1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%A fields.msk GAP documentation Thomas Breuer
%%
%A @(#)$Id: fields.msk,v 1.17.2.2 2006/09/16 19:02:49 jjm Exp $
%%
%Y (C) 1998 School Math and Comp. Sci., University of St. Andrews, Scotland
%Y Copyright (C) 2002 The GAP Group
%%
\Chapter{Fields and Division Rings}
\index{fields}
\index{division rings}
\FileHeader{field}[1]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Generating Fields}
\Declaration{IsDivisionRing}
\Declaration{IsField}
\beginexample
gap> IsField( GaloisField(16) ); # the field with 16 elements
true
gap> IsField( Rationals ); # the field of rationals
true
gap> q:= QuaternionAlgebra( Rationals );; # a noncommutative division ring
gap> IsField( q ); IsDivisionRing( q );
false
true
gap> mat:= [ [ 1 ] ];; a:= Algebra( Rationals, [ mat ] );;
gap> IsDivisionRing( a ); # an algebra not constructed as a division ring
false
\endexample
\Declaration{Field}
\Declaration{DefaultField}
\beginexample
gap> Field( Z(4) ); Field( [ Z(4), Z(8) ] ); # finite fields
GF(2^2)
GF(2^6)
gap> Field( E(9) ); Field( CF(4), [ E(9) ] ); # abelian number fields
CF(9)
AsField( GaussianRationals, CF(36) )
gap> f1:= Field( EB(5) ); f2:= DefaultField( EB(5) );
NF(5,[ 1, 4 ])
CF(5)
gap> f1 = f2; IsSubset( f2, f1 );
false
true
\endexample
\Declaration{DefaultFieldByGenerators}
\Declaration{GeneratorsOfDivisionRing}
\Declaration{GeneratorsOfField}
\Declaration{DivisionRingByGenerators}
\Declaration{AsDivisionRing}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Subfields of Fields}
\Declaration{Subfield}
\Declaration{FieldOverItselfByGenerators}
\Declaration{PrimitiveElement}
\Declaration{PrimeField}
\Declaration{IsPrimeField}
\Declaration{DegreeOverPrimeField}
\Declaration{DefiningPolynomial}
\Declaration{RootOfDefiningPolynomial}
\Declaration{FieldExtension}
\Declaration{Subfields}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Galois Action}
\FileHeader{field}[2]
\indextt{IsFieldControlledByGaloisGroup}
\Declaration{GaloisGroup}[field]!{of field}
\beginexample
gap> g:= GaloisGroup( AsField( GF(2^2), GF(2^12) ) );;
gap> Size( g ); IsCyclic( g );
6
true
gap> h:= GaloisGroup( CF(60) );;
gap> Size( h ); IsAbelian( h );
16
true
\endexample
\>MinimalPolynomial( <F>, <z>[, <ind>] )!{over a field} O
returns the minimal polynomial of <z> over the field <F>.
This is a generator of the ideal in $<F>[x]$ of all polynomials
which vanish on <z>.
(This definition is consistent with the general definition of
`MinimalPolynomial' for rings, see~"MinimalPolynomial".)
\beginexample
gap> MinimalPolynomial( Rationals, E(8) );
x_1^4+1
gap> MinimalPolynomial( CF(4), E(8) );
x_1^2+(-E(4))
gap> MinimalPolynomial( CF(8), E(8) );
x_1+(-E(8))
\endexample
\Declaration{TracePolynomial}
\index{characteristic polynomial!for field elements}
\beginexample
gap> TracePolynomial( CF(8), Rationals, E(8) );
x_1^4+1
gap> TracePolynomial( CF(16), Rationals, E(8) );
x_1^8+2*x_1^4+1
\endexample
\Declaration{Norm}
\Declaration{Trace}!{for field elements}
\Declaration{Conjugates}
\beginexample
gap> Norm( E(8) ); Norm( CF(8), E(8) );
1
1
gap> Norm( CF(8), CF(4), E(8) );
-E(4)
gap> Norm( AsField( CF(4), CF(8) ), E(8) );
-E(4)
gap> Trace( E(8) ); Trace( CF(8), CF(8), E(8) );
0
E(8)
gap> Conjugates( CF(8), E(8) );
[ E(8), E(8)^3, -E(8), -E(8)^3 ]
gap> Conjugates( CF(8), CF(4), E(8) );
[ E(8), -E(8) ]
gap> Conjugates( CF(16), E(8) );
[ E(8), E(8)^3, -E(8), -E(8)^3, E(8), E(8)^3, -E(8), -E(8)^3 ]
\endexample
\FileHeader{field}[3]
\Declaration{NormalBase}
\beginexample
gap> NormalBase( CF(5) );
[ -E(5), -E(5)^2, -E(5)^3, -E(5)^4 ]
gap> NormalBase( CF(4) );
[ 1/2-1/2*E(4), 1/2+1/2*E(4) ]
gap> NormalBase( GF(3^6) );
[ Z(3^6)^2, Z(3^6)^6, Z(3^6)^18, Z(3^6)^54, Z(3^6)^162, Z(3^6)^486 ]
gap> NormalBase( GF( GF(8), 2 ) );
[ Z(2^6), Z(2^6)^8 ]
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\Section{Field Homomorphisms}
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%E
|