File: arith.gd

package info (click to toggle)
gap 4r4p10-2
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 29,224 kB
  • ctags: 7,084
  • sloc: ansic: 98,591; sh: 3,284; perl: 2,263; makefile: 467; awk: 6
file content (1482 lines) | stat: -rw-r--r-- 58,661 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
#############################################################################
##
#W  arith.gd                    GAP library                     Thomas Breuer
##
#H  @(#)$Id: arith.gd,v 4.71 2003/03/05 15:50:55 gap Exp $
##
#Y  Copyright (C)  1997,  Lehrstuhl D fuer Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St.  Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the declarations of the arithmetic operations, and the
##  declarations of the categories for elements that allow those operations.
##
##  This file contains the definitions of categories for elements in families
##  that allow certain arithmetical operations,
##  and the definition of properties, attributes, and operations for these
##  elements.
##
##  Note that the arithmetical operations are usually only partial functions.
##  This  means that  a  multiplicative  element is  simply an  element whose
##  family allows a multiplication of *some* of its  elements.  It does *not*
##  mean that the the product of *any* two elements in the family is defined,
##
Revision.arith_gd :=
    "@(#)$Id: arith.gd,v 4.71 2003/03/05 15:50:55 gap Exp $";


#############################################################################
##
#C  IsExtAElement( <obj> )
##
##  An *external additive element* is an object that can be added via `+'
##  with other elements (not necessarily in the same family, see~"Families").
##
DeclareCategory( "IsExtAElement", IsObject );
DeclareCategoryCollections( "IsExtAElement" );
DeclareCategoryCollections( "IsExtAElementCollection" );
DeclareSynonym( "IsExtAElementList",
    IsExtAElementCollection and IsList );
DeclareSynonym( "IsExtAElementTable",
    IsExtAElementCollColl   and IsTable );
InstallTrueMethod( IsExtAElement,
    IsExtAElementCollection );


#############################################################################
##
#C  IsNearAdditiveElement( <obj> )
##
##  A *near-additive element* is an object that can be added via `+'
##  with elements in its family (see~"Families");
##  this addition is not necessarily commutative.
##
DeclareCategory( "IsNearAdditiveElement", IsExtAElement );
DeclareCategoryCollections( "IsNearAdditiveElement" );
DeclareCategoryCollections( "IsNearAdditiveElementCollection" );
DeclareCategoryCollections( "IsNearAdditiveElementCollColl" );
DeclareSynonym( "IsNearAdditiveElementList",
    IsNearAdditiveElementCollection and IsList );
DeclareSynonym( "IsNearAdditiveElementTable",
    IsNearAdditiveElementCollColl   and IsTable );
InstallTrueMethod( IsNearAdditiveElement,
    IsNearAdditiveElementList );
InstallTrueMethod( IsNearAdditiveElementList,
    IsNearAdditiveElementTable );


#############################################################################
##
#C  IsNearAdditiveElementWithZero( <obj> )
##
##  A *near-additive element-with-zero* is an object that can be added
##  via `+' with elements in its family (see~"Families"),
##  and that is an admissible argument for the operation `Zero' (see~"Zero");
##  this addition is not necessarily commutative.
##
DeclareCategory( "IsNearAdditiveElementWithZero", IsNearAdditiveElement );
DeclareCategoryCollections( "IsNearAdditiveElementWithZero" );
DeclareCategoryCollections( "IsNearAdditiveElementWithZeroCollection" );
DeclareCategoryCollections( "IsNearAdditiveElementWithZeroCollColl" );
DeclareSynonym( "IsNearAdditiveElementWithZeroList",
    IsNearAdditiveElementWithZeroCollection and IsList );
DeclareSynonym( "IsNearAdditiveElementWithZeroTable",
    IsNearAdditiveElementWithZeroCollColl   and IsTable );
InstallTrueMethod(
    IsNearAdditiveElementWithZero,
    IsNearAdditiveElementWithZeroList );
InstallTrueMethod(
    IsNearAdditiveElementWithZeroList,
    IsNearAdditiveElementWithZeroTable );


