1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%A groups.msk GAP documentation Alexander Hulpke
%%
%A @(#)$Id: groups.msk,v 1.99.2.15 2007/09/14 08:18:31 gapchron Exp $
%%
%Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
%Y Copyright (C) 2002 The GAP Group
%%
\Chapter{Groups}
This chapter explains how to create groups and defines operations for
groups, that is operations whose definition does not depend on the
representation used.
However methods for these operations in most cases will make use of the
representation.
If not otherwise specified, in all examples in this chapter the group `g'
will be the symmetric group $S_4$ acting on the letters $\{1,\ldots,4\}$.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Group Elements}
Groups in {\GAP} are written multiplicatively.
The elements from which a group can be generated must permit
multiplication and multiplicative inversion
(see~"Useful Categories of Elements").
\beginexample
gap> a:=(1,2,3);;b:=(2,3,4);;
gap> One(a);
()
gap> Inverse(b);
(2,4,3)
gap> a*b;
(1,3)(2,4)
gap> Order(a*b);
2
gap> Order( [ [ 1, 1 ], [ 0, 1 ] ] );
infinity
\endexample
The next example may run into an infinite loop
because the given matrix in fact has infinite order.
%notest
\beginexample
gap> Order( [ [ 1, 1 ], [ 0, 1 ] ] * Indeterminate( Rationals ) );
#I Order: warning, order of <mat> might be infinite
\endexample
\index{order! of a group}
Since groups are domains, the recommended command to compute the order
of a group is `Size' (see~"Size").
For convenience, group orders can also be computed with `Order'.
The operation `Comm' (see~"Comm") can be used to compute the commutator of
two elements, the operation `LeftQuotient' (see~"LeftQuotient") computes the
product $x^{-1}y$.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Creating Groups}
When groups are created from generators,
this means that the generators must be elements that can be multiplied
and inverted (see also~"Constructing Domains").
For creating a free group on a set of symbols, see~"FreeGroup".
\Declaration{Group}
\beginexample
gap> g:=Group((1,2,3,4),(1,2));
Group([ (1,2,3,4), (1,2) ])
\endexample
\Declaration{GroupWithGenerators}
\Declaration{GeneratorsOfGroup}
\beginexample
gap> g:=GroupWithGenerators([(1,2,3,4),(1,2)]);
Group([ (1,2,3,4), (1,2) ])
gap> GeneratorsOfGroup(g);
[ (1,2,3,4), (1,2) ]
\endexample
While in this example {\GAP} displays the group via the generating set
stored in the attribute `GeneratorsOfGroup', the methods installed for
`View' (see~"View") will in general display only some information about the
group which may even be just the fact that it is a group.
\Declaration{AsGroup}
\beginexample
gap> AsGroup([(1,2)]);
fail
gap> AsGroup([(),(1,2)]);
Group([ (1,2) ])
\endexample
\Declaration{ConjugateGroup}
\beginexample
gap> ConjugateGroup(g,(1,5));
Group([ (2,3,4,5), (2,5) ])
\endexample
\Declaration{IsGroup}
\beginexample
gap> IsGroup(g);
true
\endexample
\Declaration{InfoGroup}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Subgroups}
For the general concept of parents and subdomains,
see~"Parents" and~"Constructing Subdomains".
More functions that construct certain subgroups can be found
in the sections~"Normal Structure", "Specific and Parametrized Subgroups",
"Sylow Subgroups and Hall Subgroups",
and~"Subgroups characterized by prime powers".
\Declaration{Subgroup}
\beginexample
gap> u:=Subgroup(g,[(1,2,3),(1,2)]);
Group([ (1,2,3), (1,2) ])
\endexample
\Declaration{Index}
\beginexample
gap> Index(g,u);
4
\endexample
\Declaration{IndexInWholeGroup}
\Declaration{AsSubgroup}
\beginexample
gap> v:=AsSubgroup(g,Group((1,2,3),(1,4)));
Group([ (1,2,3), (1,4) ])
gap> Parent(v);
Group([ (1,2,3,4), (1,2) ])
\endexample
\Declaration{IsSubgroup}
\beginexample
gap> IsSubgroup(g,u);
true
gap> v:=Group((1,2,3),(1,2));
Group([ (1,2,3), (1,2) ])
gap> u=v;
true
gap> IsSubgroup(g,v);
true
\endexample
\Declaration{IsNormal}
\beginexample
gap> IsNormal(g,u);
false
\endexample
\Declaration{IsCharacteristicSubgroup}
\beginexample
gap> IsCharacteristicSubgroup(g,u);
false
\endexample
\Declaration{ConjugateSubgroup}
\Declaration{ConjugateSubgroups}
\Declaration{IsSubnormal}
\beginexample
gap> IsSubnormal(g,Group((1,2,3)));
false
gap> IsSubnormal(g,Group((1,2)(3,4)));
true
\endexample
\FileHeader{grp}[2]
\Declaration{SubgroupByProperty}
\Declaration{SubgroupShell}
\beginexample
gap> u:=SubgroupByProperty(g,i->3^i=3);
<subgrp of Group([ (1,2,3,4), (1,2) ]) by property>
gap> (1,3) in u; (1,4) in u; (1,5) in u;
false
true
false
gap> GeneratorsOfGroup(u);
[ (1,2), (1,4,2) ]
gap> u:=SubgroupShell(g);
<group>
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Closures of (Sub)groups}
\Declaration{ClosureGroup}
\beginexample
gap> g:=SmallGroup(24,12);;u:=Subgroup(g,[g.3,g.4]);
Group([ f3, f4 ])
gap> ClosureGroup(u,g.2);
Group([ f2, f3, f4 ])
gap> ClosureGroup(u,[g.1,g.2]);
Group([ f1, f2, f3, f4 ])
gap> ClosureGroup(u,Group(g.2*g.1));
Group([ f1*f2^2, f3, f4 ])
\endexample
\Declaration{ClosureGroupAddElm}
\Declaration{ClosureGroupDefault}
\Declaration{ClosureSubgroup}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Expressing Group Elements as Words in Generators}
\index{factorization}
\index{words!in generators}
Using homomorphisms (see chapter~"Group Homomorphisms") is is possible to
express group elements as words in given generators: Create a free group
(see~"FreeGroup") on the correct number of generators and create a
homomorphism from this free group onto the group <G> in whose generators you
want to factorize. Then the preimage of an element of <G> is a word in the
free generators, that will map on this element again.
