1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%A module.msk GAP documentation Thomas Breuer
%%
%A @(#)$Id: module.msk,v 1.12 2002/04/15 10:02:30 sal Exp $
%%
%Y (C) 1998 School Math and Comp. Sci., University of St. Andrews, Scotland
%Y Copyright (C) 2002 The GAP Group
%%
\PreliminaryChapter{Modules}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Generating modules}
\Declaration{IsLeftOperatorAdditiveGroup}
\Declaration{IsLeftModule}
\beginexample
gap> V:= FullRowSpace( Rationals, 3 );
( Rationals^3 )
gap> IsLeftModule( V );
true
\endexample
\Declaration{GeneratorsOfLeftOperatorAdditiveGroup}
\Declaration{GeneratorsOfLeftModule}
\beginexample
gap> V:= FullRowSpace( Rationals, 3 );;
gap> GeneratorsOfLeftModule( V );
[ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ]
\endexample
\Declaration{AsLeftModule}
\beginexample
gap> coll:= [ [0*Z(2),0*Z(2)], [Z(2),0*Z(2)], [0*Z(2),Z(2)], [Z(2),Z(2)] ];
[ [ 0*Z(2), 0*Z(2) ], [ Z(2)^0, 0*Z(2) ], [ 0*Z(2), Z(2)^0 ],
[ Z(2)^0, Z(2)^0 ] ]
gap> AsLeftModule( GF(2), coll );
<vector space of dimension 2 over GF(2)>
\endexample
\Declaration{IsRightOperatorAdditiveGroup}
\Declaration{IsRightModule}
\Declaration{GeneratorsOfRightOperatorAdditiveGroup}
\Declaration{GeneratorsOfRightModule}
\Declaration{LeftModuleByGenerators}
\beginexample
gap> coll:= [ [Z(2),0*Z(2)], [0*Z(2),Z(2)], [Z(2),Z(2)] ];;
gap> V:= LeftModuleByGenerators( GF(16), coll );
<vector space over GF(2^4), with 3 generators>
\endexample
\Declaration{LeftActingDomain}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Submodules}
\Declaration{Submodule}
\beginexample
gap> coll:= [ [Z(2),0*Z(2)], [0*Z(2),Z(2)], [Z(2),Z(2)] ];;
gap> V:= LeftModuleByGenerators( GF(16), coll );;
gap> W:= Submodule( V, [ coll[1], coll[2] ] );
<vector space over GF(2^4), with 2 generators>
gap> Parent( W ) = V;
true
\endexample
\Declaration{SubmoduleNC}
\Declaration{ClosureLeftModule}
\beginexample
gap> V:= LeftModuleByGenerators( Rationals, [ [ 1, 0, 0 ], [ 0, 1, 0 ] ] );
<vector space over Rationals, with 2 generators>
gap> ClosureLeftModule( V, [ 1, 1, 1 ] );
<vector space over Rationals, with 3 generators>
\endexample
\Declaration{TrivialSubmodule}
\beginexample
gap> V:= LeftModuleByGenerators( Rationals, [ [ 1, 0, 0 ], [ 0, 1, 0 ] ] );;
gap> TrivialSubmodule( V );
<vector space over Rationals, with 0 generators>
\endexample
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Free Modules}
\Declaration{IsFreeLeftModule}
\Declaration{FreeLeftModule}
\beginexample
gap> V:= FreeLeftModule( Rationals, [ [ 1, 0, 0 ], [ 0, 1, 0 ] ], "basis" );
<vector space of dimension 2 over Rationals>
\endexample
%W \Declaration{AsFreeLeftModule}
\Declaration{Dimension}
\beginexample
gap> V:= FreeLeftModule( Rationals, [ [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ] );;
gap> Dimension( V );
2
\endexample
\Declaration{IsFiniteDimensional}
\beginexample
gap> V:= FreeLeftModule( Rationals, [ [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ] );;
gap> IsFiniteDimensional( V );
true
\endexample
\Declaration{UseBasis}
\beginexample
gap> V:= FreeLeftModule( Rationals, [ [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ] );;
gap> UseBasis( V, [ [ 1, 0 ], [ 1, 1 ] ] );
gap> V; # now V knows its dimension
<vector space of dimension 2 over Rationals>
\endexample
\Declaration{IsRowModule}
\Declaration{IsMatrixModule}
\Declaration{IsFullRowModule}
\Declaration{FullRowModule}
\beginexample
gap> V:= FullRowModule( Integers, 5 );
( Integers^5 )
\endexample
\Declaration{IsFullMatrixModule}
\Declaration{FullMatrixModule}
\beginexample
gap> FullMatrixModule( GaussianIntegers, 3, 6 );
( GaussianIntegers^[ 3, 6 ] )
\endexample
\Declaration{IsHandledByNiceBasis}
|