#############################################################################
##
#C  IsNearAdditiveElementWithInverse( <obj> )
##
##  A *near-additive element-with-inverse* is an object that can be
##  added via `+' with elements in its family (see~"Families"),
##  and that is an admissible argument for the operations `Zero' (see~"Zero")
##  and `AdditiveInverse' (see~"AdditiveInverse");
##  this addition is not necessarily commutative.
##
DeclareCategory( "IsNearAdditiveElementWithInverse",
    IsNearAdditiveElementWithZero );
DeclareCategoryCollections( "IsNearAdditiveElementWithInverse" );
DeclareCategoryCollections( "IsNearAdditiveElementWithInverseCollection" );
DeclareCategoryCollections( "IsNearAdditiveElementWithInverseCollColl" );
DeclareSynonym( "IsNearAdditiveElementWithInverseList",
    IsNearAdditiveElementWithInverseCollection and IsList );
DeclareSynonym( "IsNearAdditiveElementWithInverseTable",
    IsNearAdditiveElementWithInverseCollColl   and IsTable );
InstallTrueMethod(
    IsNearAdditiveElementWithInverse,
    IsNearAdditiveElementWithInverseList );
InstallTrueMethod(
    IsNearAdditiveElementWithInverseList,
    IsNearAdditiveElementWithInverseTable );


#############################################################################
##
#C  IsAdditiveElement( <obj> )
##
##  An *additive element* is an object that can be added via `+'
##  with elements in its family (see~"Families");
##  this addition is commutative.
##
DeclareCategory( "IsAdditiveElement", IsNearAdditiveElement );
DeclareCategoryCollections( "IsAdditiveElement" );
DeclareCategoryCollections( "IsAdditiveElementCollection" );
DeclareCategoryCollections( "IsAdditiveElementCollColl" );
DeclareSynonym( "IsAdditiveElementList",
    IsAdditiveElementCollection and IsList );
DeclareSynonym( "IsAdditiveElementTable",
    IsAdditiveElementCollColl   and IsTable );
InstallTrueMethod( IsAdditiveElement,
    IsAdditiveElementList );
InstallTrueMethod( IsAdditiveElementList,
    IsAdditiveElementTable );


#############################################################################
##
#C  IsAdditiveElementWithZero( <obj> )
##
##  An *additive element-with-zero* is an object that can be added
##  via `+' with elements in its family (see~"Families"),
##  and that is an admissible argument for the operation `Zero' (see~"Zero");
##  this addition is commutative.
##
DeclareSynonym( "IsAdditiveElementWithZero",
    IsNearAdditiveElementWithZero and IsAdditiveElement );
DeclareSynonym( "IsAdditiveElementWithZeroCollection",
        IsNearAdditiveElementWithZeroCollection
    and IsAdditiveElementCollection );
DeclareSynonym( "IsAdditiveElementWithZeroCollColl",
        IsNearAdditiveElementWithZeroCollColl
    and IsAdditiveElementCollColl );
DeclareSynonym( "IsAdditiveElementWithZeroCollCollColl",
        IsNearAdditiveElementWithZeroCollCollColl
    and IsAdditiveElementCollCollColl );

DeclareSynonym( "IsAdditiveElementWithZeroList",
    IsAdditiveElementWithZeroCollection and IsList );
DeclareSynonym( "IsAdditiveElementWithZeroTable",
    IsAdditiveElementWithZeroCollColl   and IsTable );
InstallTrueMethod(
    IsAdditiveElementWithZero,
    IsAdditiveElementWithZeroList );
InstallTrueMethod(
    IsAdditiveElementWithZeroList,
    IsAdditiveElementWithZeroTable );


#############################################################################
##
#C  IsAdditiveElementWithInverse( <obj> )
##
##  An *additive element-with-inverse* is an object that can be
##  added via `+' with elements in its family (see~"Families"),
##  and that is an admissible argument for the operations `Zero' (see~"Zero")
##  and `AdditiveInverse' (see~"AdditiveInverse");
##  this addition is commutative.
##
DeclareSynonym( "IsAdditiveElementWithInverse",
    IsNearAdditiveElementWithInverse and IsAdditiveElement );
DeclareSynonym( "IsAdditiveElementWithInverseCollection",
        IsNearAdditiveElementWithInverseCollection
    and IsAdditiveElementCollection );
DeclareSynonym( "IsAdditiveElementWithInverseCollColl",
        IsNearAdditiveElementWithInverseCollColl
    and IsAdditiveElementCollColl );
DeclareSynonym( "IsAdditiveElementWithInverseCollCollColl",
        IsNearAdditiveElementWithInverseCollCollColl
    and IsAdditiveElementCollCollColl );