\Declaration{EpimorphismFromFreeGroup}
The following example shows how to decompose elements of $S_4$ in the
generators `(1,2,3,4)' and `(1,2)':
\beginexample
gap> g:=Group((1,2,3,4),(1,2));
Group([ (1,2,3,4), (1,2) ])
gap> hom:=EpimorphismFromFreeGroup(g:names:=["x","y"]);
[ x, y ] -> [ (1,2,3,4), (1,2) ]
gap> PreImagesRepresentative(hom,(1,4));
y^-1*x^-2*y^-1*x^-1*y^-1*x
\endexample
The following example stems from a real request to the {\GAP} Forum. In
September 2000 a {\GAP} user working with puzzles wanted to express the
permutation `(1,2)' as a word as short as possible in particular generators
of the symmetric group $S_{16}$.
\beginexample
gap> perms := [ (1,2,3,7,11,10,9,5), (2,3,4,8,12,11,10,6),
> (5,6,7,11,15,14,13,9), (6,7,8,12,16,15,14,10) ];;
gap> puzzle := Group( perms );;Size( puzzle );
20922789888000
gap> hom:=EpimorphismFromFreeGroup(puzzle:names:=["a", "b", "c", "d"]);;
gap> word := PreImagesRepresentative( hom, (1,2) );
a^-1*c*b*c^-1*a*b^-1*a^-2*c^-1*a*b^-1*c*b
gap> Length( word );
13
\endexample
% randomization effect is now gone.
\Declaration{Factorization}
\beginexample
gap> G:=SymmetricGroup( 6 );;
gap> r:=(3,4);; s:=(1,2,3,4,5,6);;
gap> # create a subgroup to force the system to use the generators r and s.
gap> H:= Subgroup(G, [ r, s ] );
Group([ (3,4), (1,2,3,4,5,6) ])
gap> Factorization( H, (1,2,3) );
x2*x1*x2*x1*x2^-2
gap> s*r*s*r*s^-2;
(1,2,3)
gap> MappingGeneratorsImages(EpimorphismFromFreeGroup(H));
[ [ x1, x2 ], [ (3,4), (1,2,3,4,5,6) ] ]
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Structure Descriptions}
\Declaration{StructureDescription}
\beginexample
gap> l := AllSmallGroups(12);;
gap> List(l,StructureDescription);; l;
[ C3 : C4, C12, A4, D12, C6 x C2 ]
gap> List(AllSmallGroups(40),G->StructureDescription(G:short));
[ "5:8", "40", "5:8", "5:Q8", "4xD10", "D40", "2x(5:4)", "(10x2):2", "20x2",
"5xD8", "5xQ8", "2x(5:4)", "2^2xD10", "10x2^2" ]
gap> List(AllTransitiveGroups(DegreeAction,6),G->StructureDescription(G:short));
[ "6", "S3", "D12", "A4", "3xS3", "2xA4", "S4", "S4", "S3xS3", "(3^2):4",
"2xS4", "A5", "(S3xS3):2", "S5", "A6", "S6" ]
gap> StructureDescription(PSL(4,2));
"A8"
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Cosets}
\index{right cosets}
\index{coset}
\Declaration{RightCoset}
\beginexample
gap> u:=Group((1,2,3), (1,2));;
gap> c:=RightCoset(u,(2,3,4));
RightCoset(Group( [ (1,2,3), (1,2) ] ),(2,3,4))
gap> ActingDomain(c);
Group([ (1,2,3), (1,2) ])
gap> Representative(c);
(2,3,4)
gap> Size(c);
6
gap> AsList(c);
[ (2,3,4), (1,4,2), (1,3)(2,4), (2,4), (1,4,2,3), (1,3,4,2) ]
\endexample
\Declaration{RightCosets}
\beginexample
gap> RightCosets(g,u);
[ RightCoset(Group( [ (1,2,3), (1,2) ] ),()),
RightCoset(Group( [ (1,2,3), (1,2) ] ),(1,3)(2,4)),
RightCoset(Group( [ (1,2,3), (1,2) ] ),(1,4)(2,3)),
RightCoset(Group( [ (1,2,3), (1,2) ] ),(1,2)(3,4)) ]
\endexample
\Declaration{CanonicalRightCosetElement}
\beginexample
gap> CanonicalRightCosetElement(u,(2,4,3));
(3,4)
\endexample
\Declaration{IsRightCoset}
\index{left cosets}
{\GAP} does not provide left cosets as a separate data type, but as the left
coset $gU$ consists of exactly the inverses of the elements of the right
coset $Ug^{-1}$ calculations with left cosets can be emulated using right
cosets by inverting the representatives.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Transversals}
\Declaration{RightTransversal}
\beginexample
gap> g:=Group((1,2,3,4),(1,2));;
gap> u:=Subgroup(g,[(1,2,3),(1,2)]);;
gap> rt:=RightTransversal(g,u);
RightTransversal(Group([ (1,2,3,4), (1,2) ]),Group([ (1,2,3), (1,2) ]))
gap> Length(rt);
4
gap> Position(rt,(1,2,3));
fail
\endexample
Note that the elements of a right transversal are not necessarily
``canonical'' in the sense of `CanonicalRightCosetElement'
(see~"CanonicalRightCosetElement"), but we may compute a list of
canonical coset representatives by calling that function.
\beginexample
gap> List(RightTransversal(g,u),i->CanonicalRightCosetElement(u,i));
[ (), (2,3,4), (1,2,3,4), (3,4) ]
\endexample
The operation `PositionCanonical' is described in
section~"PositionCanonical".
\beginexample
gap> PositionCanonical(rt,(1,2,3));
1
gap> rt[1];
()
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Double Cosets}
\Declaration{DoubleCoset}
\Declaration{RepresentativesContainedRightCosets}
\beginexample
gap> u:=Subgroup(g,[(1,2,3),(1,2)]);;v:=Subgroup(g,[(3,4)]);;
gap> c:=DoubleCoset(u,(2,4),v);
DoubleCoset(Group( [ (1,2,3), (1,2) ] ),(2,4),Group( [ (3,4) ] ))
gap> (1,2,3) in c;
false
gap> (2,3,4) in c;
true
gap> LeftActingGroup(c);
Group([ (1,2,3), (1,2) ])
gap> RightActingGroup(c);
Group([ (3,4) ])
gap> RepresentativesContainedRightCosets(c);
[ (2,3,4) ]
\endexample
\Declaration{DoubleCosets}!{operation}
\beginexample
gap> dc:=DoubleCosets(g,u,v);
[ DoubleCoset(Group( [ (1,2,3), (1,2) ] ),(),Group( [ (3,4) ] )),
DoubleCoset(Group( [ (1,2,3), (1,2) ] ),(1,3)(2,4),Group( [ (3,4) ] )),
DoubleCoset(Group( [ (1,2,3), (1,2) ] ),(1,4)(2,3),Group( [ (3,4) ] )) ]
gap> List(dc,Representative);
[ (), (1,3)(2,4), (1,4)(2,3) ]
\endexample
\Declaration{IsDoubleCoset}
\Declaration{DoubleCosetRepsAndSizes}
\beginexample
gap> dc:=DoubleCosetRepsAndSizes(g,u,v);
[ [ (), 12 ], [ (1,3)(2,4), 6 ], [ (1,4)(2,3), 6 ] ]
\endexample
\Declaration{InfoCoset}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Conjugacy Classes}
\Declaration{ConjugacyClass}
\Declaration{ConjugacyClasses}[grp]!{attribute}
\beginexample
gap> g:=SymmetricGroup(4);;
gap> cl:=ConjugacyClasses(g);
[ ()^G, (1,2)^G, (1,2)(3,4)^G, (1,2,3)^G, (1,2,3,4)^G ]
gap> Representative(cl[3]);Centralizer(cl[3]);
(1,2)(3,4)
Group([ (1,2), (1,3)(2,4), (3,4) ])
gap> Size(Centralizer(cl[5]));
4
gap> Size(cl[2]);
6
\endexample
In general, you will not need to have to influence the method, but simply
call `ConjugacyClasses' -- GAP will try to select a suitable method on its
own. The method specifications are provided here mainly for expert use.
