear and mat[k][d] = 0;
#             od;
#             Info( InfoMatrix, 3, "    c" );
# 
#             # now perform column operations so that the entries in
#             # the <d>-th row have absolute value at most pivot/2
#             col := mat{[d..nrrows]}[d];
#             for l  in [ d+1.. nrcols ]  do
#                 quo := BestQuoInt( mat[d][l], mat[d][d] );
#                 if quo = 1  then
#                     mat{[d..nrrows]}[l] := mat{[d..nrrows]}[l] - col;
#                 elif quo = -1  then
#                     mat{[d..nrrows]}[l] := mat{[d..nrrows]}[l] + col;
#                 elif quo <> 0  then
#                     mat{[d..nrrows]}[l] := mat{[d..nrrows]}[l] - quo * col;
#                 fi;
#                 clear := clear and mat[d][l] = 0;
#             od;
#             Info( InfoMatrix, 3, "    r" );
# 
#         od;
# 
#         # print the diagonal entry (for information only)
#         Info( InfoMatrix, 3, "    div=" );
#         Info( InfoMatrix, 2, "      ", mat[d][d] );
# 
#         # go on to the next diagonal position
#         d := d + 1;
# 
#     od;
# 
#     # close with some more information
#     Info( InfoMatrix, 3, "  overall maximal entry ", omax );
#     Info( InfoMatrix, 1, "DiagonalizeMat returns" );
# end );


#############################################################################
##
#M  CharacteristicPolynomial( <F>, <mat> )
#M  CharacteristicPolynomial( <field>, <matrix>, <indnum> )
##
##  The documentation of these usages of CharacteristicPolynomial was
##  ambiguous, leading to surprising results if mat was over F but
##  DefaultField (mat) properly contained F.
##  Now there is a four argument version which allows to specify the field
##  which specifies the linear action of mat, and another which specifies
##  the vector space which mat acts upon.
##
##  In the future, the versions above could be given a differnt meaning,
##  where the first argument simply specifies both fields in the case
##  when they are the same.
##
##  The following provides backwards compatibility with  {\GAP}~4.4. in the
##  cases where there is no ambiguity.
##
InstallOtherMethod( CharacteristicPolynomial,
     "supply indeterminate 1",
    [ IsField, IsMatrix ],
    function( F, mat )
        return CharacteristicPolynomial (F, mat, 1);
    end );

InstallOtherMethod( CharacteristicPolynomial,
    "check default field, print error if ambiguous",
    IsElmsCollsX,
    [ IsField, IsOrdinaryMatrix, IsPosInt ],
function( F, mat, inum )
        if IsSubset (F, DefaultFieldOfMatrix (mat)) then
            Info (InfoObsolete, 1, "This usage of `CharacteristicPolynomial' is no longer supported. ",
                "Please specify two fields instead.");
            return CharacteristicPolynomial (F, F, mat, inum);
        else
            Error ("this usage of `CharacteristicPolynomial' is no longer supported, ",
                "please specify two fields instead.");
        fi;
end );


#############################################################################
##
#M  ShrinkCoeffs( <list> )
##
# InstallMethod( ShrinkCoeffs,"call `ShrinkRowVector'",
#     [ IsList and IsMutable ],
# function( l1 )
#     Info( InfoObsolete, 1,
#         "the operation `ShrinkCoeffs' is not supported anymore,\n",
#         "#I  use `ShrinkRowVector' instead" );
#     ShrinkRowVector(l1);
#     return Length(l1);
# end );
# 
# InstallOtherMethod( ShrinkCoeffs,"error if immutable",
#     [ IsList ],
#     L1_IMMUTABLE_ERROR);

#############################################################################
##
#M  ShrinkCoeffs( <vec> )
##
# InstallMethod( ShrinkCoeffs, "8 bit vector",
#         [IsMutable and IsRowVector and Is8BitVectorRep ],
#         function(vec)
#     local r;
#     Info( InfoObsolete, 1,
#         "the operation `ShrinkCoeffs' is not supported anymore,\n",
#         "#I  use `ShrinkRowVector' instead" );
#     r := RIGHTMOST_NONZERO_VEC8BIT(vec);
#     RESIZE_VEC8BIT(vec, r);
#     return r;
# end);