DeclareSynonym( "IsAdditiveElementWithInverseList",
    IsAdditiveElementWithInverseCollection and IsList );
DeclareSynonym( "IsAdditiveElementWithInverseTable",
    IsAdditiveElementWithInverseCollColl   and IsTable );
InstallTrueMethod(
    IsAdditiveElementWithInverse,
    IsAdditiveElementWithInverseList );
InstallTrueMethod(
    IsAdditiveElementWithInverseList,
    IsAdditiveElementWithInverseTable );


#############################################################################
##
#C  IsExtLElement( <obj> )
##
##  An *external left element* is an object that can be multiplied from the
##  left, via `\*', with other elements (not necessarily in the same family,
##  see~"Families").
##
DeclareCategory( "IsExtLElement", IsObject );
DeclareCategoryCollections( "IsExtLElement" );
DeclareCategoryCollections( "IsExtLElementCollection" );
DeclareSynonym( "IsExtLElementList",
    IsExtLElementCollection and IsList );
DeclareSynonym( "IsExtLElementTable",
    IsExtLElementCollColl   and IsTable );
InstallTrueMethod(
    IsExtLElement,
    IsExtLElementCollection );


#############################################################################
##
#C  IsExtRElement( <obj> )
##
##  An *external right element* is an object that can be multiplied from the
##  right, via `\*', with other elements (not necessarily in the same family,
##  see~"Families").
##
DeclareCategory( "IsExtRElement", IsObject );
DeclareCategoryCollections( "IsExtRElement" );
DeclareCategoryCollections( "IsExtRElementCollection" );
DeclareSynonym( "IsExtRElementList",
    IsExtRElementCollection and IsList );
DeclareSynonym( "IsExtRElementTable",
    IsExtRElementCollColl   and IsTable );
InstallTrueMethod(
    IsExtRElement,
    IsExtRElementCollection );


#############################################################################
##
#C  IsMultiplicativeElement( <obj> )
##
##  A *multiplicative element* is an object that can be multiplied via `\*'
##  with elements in its family (see~"Families").
##
DeclareCategory( "IsMultiplicativeElement",
        IsExtLElement and IsExtRElement );
DeclareCategoryCollections( "IsMultiplicativeElement" );
DeclareCategoryCollections( "IsMultiplicativeElementCollection" );
DeclareCategoryCollections( "IsMultiplicativeElementCollColl" );
DeclareSynonym( "IsMultiplicativeElementList",
    IsMultiplicativeElementCollection and IsList );
DeclareSynonym( "IsMultiplicativeElementTable",
    IsMultiplicativeElementCollColl   and IsTable );


#############################################################################
##
#C  IsMultiplicativeElementWithOne( <obj> )
##
##  A *multiplicative element-with-one* is an object that can be multiplied
##  via `\*' with elements in its family (see~"Families"),
##  and that is an admissible argument for the operation `One' (see~"One").
##
DeclareCategory( "IsMultiplicativeElementWithOne",
        IsMultiplicativeElement );
DeclareCategoryCollections( "IsMultiplicativeElementWithOne" );
DeclareCategoryCollections( "IsMultiplicativeElementWithOneCollection" );
DeclareCategoryCollections( "IsMultiplicativeElementWithOneCollColl" );
DeclareSynonym( "IsMultiplicativeElementWithOneList",
    IsMultiplicativeElementWithOneCollection and IsList );
DeclareSynonym( "IsMultiplicativeElementWithOneTable",
    IsMultiplicativeElementWithOneCollColl   and IsTable );


#############################################################################
##
#C  IsMultiplicativeElementWithInverse( <obj> )
##
##  A *multiplicative element-with-inverse* is an object that can be
##  multiplied via `\*' with elements in its family (see~"Families"),
##  and that is an admissible argument for the operations `One' (see~"One")
##  and `Inverse' (see~"Inverse"). (Note the word ``admissible'': an
##  object in this category does not necessarily have an inverse, `Inverse'
##  may return `fail'.)
##
DeclareCategory( "IsMultiplicativeElementWithInverse",
        IsMultiplicativeElementWithOne );
DeclareCategoryCollections( "IsMultiplicativeElementWithInverse" );
DeclareCategoryCollections( "IsMultiplicativeElementWithInverseCollection" );
DeclareCategoryCollections( "IsMultiplicativeElementWithInverseCollColl" );
DeclareSynonym( "IsMultiplicativeElementWithInverseList",
    IsMultiplicativeElementWithInverseCollection and IsList );
DeclareSynonym( "IsMultiplicativeElementWithInverseTable",
    IsMultiplicativeElementWithInverseCollColl   and IsTable );