\Declaration{ConjugacyClassesByRandomSearch}
\Declaration{ConjugacyClassesByOrbits}
Typically, for small groups (roughly of order up to $10^3$) the computation
of classes as orbits under the action is fastest; memory restrictions (and
the increasing cost of eliminating duplicates) make this less efficient for
larger groups.
Calculation by random search has the smallest memory requirement, but in
generally performs worse, the more classes are there.
The folowing example shows the effect of this for a small group with many
classes:
% this example is time and load-status dependent. No point in testing
\begintt
gap> h:=Group((4,5)(6,7,8),(1,2,3)(5,6,9));;ConjugacyClasses(h:noaction);;time;
110
gap> h:=Group((4,5)(6,7,8),(1,2,3)(5,6,9));;ConjugacyClasses(h:random);;time;
300
gap> h:=Group((4,5)(6,7,8),(1,2,3)(5,6,9));;ConjugacyClasses(h:action);;time;
30
\endtt
\Declaration{NrConjugacyClasses}
\beginexample
gap> g:=Group((1,2,3,4),(1,2));;
gap> NrConjugacyClasses(g);
5
\endexample
\Declaration{RationalClass}
\Declaration{RationalClasses}
\beginexample
gap> RationalClasses(DerivedSubgroup(g));
[ RationalClass( AlternatingGroup( [ 1 .. 4 ] ), () ),
RationalClass( AlternatingGroup( [ 1 .. 4 ] ), (1,2)(3,4) ),
RationalClass( AlternatingGroup( [ 1 .. 4 ] ), (1,2,3) ) ]
\endexample
\Declaration{GaloisGroup}[clas]!{of rational class of a group}
\Declaration{IsConjugate}
\beginexample
gap> IsConjugate(g,Group((1,2,3,4),(1,3)),Group((1,3,2,4),(1,2)));
true
\endexample
`RepresentativeAction' (see~"RepresentativeAction") can be used to
obtain conjugating elements.
\beginexample
gap> RepresentativeAction(g,(1,2),(3,4));
(1,3)(2,4)
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Normal Structure}
For the operations `Centralizer' and `Centre', see Chapter~"Magmas".
\index{normalizer}
\Declaration{Normalizer}
\beginexample
gap> Normalizer(g,Subgroup(g,[(1,2,3)]));
Group([ (1,2,3), (2,3) ])
\endexample
\Declaration{Core}
\beginexample
gap> g:=Group((1,2,3,4),(1,2));;
gap> Core(g,Subgroup(g,[(1,2,3,4)]));
Group(())
\endexample
\Declaration{PCore}
\beginexample
gap> PCore(g,2);
Group([ (1,4)(2,3), (1,2)(3,4) ])
\endexample
\Declaration{NormalClosure}
\beginexample
gap> NormalClosure(g,Subgroup(g,[(1,2,3)]));
Group([ (1,2,3), (1,3,4) ])
\endexample
\Declaration{NormalIntersection}
\beginexample
gap> NormalIntersection(Group((1,2)(3,4),(1,3)(2,4)),Group((1,2,3,4)));
Group([ (1,3)(2,4) ])
\endexample
\Declaration{Complementclasses}
\beginexample
gap> Complementclasses(g,Group((1,2)(3,4),(1,3)(2,4)));
[ Group([ (3,4), (2,4,3) ]) ]
\endexample
\Declaration{InfoComplement}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Specific and Parametrized Subgroups}
The Centre of a group (the subgroup of those elements that commute with all
other elements of the group) can be computed by the operation `Centre'
(see~"Centre").
\Declaration{TrivialSubgroup}
\beginexample
gap> TrivialSubgroup(g);
Group(())
\endexample
\Declaration{CommutatorSubgroup}
\beginexample
gap> CommutatorSubgroup(Group((1,2,3),(1,2)),Group((2,3,4),(3,4)));
Group([ (1,4)(2,3), (1,3,4) ])
gap> Size(last);
12
\endexample
\Declaration{DerivedSubgroup}
\beginexample
gap> DerivedSubgroup(g);
Group([ (1,3,2), (1,4,3) ])
\endexample
\Declaration{CommutatorLength}
\beginexample
gap> CommutatorLength( g );
1
\endexample
\Declaration{FittingSubgroup}
\beginexample
gap> FittingSubgroup(g);
Group([ (1,2)(3,4), (1,4)(2,3) ])
\endexample
\Declaration{FrattiniSubgroup}
\beginexample
gap> FrattiniSubgroup(g);
Group(())
\endexample
\Declaration{PrefrattiniSubgroup}
\beginexample
gap> G := SmallGroup( 60, 7 );
<pc group of size 60 with 4 generators>
gap> P := PrefrattiniSubgroup(G);
Group([ f2 ])
gap> Size(P);
2
gap> IsNilpotent(P);
true
gap> Core(G,P);
Group([ ])
gap> FrattiniSubgroup(G);
Group([ ])
\endexample
\Declaration{PerfectResiduum}
\beginexample
gap> PerfectResiduum(Group((1,2,3,4,5),(1,2)));
Group([ (1,3,2), (1,4,3), (1,5,4) ])
\endexample
\Declaration{RadicalGroup}
\beginexample
gap> RadicalGroup(SL(2,5));
<group of 2x2 matrices of size 2 in characteristic 5>
gap> Size(last);
2
\endexample
\Declaration{Socle}
\beginexample
gap> Socle(g);
Group([ (1,4)(2,3), (1,2)(3,4) ])
\endexample
\Declaration{SupersolvableResiduum}
\beginexample
gap> SupersolvableResiduum(g);
Group([ (1,2)(3,4), (1,4)(2,3) ])
\endexample
\Declaration{PRump}
*@example missing!@*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Sylow Subgroups and Hall Subgroups}
\Declaration{SylowSubgroup}
\beginexample
gap> g:=SymmetricGroup(4);;
gap> SylowSubgroup(g,2);
Group([ (1,2), (3,4), (1,3)(2,4) ])
\endexample
With respect to the following {\GAP} functions,
please note that by theorems of P.~Hall,
a group $G$ is solvable if and only if one of the following conditions holds.
