File: fields.msk

package info (click to toggle)
gap 4r4p10-2
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 29,224 kB
  • ctags: 7,084
  • sloc: ansic: 98,591; sh: 3,284; perl: 2,263; makefile: 467; awk: 6
file content (171 lines) | stat: -rw-r--r-- 4,254 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%A  fields.msk                   GAP documentation              Thomas Breuer
%%
%A  @(#)$Id: fields.msk,v 1.17.2.2 2006/09/16 19:02:49 jjm Exp $
%%
%Y  (C) 1998 School Math and Comp. Sci., University of St.  Andrews, Scotland
%Y  Copyright (C) 2002 The GAP Group
%%
\Chapter{Fields and Division Rings}

\index{fields}
\index{division rings}

\FileHeader{field}[1]


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Generating Fields}

\Declaration{IsDivisionRing}
\Declaration{IsField}

\beginexample
gap> IsField( GaloisField(16) );           # the field with 16 elements
true
gap> IsField( Rationals );                 # the field of rationals
true
gap> q:= QuaternionAlgebra( Rationals );;  # a noncommutative division ring
gap> IsField( q );  IsDivisionRing( q );
false
true
gap> mat:= [ [ 1 ] ];;  a:= Algebra( Rationals, [ mat ] );;
gap> IsDivisionRing( a );   # an algebra not constructed as a division ring
false
\endexample

\Declaration{Field}
\Declaration{DefaultField}

\beginexample
gap> Field( Z(4) );  Field( [ Z(4), Z(8) ] );  # finite fields
GF(2^2)
GF(2^6)
gap> Field( E(9) );  Field( CF(4), [ E(9) ] ); # abelian number fields
CF(9)
AsField( GaussianRationals, CF(36) )
gap> f1:= Field( EB(5) );  f2:= DefaultField( EB(5) );
NF(5,[ 1, 4 ])
CF(5)
gap> f1 = f2;  IsSubset( f2, f1 );
false
true
\endexample

\Declaration{DefaultFieldByGenerators}
\Declaration{GeneratorsOfDivisionRing}
\Declaration{GeneratorsOfField}
\Declaration{DivisionRingByGenerators}
\Declaration{AsDivisionRing}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Subfields of Fields}

\Declaration{Subfield}
\Declaration{FieldOverItselfByGenerators}
\Declaration{PrimitiveElement}
\Declaration{PrimeField}
\Declaration{IsPrimeField}
\Declaration{DegreeOverPrimeField}
\Declaration{DefiningPolynomial}
\Declaration{RootOfDefiningPolynomial}
\Declaration{FieldExtension}
\Declaration{Subfields}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Galois Action}

\FileHeader{field}[2]

\indextt{IsFieldControlledByGaloisGroup}

\Declaration{GaloisGroup}[field]!{of field}

\beginexample
gap> g:= GaloisGroup( AsField( GF(2^2), GF(2^12) ) );;
gap> Size( g );  IsCyclic( g );
6
true
gap> h:= GaloisGroup( CF(60) );;
gap> Size( h );  IsAbelian( h );
16
true
\endexample

\>MinimalPolynomial( <F>, <z>[, <ind>] )!{over a field} O

returns the minimal polynomial of <z> over the field <F>.
This is a generator of the ideal in $<F>[x]$ of all polynomials
which vanish on <z>.
(This definition is consistent with the general definition of
`MinimalPolynomial' for rings, see~"MinimalPolynomial".)

\beginexample
gap> MinimalPolynomial( Rationals, E(8) );
x_1^4+1
gap> MinimalPolynomial( CF(4), E(8) );
x_1^2+(-E(4))
gap> MinimalPolynomial( CF(8), E(8) );
x_1+(-E(8))
\endexample

\Declaration{TracePolynomial}

\index{characteristic polynomial!for field elements}

\beginexample
gap> TracePolynomial( CF(8), Rationals, E(8) );
x_1^4+1
gap> TracePolynomial( CF(16), Rationals, E(8) );
x_1^8+2*x_1^4+1
\endexample

\Declaration{Norm}
\Declaration{Trace}!{for field elements}
\Declaration{Conjugates}

\beginexample
gap> Norm( E(8) );  Norm( CF(8), E(8) );
1
1
gap> Norm( CF(8), CF(4), E(8) );
-E(4)
gap> Norm( AsField( CF(4), CF(8) ), E(8) );
-E(4)
gap> Trace( E(8) );  Trace( CF(8), CF(8), E(8) );
0
E(8)
gap> Conjugates( CF(8), E(8) );
[ E(8), E(8)^3, -E(8), -E(8)^3 ]
gap> Conjugates( CF(8), CF(4), E(8) );
[ E(8), -E(8) ]
gap> Conjugates( CF(16), E(8) );
[ E(8), E(8)^3, -E(8), -E(8)^3, E(8), E(8)^3, -E(8), -E(8)^3 ]
\endexample

\FileHeader{field}[3]

\Declaration{NormalBase}

\beginexample
gap> NormalBase( CF(5) );
[ -E(5), -E(5)^2, -E(5)^3, -E(5)^4 ]
gap> NormalBase( CF(4) );
[ 1/2-1/2*E(4), 1/2+1/2*E(4) ]
gap> NormalBase( GF(3^6) );
[ Z(3^6)^2, Z(3^6)^6, Z(3^6)^18, Z(3^6)^54, Z(3^6)^162, Z(3^6)^486 ]
gap> NormalBase( GF( GF(8), 2 ) );
[ Z(2^6), Z(2^6)^8 ]
\endexample


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\Section{Field Homomorphisms}
%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%E