#############################################################################
##
#M  ShrinkCoeffs( <gf2vec> )  . . . . . . . . . . . . . . shrink a GF2 vector
##
# InstallMethod( ShrinkCoeffs,
#     "for GF2 vector",
#     [ IsMutable and IsRowVector and IsGF2VectorRep ],
# function( l1 )
#     Info( InfoObsolete, 1,
#         "the operation `ShrinkCoeffs' is not supported anymore,\n",
#         "#I  use `ShrinkRowVector' instead" );
#     return SHRINKCOEFFS_GF2VEC(l1);
# end ); 


#############################################################################
##
#F  TeX( <obj1>, ... )  . . . . . . . . . . . . . . . . . . . . . TeX objects
##
##  <ManSection>
##  <Func Name="TeX" Arg='obj1, ...'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
BIND_GLOBAL( "TeX", function( arg )
    local   str,  res,  obj;

    str := "";
    for obj  in arg  do
        res := TeXObj(obj);
        APPEND_LIST_INTR( str, res );
        APPEND_LIST_INTR( str, "%\n" );
    od;
    CONV_STRING(str);
    return str;
end );


#############################################################################
##
#F  LaTeX( <obj1>, ... )  . . . . . . . . . . . . . . . . . . . LaTeX objects
##
##  <#GAPDoc Label="LaTeX">
##
##  <ManSection>
##  <Func Name="LaTeX" Arg='obj1, obj2, ...'/>
##  
##  <Description>
##  Returns a LaTeX string describing the objects <A>obj1</A>, <A>obj2</A>, ... .
##  This string can for example be pasted to a &LaTeX; file, or one can use
##  it in composing a temporary &LaTeX; file,
##  which is intended for being &LaTeX;'ed afterwards from within &GAP;.
##  <P/>
##  <Example><![CDATA[
##  gap> LaTeX(355/113);
##  "\\frac{355}{113}%\n"
##  gap> LaTeX(Z(9)^5);
##  "Z(3^{2})^{5}%\n"
##  gap> Print(LaTeX([[1,2,3],[4,5,6],[7,8,9]]));
##  \left(\begin{array}{rrr}%
##  1&2&3\\%
##  4&5&6\\%
##  7&8&9\\%
##  \end{array}\right)%
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
BIND_GLOBAL( "LaTeX", function( arg )
    local   str,  res,  obj;

    str := "";
    for obj  in arg  do
        res := LaTeXObj(obj);
        APPEND_LIST_INTR( str, res );
        APPEND_LIST_INTR( str, "%\n" );
    od;
    CONV_STRING(str);
    return str;
end );


#############################################################################
##
#M  LaTeXObj( <ffe> ) . . . . . .  convert a finite field element into a string
##
InstallMethod(LaTeXObj,"for an internal FFE",true,[IsFFE and IsInternalRep],0,
function ( ffe )
local   str, log,deg,char;
  char:=Characteristic(ffe);
  if   IsZero( ffe )  then
    str := Concatenation("0*Z(",String(char),")");
  else
    str := Concatenation("Z(",String(char));
    deg:=DegreeFFE(ffe);
    if deg <> 1  then
      str := Concatenation(str,"^{",String(deg),"}");
    fi;
    str := Concatenation(str,")");
    log:= LogFFE(ffe,Z( char ^ deg ));
    if log <> 1 then
      str := Concatenation(str,"^{",String(log),"}");
    fi;
  fi;
  ConvertToStringRep( str );
  return str;
end );


#############################################################################
##
#M  LaTeXObj( <elm> ) . . . . . . . for packed word in default representation
##
InstallMethod( LaTeXObj,"for an element of an f.p. group (default repres.)",
  true, [ IsElementOfFpGroup and IsPackedElementDefaultRep ],0,
function( obj )
  return LaTeXObj( obj![1] );
end );