#############################################################################
##
#C  IsVector( <obj> )
##
##  A *vector* is an additive-element-with-inverse that can be multiplied
##  from the left and right with other objects (not necessarily of the same
##  type).
##  Examples are cyclotomics, finite field elements,
##  and of course row vectors (see below).
##
##  Note that not all lists of ring elements are regarded as vectors,
##  for example lists of matrices are not vectors.
##  This is because although the category `IsAdditiveElementWithInverse' is
##  implied by the join of its collections category and `IsList',
##  the family of a list entry may not imply `IsAdditiveElementWithInverse'
##  for all its elements.
##
DeclareSynonym( "IsVector",
        IsAdditiveElementWithInverse
    and IsExtLElement
    and IsExtRElement );
DeclareSynonym( "IsVectorCollection",
        IsAdditiveElementWithInverseCollection
    and IsExtLElementCollection
    and IsExtRElementCollection );
DeclareSynonym( "IsVectorCollColl",
        IsAdditiveElementWithInverseCollColl
    and IsExtLElementCollColl
    and IsExtRElementCollColl );
DeclareSynonym( "IsVectorList",
        IsAdditiveElementWithInverseList
    and IsExtLElementList
    and IsExtRElementList );
DeclareSynonym( "IsVectorTable",
        IsAdditiveElementWithInverseTable
    and IsExtLElementTable
    and IsExtRElementTable );


#############################################################################
##
#F  IsOddAdditiveNestingDepthFamily( <Fam> )
#F  IsOddAdditiveNestingDepthObject( <Fam> )
##
DeclareFilter( "IsOddAdditiveNestingDepthFamily" );
DeclareFilter( "IsOddAdditiveNestingDepthObject" );


#############################################################################
##
#C  IsRowVector( <obj> )
##
##  A *row vector* is a vector (see~"IsVector") that is also a homogeneous
##  list of odd additive nesting depth
##  (see~"Filters Controlling the Arithmetic Behaviour of Lists").
##  Typical examples are lists of integers and rationals,
##  lists of finite field elements of the same characteristic,
##  and lists of polynomials from a common polynomial ring.
##  Note that matrices are *not* regarded as row vectors, because they have
##  even additive nesting depth.
##
##  The additive operations of the vector must thus be compatible with
##  that for lists, implying that the list entries are the
##  coefficients of the vector with respect to some basis.
##
##  Note that not all row vectors admit a multiplication via `\*'
##  (which is to be understood as a scalar product);
##  for example, class functions are row vectors but the product of two
##  class functions is defined in a different way.
##  For the installation of a scalar product of row vectors, the entries of
##  the vector must be ring elements; note that the default method expects
##  the row vectors to lie in `IsRingElementList', and this category may not
##  be implied by `IsRingElement' for all entries of the row vector
##  (see the comment for `IsVector' in~"IsVector").
##
##  Note that methods for special types of row vectors really must be
##  installed with the requirement `IsRowVector',
##  since `IsVector' may lead to a rank of the method below
##  that of the default method for row vectors (see file `lib/vecmat.gi').
##
DeclareSynonym( "IsRowVector",
    IsVector and IsHomogeneousList and IsOddAdditiveNestingDepthObject );


#############################################################################
##
##  Filters Controlling the Arithmetic Behaviour of Lists
#1
##  The arithmetic behaviour of lists is controlled by their types.
##  The following categories and attributes are used for that.
##  
##  Note that we distinguish additive and multiplicative behaviour.
##  For example, Lie matrices have the usual additive behaviour but not the
##  usual multiplicative behaviour.
##


#############################################################################
##
#C  IsGeneralizedRowVector( <list> )  . . . objects that comply with new list
##                                            addition rules
##
##  For a list <list>, the value `true' for `IsGeneralizedRowVector'
##  indicates that the additive arithmetic behaviour of <list> is
##  as defined in~"Additive Arithmetic for Lists",
##  and that the attribute `NestingDepthA' (see~"NestingDepthA")
##  will return a nonzero value when called with <list>.
##
DeclareCategory( "IsGeneralizedRowVector", IsList );