\beginlist%ordered
\item{1.}
For each prime $p$ dividing the order of $G$,
there exists a $p$-complement (see~"SylowComplement").
\item{2.}
For each set $P$ of primes dividing the order of $G$,
there exists a $P$-Hall subgroup (see~"HallSubgroup").
\item{3.}
$G$ has a Sylow system (see~"SylowSystem").
\item{4.}
$G$ has a complement system (see~"ComplementSystem").
\endlist
\Declaration{SylowComplement}
\beginexample
gap> SylowComplement(g,3);
Group([ (3,4), (1,4)(2,3), (1,3)(2,4) ])
\endexample
\Declaration{HallSubgroup}
\beginexample
gap> h:=SmallGroup(60,10);;
gap> u:=HallSubgroup(h,[2,3]);
Group([ f1, f2, f3 ])
gap> Size(u);
12
\endexample
\Declaration{SylowSystem}
\beginexample
gap> h:=SmallGroup(60,10);;
gap> SylowSystem(h);
[ Group([ f1, f2 ]), Group([ f3 ]), Group([ f4 ]) ]
gap> List(last,Size);
[ 4, 3, 5 ]
\endexample
\Declaration{ComplementSystem}
\beginexample
gap> ComplementSystem(h);
[ Group([ f3, f4 ]), Group([ f1, f2, f4 ]), Group([ f1, f2, f3 ]) ]
gap> List(last,Size);
[ 15, 20, 12 ]
\endexample
\Declaration{HallSystem}
\beginexample
gap> HallSystem(h);
[ Group([ ]), Group([ f1, f2 ]), Group([ f1, f2, f3 ]),
Group([ f1, f2, f3, f4 ]), Group([ f1, f2, f4 ]), Group([ f3 ]),
Group([ f3, f4 ]), Group([ f4 ]) ]
gap> List(last,Size);
[ 1, 4, 12, 60, 20, 3, 15, 5 ]
\endexample
%% The methods for Sylow subgroups in polycyclic groups and for Hall
%% Systems are due to Bettina Eick.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Subgroups characterized by prime powers}
\Declaration{Omega}
\beginexample
gap> h:=SmallGroup(16,10);
<pc group of size 16 with 4 generators>
gap> Omega(h,2);
Group([ f4, f2, f3 ])
\endexample
\Declaration{Agemo}
\beginexample
gap> Agemo(h,2);Agemo(h,2,2);
Group([ f4 ])
Group([ ])
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Group Properties}
Some properties of groups can be defined not only for groups but also for
other structures.
For example, nilpotency and solvability make sense also for algebras.
Note that these names refer to different definitions for groups and
algebras, contrary to the situation with finiteness or commutativity.
In such cases, the name of the function for groups got a suffix `Group'
to distinguish different meanings for different structures.
\Declaration{IsCyclic}
\Declaration{IsElementaryAbelian}
\Declaration{IsNilpotentGroup}
\Declaration{NilpotencyClassOfGroup}
\Declaration{IsPerfectGroup}
\Declaration{IsSolvableGroup}
\Declaration{IsPolycyclicGroup}
\Declaration{IsSupersolvableGroup}
\Declaration{IsMonomialGroup}
\Declaration{IsSimpleGroup}
\Declaration{IsomorphismTypeInfoFiniteSimpleGroup}
\beginexample
gap> IsomorphismTypeInfoFiniteSimpleGroup(Group((4,5)(6,7),(1,2,4)(3,5,6)));
rec( series := "L", parameter := [ 2, 7 ],
name := "A(1,7) = L(2,7) ~ B(1,7) = O(3,7) ~ C(1,7) = S(2,7) ~ 2A(1,7) = U(2\
,7) ~ A(2,2) = L(3,2)" )
\endexample
\Declaration{IsFinitelyGeneratedGroup}
\Declaration{IsSubsetLocallyFiniteGroup}
\atindex{p-group}{@$p$-group}
\Declaration{IsPGroup}
\Declaration{PrimePGroup}
\Declaration{PClassPGroup}
\Declaration{RankPGroup}
\beginexample
gap> h:=Group((1,2,3,4),(1,3));;
gap> PClassPGroup(h);
2
gap> RankPGroup(h);
2
\endexample
Note that the following functions, although they are mathematical
properties, are not properties in the sense of {\GAP} (see~"Attributes" and
"Properties"), as they depend on a parameter.
\Declaration{IsPSolvable}
\Declaration{IsPNilpotent}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Numerical Group Attributes}
\Declaration{AbelianInvariants}[grp]!{for groups}
\beginexample
gap> g:=Group((1,2,3,4),(1,2),(5,6));;
gap> AbelianInvariants(g);
[ 2, 2 ]
\endexample
\Declaration{Exponent}
\beginexample
gap> Exponent(g);
12
\endexample
Again the
following are mathematical attributes, but not {\GAP} `Attributes' as
they are depending on a parameter:
\Declaration{EulerianFunction}
\beginexample
gap> EulerianFunction(g,2);
432
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Subgroup Series}
In group theory many subgroup series are considered,
and {\GAP} provides commands to compute them.
In the following sections, there is always a series
$G = U_1 > U_2 > \cdots > U_m = \langle 1 \rangle$ of subgroups considered.
A series also may stop without reaching $G$ or $\langle1\rangle$.
A series is called *subnormal* if every $U_{i+1}$ is normal in $U_i$.
A series is called *normal* if every $U_i$ is normal in $G$.
A series of normal subgroups is called *central* if $U_i/U_{i+1}$ is
central in $G/U_{i+1}$.
We call a series *refinable* if intermediate subgroups can be added to
the series without destroying the properties of the series.