#############################################################################
##
#M  LaTeXObj
##
InstallMethod(LaTeXObj,"matrix",
  [IsMatrix],
function(m)
local i,j,l,n,s;
  l:=Length(m);
  n:=Length(m[1]);
  s:="\\left(\\begin{array}{";
  for i in [1..n] do
    Add(s,'r');
  od;
  Append(s,"}%\n");
  for i in [1..l] do
    for j in [1..n] do
      Append(s,LaTeXObj(m[i][j]));
      if j<n then
        Add(s,'&');
      fi;
    od;
    Append(s,"\\\\%\n");
  od;
  Append(s,"\\end{array}\\right)");
  return s;
end);


InstallMethod( LaTeXObj,"polynomial",true, [ IsPolynomial ],0,function(pol)
local fam, ext, str, zero, one, mone, le, c, s, b, ind, i, j;

  fam:=FamilyObj(pol);
  ext:=ExtRepPolynomialRatFun(pol);
  str:="";
  zero := fam!.zeroCoefficient;
  one := fam!.oneCoefficient;
  mone := -one;
  le:=Length(ext);

  if le=0 then
    return String(zero);
  fi;
  for i  in [ le-1,le-3..1] do
    if i<le-1 then
      # this is the second summand, so arithmetic will occur
    fi;

    if ext[i+1]=one then
      if i<le-1 then
	Add(str,'+');
      fi;
      c:=false;
    elif ext[i+1]=mone then
      Add(str,'-');
      c:=false;
    else
      if IsRat(ext[i+1]) and ext[i+1]<0 then
	s:=Concatenation("-",LaTeXObj(-ext[i+1]));
      else
	s:=LaTeXObj(ext[i+1]);
      fi;

      b:=false;
      if '+' in s and s[1]<>'(' then
	s:=Concatenation("(",s,")");
      fi;

      if i<le-1 and s[1]<>'-' then
	Add(str,'+');
      fi;
      Append(str,s);
      c:=true;
    fi;

    if Length(ext[i])<2 then
      # trivial monomial. Do we have to add a '1'?
      if c=false then
        Append(str,String(one));
      fi;
    else
      #if c then
#	Add(str,'*');
#      fi;
      for j  in [ 1, 3 .. Length(ext[i])-1 ]  do
#	if 1 < j  then
#	  Add(str,'*');
#	fi;
	ind:=ext[i][j];
	if HasIndeterminateName(fam,ind) then
	  Append(str,IndeterminateName(fam,ind));
	else
	  Append(str,"x_{");
	  Append(str,String(ind)); 
	  Add(str,'}');
	fi;
	if 1 <> ext[i][j+1]  then
	  Append(str,"^{");
	  Append(str,String(ext[i][j+1]));
	  Add(str,'}');
	fi;
      od;
    fi;
  od;

  return str;
end);


#############################################################################
##
#M  LaTeXObj
##
InstallMethod(LaTeXObj,"rational",
  [IsRat],
function(r)
local n,d;
  if IsInt(r) then
    return String(r);
  fi;
  n:=NumeratorRat(r);
  d:=DenominatorRat(r);
  if AbsInt(n)<5 and AbsInt(d)<5 then
    return Concatenation(String(n),"/",String(d));
  else
    return Concatenation("\\frac{",String(n),"}{",String(d),"}");
  fi;
end);


InstallMethod(LaTeXObj,"assoc word in letter rep",true,
  [IsAssocWord and IsLetterAssocWordRep],0,
function(elm)
local names,len,i,g,h,e,a,s;

  names:= ShallowCopy(FamilyObj( elm )!.names);
  for i in [1..Length(names)] do
    s:=names[i];
    e:=Length(s);
    while e>0 and s[e] in CHARS_DIGITS do
      e:=e-1;
    od;
    if e<Length(s) then
      if e=Length(s)-1 then
	s:=Concatenation(s{[1..e]},"_",s{[e+1..Length(s)]});
      else
	s:=Concatenation(s{[1..e]},"_{",s{[e+1..Length(s)]},"}");
      fi;
      names[i]:=s;
    fi;
  od;

  s:="";
  elm:=LetterRepAssocWord(elm);
  len:= Length( elm );
  i:= 2;
  if len = 0 then
    return( "id" );
  else
    g:=AbsInt(elm[1]);
    e:=SignInt(elm[1]);
    while i <= len do
      h:=AbsInt(elm[i]);
      if h=g then
        e:=e+SignInt(elm[i]);
      else
	Append(s, names[g] );
	if e<>1 then
	  Append(s,"^{");
	  Append(s,String(e));
	  Append(s,"}");
	fi;
        g:=h;
	e:=SignInt(elm[i]);
      fi;
      i:=i+1;
    od;
    Append(s, names[g] );
    if e<>1 then
      Append(s,"^{");
      Append(s,String(e));
      Append(s,"}");
    fi;
  fi;
  return s;
end);