#############################################################################
##
#C  IsMultiplicativeGeneralizedRowVector( <list> )  . . . . 
##          objects that comply with new list multiplication rules
##
##  For a list <list>, the value `true' for
##  `IsMultiplicativeGeneralizedRowVector' indicates that the multiplicative
##  arithmetic behaviour of <list> is as defined
##  in~"Multiplicative Arithmetic for Lists",
##  and that the attribute `NestingDepthM' (see~"NestingDepthM")
##  will return a nonzero value when called with <list>.
##
DeclareCategory( "IsMultiplicativeGeneralizedRowVector",
    IsGeneralizedRowVector );


#############################################################################
##
#A  NestingDepthA( <obj> )
##
##  For a {\GAP} object <obj>,
##  `NestingDepthA' returns the *additive nesting depth* of <obj>.
##  This is defined recursively
##  as the integer $0$ if <obj> is not in `IsGeneralizedRowVector',
##  as the integer $1$ if <obj> is an empty list in `IsGeneralizedRowVector',
##  and as $1$ plus the additive nesting depth of the first bound entry in
##  <obj> otherwise.
##
DeclareAttribute( "NestingDepthA", IsObject );


#############################################################################
##
#A  NestingDepthM( <obj> )
##
##  For a {\GAP} object <obj>,
##  `NestingDepthM' returns the *multiplicative nesting depth* of <obj>.
##  This is defined recursively as the
##  integer $0$ if <obj> is not in `IsMultiplicativeGeneralizedRowVector',
##  as the integer $1$ if <obj> is an empty list in
##  `IsMultiplicativeGeneralizedRowVector',
##  and as $1$ plus the multiplicative nesting depth of the first bound entry
##  in <obj> otherwise.
##
DeclareAttribute( "NestingDepthM", IsObject );


#############################################################################
##
#C  IsNearRingElement( <obj> )
##
##  `IsNearRingElement' is just a synonym for the join of
##  `IsNearAdditiveElementWithInverse' and `IsMultiplicativeElement'.
##
DeclareSynonym( "IsNearRingElement",
        IsNearAdditiveElementWithInverse
    and IsMultiplicativeElement );
DeclareSynonym( "IsNearRingElementCollection",
        IsNearAdditiveElementWithInverseCollection
    and IsMultiplicativeElementCollection );
DeclareSynonym( "IsNearRingElementCollColl",
        IsNearAdditiveElementWithInverseCollColl
    and IsMultiplicativeElementCollColl );
DeclareSynonym( "IsNearRingElementCollCollColl",
        IsNearAdditiveElementWithInverseCollCollColl
    and IsMultiplicativeElementCollCollColl );
DeclareSynonym( "IsNearRingElementList",
        IsNearAdditiveElementWithInverseList
    and IsMultiplicativeElementList );
DeclareSynonym( "IsNearRingElementTable",
        IsNearAdditiveElementWithInverseTable
    and IsMultiplicativeElementTable );
InstallTrueMethod(
    IsNearRingElement,
    IsNearRingElementTable );

DeclareCategoryFamily( "IsNearRingElement" );


#############################################################################
##
#C  IsNearRingElementWithOne( <obj> )
##
##  `IsNearRingElementWithOne' is just a synonym for the join of
##  `IsNearAdditiveElementWithInverse' and `IsMultiplicativeElementWithOne'.
##
DeclareSynonym( "IsNearRingElementWithOne",
        IsNearAdditiveElementWithInverse
    and IsMultiplicativeElementWithOne );
DeclareSynonym( "IsNearRingElementWithOneCollection",
        IsNearAdditiveElementWithInverseCollection
    and IsMultiplicativeElementWithOneCollection );
DeclareSynonym( "IsNearRingElementWithOneCollColl",
        IsNearAdditiveElementWithInverseCollColl
    and IsMultiplicativeElementWithOneCollColl );
DeclareSynonym( "IsNearRingElementWithOneCollCollColl",
        IsNearAdditiveElementWithInverseCollCollColl
    and IsMultiplicativeElementWithOneCollCollColl );
DeclareSynonym( "IsNearRingElementWithOneList",
        IsNearAdditiveElementWithInverseList
    and IsMultiplicativeElementWithOneList );
DeclareSynonym( "IsNearRingElementWithOneTable",
        IsNearAdditiveElementWithInverseTable
    and IsMultiplicativeElementWithOneTable );
InstallTrueMethod(
    IsNearRingElementWithOne,
    IsNearRingElementWithOneTable );