\FileHeader[1]{grp}
\Declaration{ChiefSeries}
\beginexample
gap> g:=Group((1,2,3,4),(1,2));;
gap> ChiefSeries(g);
[ Group([ (1,2,3,4), (1,2) ]), Group([ (2,4,3), (1,4)(2,3), (1,3)(2,4) ]),
Group([ (1,4)(2,3), (1,3)(2,4) ]), Group(()) ]
\endexample
\Declaration{ChiefSeriesThrough}
\Declaration{ChiefSeriesUnderAction}
\Declaration{SubnormalSeries}
\beginexample
gap> s:=SubnormalSeries(g,Group((1,2)(3,4)));
[ Group([ (1,2,3,4), (1,2) ]), Group([ (1,2)(3,4), (1,4)(2,3) ]),
Group([ (1,2)(3,4) ]) ]
\endexample
\Declaration{CompositionSeries}
\Declaration{DisplayCompositionSeries}
\beginexample
gap> CompositionSeries(g);
[ Group([ (3,4), (2,4,3), (1,4)(2,3), (1,3)(2,4) ]),
Group([ (2,4,3), (1,4)(2,3), (1,3)(2,4) ]),
Group([ (1,4)(2,3), (1,3)(2,4) ]), Group([ (1,3)(2,4) ]), Group(()) ]
gap> DisplayCompositionSeries(Group((1,2,3,4,5,6,7),(1,2)));
G (2 gens, size 5040)
|| Z(2)
S (5 gens, size 2520)
|| A(7)
1 (0 gens, size 1)
\endexample
\Declaration{DerivedSeriesOfGroup}
\Declaration{DerivedLength}
\beginexample
gap> List(DerivedSeriesOfGroup(g),Size);
[ 24, 12, 4, 1 ]
gap> DerivedLength(g);
3
\endexample
\Declaration{ElementaryAbelianSeries}
\beginexample
gap> List(ElementaryAbelianSeries(g),Size);
[ 24, 12, 4, 1 ]
\endexample
\Declaration{InvariantElementaryAbelianSeries}
\beginexample
gap> g:=Group((1,2,3,4),(1,3));
Group([ (1,2,3,4), (1,3) ])
gap> hom:=GroupHomomorphismByImages(g,g,GeneratorsOfGroup(g),
> [(1,4,3,2),(1,4)(2,3)]);
[ (1,2,3,4), (1,3) ] -> [ (1,4,3,2), (1,4)(2,3) ]
gap> InvariantElementaryAbelianSeries(g,[hom]);
[ Group([ (1,2,3,4), (1,3) ]), Group([ (1,3)(2,4) ]), Group(()) ]
\endexample
\Declaration{LowerCentralSeriesOfGroup}
\Declaration{UpperCentralSeriesOfGroup}
\Declaration{PCentralSeries}
\Declaration{JenningsSeries}
\Declaration{DimensionsLoewyFactors}
\beginexample
gap> G:= SmallGroup( 3^6, 100 );
<pc group of size 729 with 6 generators>
gap> JenningsSeries( G );
[ <pc group of size 729 with 6 generators>, Group([ f3, f4, f5, f6 ]),
Group([ f4, f5, f6 ]), Group([ f5, f6 ]), Group([ f5, f6 ]),
Group([ f5, f6 ]), Group([ f6 ]), Group([ f6 ]), Group([ f6 ]),
Group([ <identity> of ... ]) ]
gap> DimensionsLoewyFactors(G);
[ 1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26, 27, 27,
27, 27, 27, 27, 27, 27, 27, 26, 25, 23, 22, 20, 19, 17, 16, 14, 13, 11, 10,
8, 7, 5, 4, 2, 1 ]
\endexample
\Declaration{AscendingChain}
\Declaration{IntermediateGroup}
\Declaration{IntermediateSubgroups}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Factor Groups}
\Declaration{NaturalHomomorphismByNormalSubgroup}
\Declaration{FactorGroup}
\beginexample
gap> g:=Group((1,2,3,4),(1,2));;n:=Subgroup(g,[(1,2)(3,4),(1,3)(2,4)]);;
gap> hom:=NaturalHomomorphismByNormalSubgroup(g,n);
[ (1,2,3,4), (1,2) ] -> [ f1*f2, f1 ]
gap> Size(ImagesSource(hom));
6
gap> FactorGroup(g,n);
Group([ f1, f2 ])
\endexample
\Declaration{CommutatorFactorGroup}
\beginexample
gap> CommutatorFactorGroup(g);
Group([ f1 ])
\endexample
\Declaration{MaximalAbelianQuotient}
\Declaration{HasAbelianFactorGroup}
\Declaration{HasElementaryAbelianFactorGroup}
\beginexample
gap> HasAbelianFactorGroup(g,n);
false
gap> HasAbelianFactorGroup(DerivedSubgroup(g),n);
true
\endexample
\Declaration{CentralizerModulo}
\beginexample
gap> CentralizerModulo(g,n,(1,2));
Group([ (3,4), (1,3)(2,4), (1,4)(2,3) ])
\endexample
%% The code for factor groups is due to Alexander Hulpke and Heiko Thei{\ss}en.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Sets of Subgroups}
\Declaration{ConjugacyClassSubgroups}
\beginexample
gap> g:=Group((1,2,3,4),(1,2));;IsNaturalSymmetricGroup(g);;
gap> cl:=ConjugacyClassSubgroups(g,Subgroup(g,[(1,2)]));
Group( [ (1,2) ] )^G
gap> Size(cl);
6
gap> ClassElementLattice(cl,4);
Group([ (2,3) ])
\endexample
\Declaration{IsConjugacyClassSubgroupsRep}
\Declaration{ConjugacyClassesSubgroups}
\beginexample
gap> ConjugacyClassesSubgroups(g);
[ Group( () )^G, Group( [ (1,3)(2,4) ] )^G, Group( [ (3,4) ] )^G,
Group( [ (2,4,3) ] )^G, Group( [ (1,4)(2,3), (1,3)(2,4) ] )^G,
Group( [ (1,2)(3,4), (3,4) ] )^G, Group( [ (1,2)(3,4), (1,3,2,4) ] )^G,
Group( [ (3,4), (2,4,3) ] )^G, Group( [ (1,3)(2,4), (1,4)(2,3), (1,2) ] )^G,
Group( [ (1,3)(2,4), (1,4)(2,3), (2,4,3) ] )^G,
Group( [ (1,3)(2,4), (1,4)(2,3), (2,4,3), (1,2) ] )^G ]
\endexample
\Declaration{ConjugacyClassesMaximalSubgroups}
\beginexample
gap> ConjugacyClassesMaximalSubgroups(g);
[ AlternatingGroup( [ 1 .. 4 ] )^G, Group( [ (1,2,3), (1,2) ] )^G,
Group( [ (1,2), (3,4), (1,3)(2,4) ] )^G ]
\endexample
\Declaration{MaximalSubgroupClassReps}
\beginexample
gap> MaximalSubgroupClassReps(g);
[ Alt( [ 1 .. 4 ] ), Group([ (1,2,3), (1,2) ]),
Group([ (1,2), (3,4), (1,3)(2,4) ]) ]
\endexample
\Declaration{MaximalSubgroups}
\beginexample
gap> MaximalSubgroups(Group((1,2,3),(1,2)));
[ Group([ (1,2,3) ]), Group([ (2,3) ]), Group([ (1,2) ]), Group([ (1,3) ]) ]
\endexample
\Declaration{NormalSubgroups}
\beginexample
gap> g:=SymmetricGroup(4);;NormalSubgroups(g);
[ Group(()), Group([ (1,4)(2,3), (1,3)(2,4) ]),
Group([ (2,4,3), (1,4)(2,3), (1,3)(2,4) ]), Sym( [ 1 .. 4 ] ) ]
\endexample
The algorithm used for the computation of normal subgroups of permutation
groups and pc groups is described in \cite{Hulpke98}.