#############################################################################
##
#F  CharacterTableDisplayPrintLegendDefault( <data> )
##
##  for backwards compatibility only ...
##
# BindGlobal( "CharacterTableDisplayPrintLegendDefault",
#     function( data )
#     Info( InfoObsolete, 1,
#         "the function `CharacterTableDisplayPrintLegendDefault' is no longer\n",
#         "#I  supported and may be removed from future versions of GAP" );
#     Print( CharacterTableDisplayLegendDefault( data ) );
#     end );


#############################################################################
##
#F  ConnectGroupAndCharacterTable( <G>, <tbl>[, <arec>] )
#F  ConnectGroupAndCharacterTable( <G>, <tbl>, <bijection> )
##
# InstallGlobalFunction( ConnectGroupAndCharacterTable, function( arg )
#     local G, tbl, arec, ccl, compat;
#     
#     Info( InfoObsolete, 1,
#         "the function `ConnectGroupAndCharacterTable' is not supported anymore,\n",
#         "#I  use `CharacterTableWithStoredGroup' instead" );
# 
#     # Get and check the arguments.
#     if   Length( arg ) = 2 and IsGroup( arg[1] )
#                            and IsOrdinaryTable( arg[2] ) then
#       arec:= rec();
#     elif Length( arg ) = 3 and IsGroup( arg[1] )
#                            and IsOrdinaryTable( arg[2] )
#                            and ( IsRecord( arg[3] ) or IsList(arg[3]) ) then
#       arec:= arg[3];
#     else
#       Error( "usage: ConnectGroupAndCharacterTable(<G>,<tbl>[,<arec>])" );
#     fi;
# 
#     G   := arg[1];
#     tbl := arg[2];
# 
#     if HasUnderlyingGroup( tbl ) then
#       Error( "<tbl> has already underlying group" );
#     elif HasOrdinaryCharacterTable( G ) then
#       Error( "<G> has already a character table" );
#     fi;
# 
#     ccl:= ConjugacyClasses( G );
# #T How to exploit the known character table
# #T if the conjugacy classes of <G> are not yet computed?
# 
#     if IsList( arec ) then
#       compat:= arec;
#     else
#       compat:= CompatibleConjugacyClasses( G, ccl, tbl, arec );
#     fi;
# 
#     if IsList( compat ) then
# 
#       # Permute the classes if necessary.
#       if compat <> [ 1 .. Length( compat ) ] then
#         ccl:= ccl{ compat };
#       fi;
# 
#       # The identification is unique, store attribute values.
#       SetUnderlyingGroup( tbl, G );
#       SetOrdinaryCharacterTable( G, tbl );
#       SetConjugacyClasses( tbl, ccl );
#       SetIdentificationOfConjugacyClasses( tbl, compat );
# 
#       return true;
# 
#     else
#       return false;
#     fi;
# 
#     end );


#############################################################################
##
#F  ViewLength( <len> )
##
##  <Ref Func="View"/> will usually display objects in short form if they 
##  would need more than <A>len</A> lines. The default is 3.
##  This function was moved to obsoletes before GAP 4.7 beta release,
##  since there is now a user preference mechanism to specify it:
##  GAPInfo.ViewLength:= UserPreference( "ViewLength" ) is the maximal
##  number of lines that are reasonably printed in `ViewObj' methods.
##
# BIND_GLOBAL( "ViewLength", function(arg)
#   Info (InfoObsolete, 1, "The function `ViewLength' is no longer supported. ",
#                         "Please use user preference `ViewLength' instead.");
#   if LEN_LIST( arg ) = 0 then
#     return GAPInfo.ViewLength;
#   else
#     GAPInfo.ViewLength:= arg[1];
#   fi;
# end );
# 