#############################################################################
##
#C  IsNearRingElementWithInverse( <obj> )
##
DeclareSynonym( "IsNearRingElementWithInverse",
        IsNearAdditiveElementWithInverse
    and IsMultiplicativeElementWithInverse );
DeclareSynonym( "IsNearRingElementWithInverseCollection",
        IsNearAdditiveElementWithInverseCollection
    and IsMultiplicativeElementWithInverseCollection );
DeclareSynonym( "IsNearRingElementWithInverseCollColl",
        IsNearAdditiveElementWithInverseCollColl
    and IsMultiplicativeElementWithInverseCollColl );
DeclareSynonym( "IsNearRingElementWithInverseCollCollColl",
        IsNearAdditiveElementWithInverseCollCollColl
    and IsMultiplicativeElementWithInverseCollCollColl );
DeclareSynonym( "IsNearRingElementWithInverseList",
        IsNearAdditiveElementWithInverseList
    and IsMultiplicativeElementWithInverseList );
DeclareSynonym( "IsNearRingElementWithInverseTable",
        IsNearAdditiveElementWithInverseTable
    and IsMultiplicativeElementWithInverseTable );
InstallTrueMethod(
    IsNearRingElementWithInverse,
    IsNearRingElementWithInverseTable );


#############################################################################
##
#C  IsRingElement( <obj> )
##
##  `IsRingElement' is just a synonym for the join of
##  `IsAdditiveElementWithInverse' and `IsMultiplicativeElement'.
##
DeclareSynonym( "IsRingElement",
        IsAdditiveElementWithInverse
    and IsMultiplicativeElement );
DeclareSynonym( "IsRingElementCollection",
        IsAdditiveElementWithInverseCollection
    and IsMultiplicativeElementCollection );
DeclareSynonym( "IsRingElementCollColl",
        IsAdditiveElementWithInverseCollColl
    and IsMultiplicativeElementCollColl );
DeclareSynonym( "IsRingElementCollCollColl",
        IsAdditiveElementWithInverseCollCollColl
    and IsMultiplicativeElementCollCollColl );
DeclareSynonym( "IsRingElementList",
        IsAdditiveElementWithInverseList
    and IsMultiplicativeElementList );
DeclareSynonym( "IsRingElementTable",
        IsAdditiveElementWithInverseTable
    and IsMultiplicativeElementTable );
InstallTrueMethod(
    IsRingElement,
    IsRingElementTable );

DeclareCategoryFamily( "IsRingElement" );


#############################################################################
##
#C  IsRingElementWithOne( <obj> )
##
##  `IsRingElementWithOne' is just a synonym for the join of
##  `IsAdditiveElementWithInverse' and `IsMultiplicativeElementWithOne'.
##
DeclareSynonym( "IsRingElementWithOne",
        IsAdditiveElementWithInverse
    and IsMultiplicativeElementWithOne );
DeclareSynonym( "IsRingElementWithOneCollection",
        IsAdditiveElementWithInverseCollection
    and IsMultiplicativeElementWithOneCollection );
DeclareSynonym( "IsRingElementWithOneCollColl",
        IsAdditiveElementWithInverseCollColl
    and IsMultiplicativeElementWithOneCollColl );
DeclareSynonym( "IsRingElementWithOneCollCollColl",
        IsAdditiveElementWithInverseCollCollColl
    and IsMultiplicativeElementWithOneCollCollColl );
DeclareSynonym( "IsRingElementWithOneList",
        IsAdditiveElementWithInverseList
    and IsMultiplicativeElementWithOneList );
DeclareSynonym( "IsRingElementWithOneTable",
        IsAdditiveElementWithInverseTable
    and IsMultiplicativeElementWithOneTable );
InstallTrueMethod(
    IsRingElementWithOne,
    IsRingElementWithOneTable );


