1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
#############################################################################
##
#W basicmat.gi GAP Library Frank Celler
##
#H @(#)$Id: basicmat.gi,v 4.10 2002/09/05 14:40:23 gap Exp $
##
#Y Copyright (C) 1996, Lehrstuhl D fuer Mathematik, RWTH Aachen, Germany
##
## This file contains the methods for the construction of the basic matrix
## group types.
##
Revision.basicmat_gi :=
"@(#)$Id: basicmat.gi,v 4.10 2002/09/05 14:40:23 gap Exp $";
#############################################################################
##
#M CyclicGroupCons( <IsMatrixGroup>, <field>, <n> )
##
InstallOtherMethod( CyclicGroupCons,
"matrix group for given field",
true,
[ IsMatrixGroup and IsFinite,
IsField,
IsInt and IsPosRat ],
0,
function( filter, fld, n )
local o, m, i;
o := One(fld);
m := NullMat( n, n, fld );
for i in [ 1 .. n-1 ] do
m[i][i+1] := o;
od;
m[n][1] := o;
m := GroupByGenerators( [ ImmutableMatrix(fld,m) ] );
SetSize( m, n );
return m;
end );
#############################################################################
##
#M CyclicGroupCons( <IsMatrixGroup>, <n> )
##
InstallMethod( CyclicGroupCons,
"matrix group for default field",
true,
[ IsMatrixGroup and IsFinite,
IsInt and IsPosRat ],
0,
function( filter, n )
local m, i;
m := NullMat( n, n, Rationals );
for i in [ 1 .. n-1 ] do
m[i][i+1] := 1;
od;
m[n][1] := 1;
m := GroupByGenerators( [ ImmutableMatrix(Rationals,m) ] );
SetSize( m, n );
return m;
end );
#############################################################################
##
#M GeneralLinearGroupCons( <IsMatrixGroup>, <d>, <F> )
##
InstallMethod( GeneralLinearGroupCons,
"matrix group for dimension and finite field size",
[ IsMatrixGroup and IsFinite,
IsInt and IsPosRat,
IsField and IsFinite ],
function( filter, n, f )
local q, z, o, mat1, mat2, i, g;
q:= Size( f );
# small cases
if q = 2 and 1 < n then
return SL( n, 2 );
fi;
# construct the generators
z := PrimitiveRoot( f );
o := One( f );
mat1 := IdentityMat( n, o );
mat1[1][1] := z;
mat2 := List( Zero(o) * mat1, ShallowCopy );
mat2[1][1] := -o;
mat2[1][n] := o;
for i in [ 2 .. n ] do mat2[i][i-1]:= -o; od;
mat1 := ImmutableMatrix( f, mat1 );
mat2 := ImmutableMatrix( f, mat2 );
g := GroupByGenerators( [ mat1, mat2 ] );
SetName( g, Concatenation("GL(",String(n),",",String(q),")") );
SetDimensionOfMatrixGroup( g, n );
SetFieldOfMatrixGroup( g, f );
SetIsNaturalGL( g, true );
SetIsFinite(g,true);
if n<50 or n+q<500 then
Size(g);
fi;
# Return the group.
return g;
end );
#############################################################################
##
#M SpecialLinearGroupCons( <IsMatrixGroup>, <d>, <q> )
##
InstallMethod( SpecialLinearGroupCons,
"matrix group for dimension and finite field size",
[ IsMatrixGroup and IsFinite,
IsInt and IsPosRat,
IsField and IsFinite ],
function( filter, n, f )
local q, g, o, z, mat1, mat2, i, size, qi;
q:= Size( f );
# handle the trivial case first
if n = 1 then
g := GroupByGenerators( [ ImmutableMatrix( f, [[One(f)]] ) ] );
# now the general case
else
# construct the generators
o := One(f);
z := PrimitiveRoot(f);
mat1 := IdentityMat( n, o );
mat2 := List( Zero(o) * mat1, ShallowCopy );
mat2[1][n] := o;
for i in [ 2 .. n ] do mat2[i][i-1]:= -o; od;
if q = 2 or q = 3 then
mat1[1][2] := o;
else
mat1[1][1] := z;
mat1[2][2] := z^-1;
mat2[1][1] := -o;
fi;
mat1 := ImmutableMatrix(f,mat1);
mat2 := ImmutableMatrix(f,mat2);
g := GroupByGenerators( [ mat1, mat2 ] );
fi;
# set name, dimension and field
SetName( g, Concatenation("SL(",String(n),",",String(q),")") );
SetDimensionOfMatrixGroup( g, n );
SetFieldOfMatrixGroup( g, f );
SetIsFinite( g, true );
if q = 2 then
SetIsNaturalGL( g, true );
fi;
SetIsNaturalSL( g, true );
SetIsFinite(g,true);
# add the size
if n<50 or n+q<500 then
Size(g);
fi;
# return the group
return g;
end );
#############################################################################
##
#E
|