#############################################################################
##
#M  PositionFirstComponent( <list>, <obj>  ) . . . . . . various
##
##  kernel method will TRY_NEXT if any of the sublists are not
##  plain lists.
##
##  Note that we use PositionSorted rather than Position semantics
##

## This is deprecate because the following three methods each
## compute differen things:
## The first and third both use binary search, but one aborts
## early on the first entry with first component equal to obj,
## while the other aborts late, thus always finding the first
## matching entry. Only the latter behavior matches PositionSorted
## semantics.
##
## The second method on the other hand performs a linear search
## from the start. This means that it also does not conform to
## PositioSorted semantics (not even if the input list happens
## to be sorted). For example, if an entry is not
## found, it returns Length(list)+1, not the position it should
## be inserted to ensure the list stays sorted.
##
## Fixing this could have broken private third-party code.
## Since this operations is rather peculiar and can be replaced
## by PositionSorted(list, [obj]), it was deemed
## simples to declare it obsolete.

# InstallMethod( PositionFirstComponent,"for dense plain list", true,
#     [ IsDenseList and IsSortedList and IsPlistRep, IsObject ], 0,
# function ( list, obj )
#     Info( InfoObsolete, 1,
#         "the operation `PositionFirstComponent' is not supported anymore" );
#     return POSITION_FIRST_COMPONENT_SORTED(list, obj);
# end);
# 
# 
# InstallMethod( PositionFirstComponent,"for dense list", true,
#     [ IsDenseList, IsObject ], 0,
# function ( list, obj )
# local i;
#     Info( InfoObsolete, 1,
#         "the operation `PositionFirstComponent' is not supported anymore" );
#   i:=1;
#   while i<=Length(list) do
#     if list[i][1]=obj then
#       return i;
#     fi;
#     i:=i+1;
#   od;
#   return i;
# end);
# 
# InstallMethod( PositionFirstComponent,"for sorted list", true,
#     [ IsSSortedList, IsObject ], 0,
# function ( list, obj )
# local lo,up,s;
#     Info( InfoObsolete, 1,
#         "the operation `PositionFirstComponent' is not supported anymore" );
#   # simple binary search. The entry is in the range [lo..up]
#   lo:=1;
#   up:=Length(list);
#   while lo<up do
#       s := QuoInt(up+lo,2);
#       #s:=Int((up+lo)/2);# middle entry
#     if list[s][1]<obj then
#       lo:=s+1; # it's not in [lo..s], so take the upper part.
#     else
#       up:=s; # So obj<=list[s][1], so the new range is [1..s].
#     fi;
#   od;
#   # now lo=up
#   return lo;
# #  if list[lo][1]=obj then
# #    return lo;
# #  else
# #    return fail;
# #  fi;
# end );

#############################################################################
##
#F  SetUserPreferences
##
##  Set the defaults of `GAPInfo.UserPreferences'.
##
##  We locate the first file `gap.ini' in GAP root directories,
##  and read it if available.
##  This must be done before `GAPInfo.UserPreferences' is used.
##  Some of the preferences require an initialization,
##  but this cannot be called before the complete library has been loaded.
##
BindGlobal( "SetUserPreferences", function( arg )
    local name, record;

    Info( InfoObsolete, 1, "");
    Info( InfoObsolete, 1, Concatenation( [
          "The call to 'SetUserPreferences' (probably in a 'gap.ini' file)\n",
          "#I  should be replaced by individual 'SetUserPreference' calls,\n",
          "#I  which are package specific.\n",
          "#I  Try 'WriteGapIniFile()'." ] ) );

    # Set the new values.
    if Length( arg ) = 1 then
      record:= arg[1];
      if not IsBound(GAPInfo.UserPreferences.gapdoc) then
        GAPInfo.UserPreferences.gapdoc := rec();
      fi;
      if not IsBound(GAPInfo.UserPreferences.gap) then
        GAPInfo.UserPreferences.gap := rec();
      fi;
      for name in RecNames( record ) do
        if name in [ "HTMLStyle", "TextTheme", "UseMathJax" ] then
          GAPInfo.UserPreferences.gapdoc.( name ):= record.( name );
        else
          GAPInfo.UserPreferences.gap.( name ):= record.( name );
        fi;
      od;
    fi;
    end );

#############################################################################
##
#E