\Declaration{MaximalNormalSubgroups}
\beginexample
gap> MaximalNormalSubgroups( g );
[ Group([ (2,4,3), (1,4)(2,3), (1,3)(2,4) ]) ]
\endexample
\Declaration{MinimalNormalSubgroups}
\beginexample
gap> MinimalNormalSubgroups( g );
[ Group([ (1,4)(2,3), (1,3)(2,4) ]) ]
\endexample
%% Bettina Eick designed and wrote the code for maximal subgroups of a solvable
%% group. The code for normal subgroups \cite{Hulpke98} and for subgroups of a
%% solvable group is due to Alexander Hulpke.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Subgroup Lattice}
The {\GAP} package \package{XGAP} permits a graphical display of the lattice
of subgroups in a nice way.
\Declaration{LatticeSubgroups}
\beginexample
gap> g:=SymmetricGroup(4);;
gap> l:=LatticeSubgroups(g);
<subgroup lattice of Sym( [ 1 .. 4 ] ), 11 classes, 30 subgroups>
gap> ConjugacyClassesSubgroups(l);
[ Group( () )^G, Group( [ (1,3)(2,4) ] )^G, Group( [ (3,4) ] )^G,
Group( [ (2,4,3) ] )^G, Group( [ (1,4)(2,3), (1,3)(2,4) ] )^G,
Group( [ (1,2)(3,4), (3,4) ] )^G, Group( [ (1,2)(3,4), (1,3,2,4) ] )^G,
Group( [ (3,4), (2,4,3) ] )^G, Group( [ (1,3)(2,4), (1,4)(2,3), (1,2) ] )^G,
Group( [ (1,3)(2,4), (1,4)(2,3), (2,4,3) ] )^G,
Group( [ (1,3)(2,4), (1,4)(2,3), (2,4,3), (1,2) ] )^G ]
\endexample
\Declaration{ClassElementLattice}
\Declaration{MaximalSubgroupsLattice}
\beginexample
gap> MaximalSubgroupsLattice(l);
[ [ ], [ [ 1, 1 ] ], [ [ 1, 1 ] ], [ [ 1, 1 ] ],
[ [ 2, 1 ], [ 2, 2 ], [ 2, 3 ] ], [ [ 3, 1 ], [ 3, 6 ], [ 2, 3 ] ],
[ [ 2, 3 ] ], [ [ 4, 1 ], [ 3, 1 ], [ 3, 2 ], [ 3, 3 ] ],
[ [ 7, 1 ], [ 6, 1 ], [ 5, 1 ] ],
[ [ 5, 1 ], [ 4, 1 ], [ 4, 2 ], [ 4, 3 ], [ 4, 4 ] ],
[ [ 10, 1 ], [ 9, 1 ], [ 9, 2 ], [ 9, 3 ], [ 8, 1 ], [ 8, 2 ], [ 8, 3 ],
[ 8, 4 ] ] ]
gap> last[6];
[ [ 3, 1 ], [ 3, 6 ], [ 2, 3 ] ]
gap> u1:=Representative(ConjugacyClassesSubgroups(l)[6]);
Group([ (1,2)(3,4), (3,4) ])
gap> u2:=ClassElementLattice(ConjugacyClassesSubgroups(l)[3],1);;
gap> u3:=ClassElementLattice(ConjugacyClassesSubgroups(l)[3],6);;
gap> u4:=ClassElementLattice(ConjugacyClassesSubgroups(l)[2],3);;
gap> IsSubgroup(u1,u2);IsSubgroup(u1,u3);IsSubgroup(u1,u4);
true
true
true
\endexample
\Declaration{MinimalSupergroupsLattice}
\beginexample
gap> MinimalSupergroupsLattice(l);
[ [ [ 2, 1 ], [ 2, 2 ], [ 2, 3 ], [ 3, 1 ], [ 3, 2 ], [ 3, 3 ], [ 3, 4 ],
[ 3, 5 ], [ 3, 6 ], [ 4, 1 ], [ 4, 2 ], [ 4, 3 ], [ 4, 4 ] ],
[ [ 5, 1 ], [ 6, 2 ], [ 7, 2 ] ], [ [ 6, 1 ], [ 8, 1 ], [ 8, 3 ] ],
[ [ 8, 1 ], [ 10, 1 ] ], [ [ 9, 1 ], [ 9, 2 ], [ 9, 3 ], [ 10, 1 ] ],
[ [ 9, 1 ] ], [ [ 9, 1 ] ], [ [ 11, 1 ] ], [ [ 11, 1 ] ], [ [ 11, 1 ] ],
[ ] ]
gap> last[3];
[ [ 6, 1 ], [ 8, 1 ], [ 8, 3 ] ]
gap> u5:=ClassElementLattice(ConjugacyClassesSubgroups(l)[8],1);
Group([ (3,4), (2,4,3) ])
gap> u6:=ClassElementLattice(ConjugacyClassesSubgroups(l)[8],3);
Group([ (1,3), (1,3,4) ])
gap> IsSubgroup(u5,u2);
true
gap> IsSubgroup(u6,u2);
true
\endexample
\Declaration{RepresentativesPerfectSubgroups}
\beginexample
gap> m11:=TransitiveGroup(11,6);
M(11)
gap> r:=RepresentativesPerfectSubgroups(m11);
[ Group([ (3,5,8)(4,11,7)(6,9,10), (2,3)(4,10)(5,9)(8,11) ]),
Group([ (1,2,4)(5,11,8)(6,9,7), (2,3)(4,10)(5,9)(8,11) ]),
Group([ (3,4,10)(5,11,6)(7,9,8), (1,4,9)(3,6,10)(7,11,8) ]),
Group([ (1,2,5)(3,11,10)(6,7,8), (2,3)(4,10)(5,9)(8,11) ]), M(11),
Group(()) ]
gap> List(r,Size);
[ 60, 60, 360, 660, 7920, 1 ]
\endexample
\Declaration{ConjugacyClassesPerfectSubgroups}
\beginexample
gap> ConjugacyClassesPerfectSubgroups(m11);
[ Group( [ ( 3, 5, 8)( 4,11, 7)( 6, 9,10), ( 2, 3)( 4,10)( 5, 9)( 8,11) ] )^G,
Group( [ ( 1, 2, 4)( 5,11, 8)( 6, 9, 7), ( 2, 3)( 4,10)( 5, 9)( 8,11) ] )^G,
Group( [ ( 3, 4,10)( 5,11, 6)( 7, 9, 8), ( 1, 4, 9)( 3, 6,10)( 7,11, 8)
] )^G,
Group( [ ( 1, 2, 5)( 3,11,10)( 6, 7, 8), ( 2, 3)( 4,10)( 5, 9)( 8,11) ] )^G,
M(11)^G, Group( () )^G ]
\endexample
\Declaration{Zuppos}
