File: module.msk

package info (click to toggle)
gap 4r4p10-2
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 29,224 kB
  • ctags: 7,084
  • sloc: ansic: 98,591; sh: 3,284; perl: 2,263; makefile: 467; awk: 6
file content (151 lines) | stat: -rw-r--r-- 3,823 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%A  module.msk                   GAP documentation              Thomas Breuer
%%
%A  @(#)$Id: module.msk,v 1.12 2002/04/15 10:02:30 sal Exp $
%%
%Y  (C) 1998 School Math and Comp. Sci., University of St.  Andrews, Scotland
%Y  Copyright (C) 2002 The GAP Group
%%
\PreliminaryChapter{Modules}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Generating modules}

\Declaration{IsLeftOperatorAdditiveGroup}
\Declaration{IsLeftModule}

\beginexample
gap> V:= FullRowSpace( Rationals, 3 );
( Rationals^3 )
gap> IsLeftModule( V );
true
\endexample

\Declaration{GeneratorsOfLeftOperatorAdditiveGroup}
\Declaration{GeneratorsOfLeftModule}

\beginexample
gap> V:= FullRowSpace( Rationals, 3 );;
gap> GeneratorsOfLeftModule( V );
[ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ]
\endexample

\Declaration{AsLeftModule}

\beginexample
gap> coll:= [ [0*Z(2),0*Z(2)], [Z(2),0*Z(2)], [0*Z(2),Z(2)], [Z(2),Z(2)] ];
[ [ 0*Z(2), 0*Z(2) ], [ Z(2)^0, 0*Z(2) ], [ 0*Z(2), Z(2)^0 ], 
  [ Z(2)^0, Z(2)^0 ] ]
gap> AsLeftModule( GF(2), coll );
<vector space of dimension 2 over GF(2)>
\endexample

\Declaration{IsRightOperatorAdditiveGroup}
\Declaration{IsRightModule}
\Declaration{GeneratorsOfRightOperatorAdditiveGroup}
\Declaration{GeneratorsOfRightModule}

\Declaration{LeftModuleByGenerators}

\beginexample
gap> coll:= [ [Z(2),0*Z(2)], [0*Z(2),Z(2)], [Z(2),Z(2)] ];;
gap> V:= LeftModuleByGenerators( GF(16), coll );
<vector space over GF(2^4), with 3 generators>
\endexample

\Declaration{LeftActingDomain}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Submodules}

\Declaration{Submodule}

\beginexample
gap> coll:= [ [Z(2),0*Z(2)], [0*Z(2),Z(2)], [Z(2),Z(2)] ];;
gap> V:= LeftModuleByGenerators( GF(16), coll );;
gap> W:= Submodule( V, [ coll[1], coll[2] ] );
<vector space over GF(2^4), with 2 generators>
gap> Parent( W ) = V;
true
\endexample

\Declaration{SubmoduleNC}
\Declaration{ClosureLeftModule}

\beginexample
gap> V:= LeftModuleByGenerators( Rationals, [ [ 1, 0, 0 ], [ 0, 1, 0 ] ] );
<vector space over Rationals, with 2 generators>
gap> ClosureLeftModule( V, [ 1, 1, 1 ] );
<vector space over Rationals, with 3 generators>
\endexample

\Declaration{TrivialSubmodule}

\beginexample
gap> V:= LeftModuleByGenerators( Rationals, [ [ 1, 0, 0 ], [ 0, 1, 0 ] ] );;
gap> TrivialSubmodule( V );
<vector space over Rationals, with 0 generators>
\endexample

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{Free Modules}

\Declaration{IsFreeLeftModule}
\Declaration{FreeLeftModule}

\beginexample
gap> V:= FreeLeftModule( Rationals, [ [ 1, 0, 0 ], [ 0, 1, 0 ] ], "basis" );
<vector space of dimension 2 over Rationals>
\endexample

%W \Declaration{AsFreeLeftModule}

\Declaration{Dimension}

\beginexample
gap> V:= FreeLeftModule( Rationals, [ [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ] );;
gap> Dimension( V );
2
\endexample

\Declaration{IsFiniteDimensional}

\beginexample
gap> V:= FreeLeftModule( Rationals, [ [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ] );;
gap> IsFiniteDimensional( V );
true
\endexample

\Declaration{UseBasis}

\beginexample
gap> V:= FreeLeftModule( Rationals, [ [ 1, 0 ], [ 0, 1 ], [ 1, 1 ] ] );;
gap> UseBasis( V, [ [ 1, 0 ], [ 1, 1 ] ] );
gap> V;  # now V knows its dimension
<vector space of dimension 2 over Rationals>
\endexample


\Declaration{IsRowModule}
\Declaration{IsMatrixModule}
\Declaration{IsFullRowModule}
\Declaration{FullRowModule}

\beginexample
gap> V:= FullRowModule( Integers, 5 );
( Integers^5 )
\endexample

\Declaration{IsFullMatrixModule}
\Declaration{FullMatrixModule}

\beginexample
gap> FullMatrixModule( GaussianIntegers, 3, 6 );
( GaussianIntegers^[ 3, 6 ] )
\endexample


\Declaration{IsHandledByNiceBasis}