\Declaration{InfoLattice}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Specific Methods for Subgroup Lattice Computations}
\Declaration{LatticeByCyclicExtension}
\beginexample
gap> g:=WreathProduct(Group((1,2,3),(1,2)),Group((1,2,3,4)));;
gap> l:=LatticeByCyclicExtension(g,function(G)
> return Size(G) in [1,2,3,6];end);
<subgroup lattice of <permutation group of size 5184 with 9 generators>,
47 classes, 2628 subgroups, restricted under further condition l!.func>
\endexample
The total number of classes in this example is much bigger, as the
following example shows:
\beginexample
gap> LatticeSubgroups(g);
<subgroup lattice of <permutation group of size 5184 with 9 generators>,
566 classes, 27134 subgroups>
\endexample
\Declaration{InvariantSubgroupsElementaryAbelianGroup}
\beginexample
gap> g:=Group((1,2,3),(4,5,6),(7,8,9));
Group([ (1,2,3), (4,5,6), (7,8,9) ])
gap> hom:=GroupHomomorphismByImages(g,g,[(1,2,3),(4,5,6),(7,8,9)],
> [(7,8,9),(1,2,3),(4,5,6)]);
[ (1,2,3), (4,5,6), (7,8,9) ] -> [ (7,8,9), (1,2,3), (4,5,6) ]
gap> u:=InvariantSubgroupsElementaryAbelianGroup(g,[hom]);
[ Group(()), Group([ (1,2,3)(4,5,6)(7,8,9) ]),
Group([ (1,3,2)(7,8,9), (1,3,2)(4,5,6) ]),
Group([ (7,8,9), (4,5,6), (1,2,3) ]) ]
\endexample
\Declaration{SubgroupsSolvableGroup}
\beginexample
gap> g:=Group((1,2,3),(1,2),(4,5,6),(4,5),(7,8,9),(7,8));
Group([ (1,2,3), (1,2), (4,5,6), (4,5), (7,8,9), (7,8) ])
gap> hom:=GroupHomomorphismByImages(g,g,
> [(1,2,3),(1,2),(4,5,6),(4,5),(7,8,9),(7,8)],
> [(4,5,6),(4,5),(7,8,9),(7,8),(1,2,3),(1,2)]);
[ (1,2,3), (1,2), (4,5,6), (4,5), (7,8,9), (7,8) ] ->
[ (4,5,6), (4,5), (7,8,9), (7,8), (1,2,3), (1,2) ]
gap> l:=SubgroupsSolvableGroup(g,rec(actions:=[hom]));;
gap> List(l,Size);
[ 1, 3, 9, 27, 54, 2, 6, 18, 108, 4, 216, 8 ]
gap> Length(ConjugacyClassesSubgroups(g)); # to compare
162
\endexample
\Declaration{SizeConsiderFunction}
\beginexample
gap> l:=SubgroupsSolvableGroup(g,rec(actions:=[hom],
> consider:=SizeConsiderFunction(6)));;
gap> List(l,Size);
[ 1, 3, 9, 27, 54, 6, 18, 108, 216 ]
\endexample
This example shows that in general the `consider' function does not provide
a perfect filter. It is guaranteed that all subgroups fulfilling the
condition are returned, but not all subgroups returned necessarily fulfill
the condition.
\Declaration{ExactSizeConsiderFunction}
\beginexample
gap> l:=SubgroupsSolvableGroup(g,rec(actions:=[hom],
> consider:=ExactSizeConsiderFunction(6)));;
gap> List(l,Size);
[ 1, 3, 9, 27, 54, 6, 108, 216 ]
\endexample
Again, the `consider' function does not provide
a perfect filter. It is guaranteed that all subgroups fulfilling the
condition are returned, but not all subgroups returned necessarily fulfill
the condition.
\Declaration{InfoPcSubgroup}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Special Generating Sets}
\Declaration{GeneratorsSmallest}
\beginexample
gap> g:=SymmetricGroup(4);;
gap> GeneratorsSmallest(g);
[ (3,4), (2,3), (1,2) ]
\endexample
\Declaration{LargestElementGroup}
\Declaration{MinimalGeneratingSet}
\beginexample
gap> MinimalGeneratingSet(g);
[ (2,4,3), (1,4,2,3) ]
\endexample
\Declaration{SmallGeneratingSet}
\beginexample
gap> SmallGeneratingSet(g);
[ (1,2), (1,2,3,4) ]
\endexample
\Declaration{IndependentGeneratorsOfAbelianGroup}
\beginexample
gap> g:=AbelianGroup(IsPermGroup,[15,14,22,78]);;
gap> List(IndependentGeneratorsOfAbelianGroup(g),Order);
[ 2, 2, 2, 3, 3, 5, 7, 11, 13 ]
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{1-Cohomology}
\index{one cohomology}
\index{cohomology}
\index{cocycles}
Let $G$ be a finite group and $M$ an elementary abelian normal $p$-subgroup
of $G$. Then the group of 1-cocycles $Z^1( G/M, M )$ is
defined as
$$
Z^1(G/M, M) = \{ \gamma: G/M \rightarrow M \mid \forall g_1, g_2\in G :
\gamma(g_1 M . g_2 M )
= \gamma(g_1 M)^{g_2} . \gamma(g_2 M) \}
$$
and is a $GF(p)$-vector space.
The group of 1-coboundaries $B^1( G/M, M )$ is defined as
$$
B^1(G/M, M) = \{ \gamma : G/M \rightarrow M \mid \exists m\in M
\forall g\in G :
\gamma(gM) = (m^{-1})^g . m \}
$$
It also is a $GF(p)$-vector space.
Let $\alpha$ be the isomorphism of $M$ into a row vector space ${\cal W}$
and $(g_1,\ldots,g_l)$ representatives for a generating set of $G/M$.
Then there exists a monomorphism $\beta$ of $Z^1( G/M, M )$ in the
$l$-fold direct sum of ${\cal W}$, such that $\beta( \gamma ) = ( \alpha(
\gamma(g_1 M) ),\ldots, \alpha( \gamma(g_l M) ) )$ for every $\gamma\in
Z^1( G/M, M )$.
\Declaration{OneCocycles}
\Declaration{OneCoboundaries}
The operations `OneCocycles' and `OneCoboundaries' return a record with
(at least) the components:
\beginitems
`generators'&
Is a list of representatives for a generating set of $G/M$. Cocycles are
represented with respect to these generators.
`oneCocycles'&
A space of row vectors over GF($p$), representing $Z^1$. The vectors are
represented in dimension $a\cdot b$ where $a$ is the length of `generators'
and $p^b$ the size of $M$.
`oneCoboundaries'&
A space of row vectors that represents $B^1$.
`cocycleToList'&
is a function to convert a cocycle (a row vector in `oneCocycles') to
a corresponding list of elements of $M$.
`listToCocycle'&
is a function to convert a list of elements of $M$ to a cocycle.
`isSplitExtension'&
indicates whether $G$ splits over $M$.
The following components are only bound if the extension splits. Note that
if $M$ is given by a modulo pcgs all subgroups are given as subgroups of $G$
by generators corresponding to `generators' and thus may not contain the
denominator of the modulo pcgs. In this case taking the closure with this
denominator will give the full preimage of the complement in the factor
group.
`complement'&
One complement to $M$ in $G$.
`cocycleToComplement(<cyc>)'&
is a function that takes a cocycle from `oneCocycles' and returns the
corresponding complement to $M$ in $G$ (with respect to the fixed complement
`complement').
`complementToCocycle(<U>)'&
is a function that takes a complement and returns the corresponding cocycle.
\enditems
If the factor <G>/<M> is given by a (modulo) pcgs <gens> then special
methods are used that compute a presentation for the factor implicitly from
the pcgs.
Note that the groups of 1-cocycles and 1-coboundaries are not `Group's in
the sense of {\GAP} but vector spaces.
\beginexample
gap> g:=Group((1,2,3,4),(1,2));;
gap> n:=Group((1,2)(3,4),(1,3)(2,4));;
gap> oc:=OneCocycles(g,n);
rec( oneCoboundaries := <vector space over GF(2), with 2 generators>,
oneCocycles := <vector space over GF(2), with 2 generators>,
generators := [ (3,4), (2,4,3) ], isSplitExtension := true,
complement := Group([ (3,4), (2,4,3) ]),
cocycleToList := function( c ) ... end,
listToCocycle := function( L ) ... end,
cocycleToComplement := function( c ) ... end,
factorGens := [ (3,4), (2,4,3) ],
complementToCocycle := function( K ) ... end )
gap> oc.cocycleToList([ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ]);
[ (1,2)(3,4), (1,2)(3,4) ]
gap> oc.listToCocycle([(),(1,3)(2,4)]);
[ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ]
gap> oc.cocycleToComplement([ 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0 ]);
Group([ (1,2), (1,2,3) ])
gap> oc.cocycleToComplement([ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2) ]);
Group([ (3,4), (1,3,4) ])
gap> oc.complementToCocycle(Group((1,2,4),(1,4)));
[ 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0 ]
\endexample
The factor group $H^1(G/M,M)=Z^1(G/M,M)/B^1(G/M,M)$ is called the first
cohomology group. Currently there is no function which explicitly computes
this group. The easiest way to represent it is as a vector space complement to
$B^1$ in $Z^1$.
{}
If the only purpose of the calculation of $H^1$ is the determination of
complements it might be desirable to stop calculations once it is known that
the extension cannot split. This can be achieved via the more technical
function `OCOneCocycles'.
\Declaration{OCOneCocycles}
\Declaration{ComplementclassesEA}
\Declaration{InfoCoh}
%% The computation of the 1-Cohomology follows \cite{CNW90} and was implemented
%% by Frank Celler and Alexander Hulpke.
% \Section{AutomorphisGroups and Testing Isomorphism}
%T Is dealt with in section on group homomorphisms!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Schur Covers and Multipliers}
\atindex{Darstellungsgruppe!see EpimorphismSchurCover}%
{@Darstellungsgruppe!see \noexpand`EpimorphismSchurCover'}
\Declaration{EpimorphismSchurCover}
\Declaration{SchurCover}
\beginexample
gap> g:=Group((1,2,3,4),(1,2));;
gap> epi:=EpimorphismSchurCover(g);
[ f1, f2, f3 ] -> [ (3,4), (2,4,3), (1,4)(2,3) ]
gap> Size(Source(epi));
48
\endexample
If the group becomes bigger, Schur Cover calculations might become
unfeasible.
There is another operation
which only returns the structure of the Multiplier.
% , and which should work
% for larger groups as well.
\Declaration{AbelianInvariantsMultiplier}
\beginexample
gap> AbelianInvariantsMultiplier(g);
[ 2 ]
\endexample
%beginexample
% gap> AbelianInvariantsMultiplier(g);
% [ 2 ]
% gap> AbelianInvariantsMultiplier(MathieuGroup(22));
% [ 4, 3 ]
%endexample
Note that the following example will take some time.
%notest
\beginexample
gap> AbelianInvariantsMultiplier(PSU(6,2));
[ 2, 2, 3 ]
\endexample
At the moment, this operation will not give any information about how to
extend the multiplier to a Schur Cover.
Additional attributes and properties of a group can be derived
from computing its Schur Cover. For example, if $G$ is a
finitely presented group, the
derived subgroup a Schur Cover of $G$ is invariant and isomorphic to
the NonabelianExteriorSquare of $G$ \cite{BJR87}.
\Declaration{Epicentre}
\Declaration{NonabelianExteriorSquare}
\Declaration{EpimorphismNonabelianExteriorSquare}
\Declaration{IsCentralFactor}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Tests for the Availability of Methods}
\FileHeader{grp}[3]
\Declaration{CanEasilyTestMembership}
\Declaration{CanComputeSize}
\Declaration{CanComputeSizeAnySubgroup}
\Declaration{CanComputeIndex}
\Declaration{CanComputeIsSubset}
\Declaration{KnowsHowToDecompose}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%E
|