#############################################################################
##
#C  IsRingElementWithInverse( <obj> )
#C  IsScalar( <obj> )
##
##  `IsRingElementWithInverse' and `IsScalar' are just synonyms for the join
##  of
##  `IsAdditiveElementWithInverse' and `IsMultiplicativeElementWithInverse'.
##
DeclareSynonym( "IsRingElementWithInverse",
        IsAdditiveElementWithInverse
    and IsMultiplicativeElementWithInverse );
DeclareSynonym( "IsRingElementWithInverseCollection",
        IsAdditiveElementWithInverseCollection
    and IsMultiplicativeElementWithInverseCollection );
DeclareSynonym( "IsRingElementWithInverseCollColl",
        IsAdditiveElementWithInverseCollColl
    and IsMultiplicativeElementWithInverseCollColl );
DeclareSynonym( "IsRingElementWithInverseCollCollColl",
        IsAdditiveElementWithInverseCollCollColl
    and IsMultiplicativeElementWithInverseCollCollColl );
DeclareSynonym( "IsRingElementWithInverseList",
        IsAdditiveElementWithInverseList
    and IsMultiplicativeElementWithInverseList );
DeclareSynonym( "IsRingElementWithInverseTable",
        IsAdditiveElementWithInverseTable
    and IsMultiplicativeElementWithInverseTable );
InstallTrueMethod(
    IsRingElementWithInverse,
    IsRingElementWithInverseTable );

DeclareSynonym( "IsScalar",           IsRingElementWithInverse );
DeclareSynonym( "IsScalarCollection", IsRingElementWithInverseCollection );
DeclareSynonym( "IsScalarCollColl",   IsRingElementWithInverseCollColl );
DeclareSynonym( "IsScalarList",       IsRingElementWithInverseList );
DeclareSynonym( "IsScalarTable",      IsRingElementWithInverseTable );

#############################################################################
##
#C  IsZDFRE( <obj> )
##
##  This category (``is zero divisor free ring element'') indicates elements
##  from a ring which contains no zero divisors. For matrix operations over
##  this ring, a standard Gauss algorithm can be used.
##
DeclareCategory("IsZDFRE",IsRingElementWithInverse);
DeclareCategoryCollections("IsZDFRE");
DeclareCategoryCollections("IsZDFRECollection");


#############################################################################
##
#C  IsMatrix( <obj> )
##
##  A *matrix* is a list of lists of equal length whose entries lie in a
##  common ring.
##
##  Note that matrices may have different multiplications,
##  besides the usual matrix product there is for example the Lie product.
##  So there are categories such as `IsOrdinaryMatrix' and `IsLieMatrix'
##  (see~"IsOrdinaryMatrix", "IsLieMatrix")
##  that describe the matrix multiplication.
##  One can form the product of two matrices only if they support the same
##  multiplication.
#T
#T  In order to avoid that a matrix supports more than one multiplication,
#T  appropriate immediate methods are installed (see~`arith.gi').
##
DeclareSynonym( "IsMatrix", IsRingElementTable );
DeclareCategoryCollections( "IsMatrix" );


#############################################################################
##
#C  IsOrdinaryMatrix( <obj> )
##
##  An *ordinary matrix* is a matrix whose multiplication is the ordinary
##  matrix multiplication.
##
##  Each matrix in internal representation is in the category
##  `IsOrdinaryMatrix',
##  and arithmetic operations with objects in `IsOrdinaryMatrix' produce
##  again matrices in `IsOrdinaryMatrix'.
##
##  Note that we want that Lie matrices shall be matrices that behave in the
##  same way as ordinary matrices, except that they have a different
##  multiplication.
##  So we must distinguish the different matrix multiplications,
##  in order to be able to describe the applicability of multiplication,
##  and also in order to form a matrix of the appropriate type as the
##  sum, difference etc.~of two matrices which have the same multiplication.
##
DeclareCategory( "IsOrdinaryMatrix", IsMatrix );
DeclareCategoryCollections( "IsOrdinaryMatrix" );
#T get rid of this filter!!

InstallTrueMethod( IsOrdinaryMatrix, IsMatrix and IsInternalRep );
InstallTrueMethod( IsGeneralizedRowVector, IsMatrix );
#T get rid of that hack!
InstallTrueMethod( IsMultiplicativeGeneralizedRowVector,
        IsOrdinaryMatrix );


#############################################################################
##
#C  IsLieMatrix( <mat> )
##
##  A *Lie matrix* is a matrix whose multiplication is given by the
##  Lie bracket.
##  (Note that a matrix with ordinary matrix multiplication is in the
##  category `IsOrdinaryMatrix', see~"IsOrdinaryMatrix".)
##
##  Each matrix created by `LieObject' is in the category `IsLieMatrix',
##  and arithmetic operations with objects in `IsLieMatrix' produce
##  again matrices in `IsLieMatrix'.
##
#T  (We do not claim that every object in `IsLieMatrix' is also contained in
#T  `IsLieObject', since the former describes the containment in a certain
#T  family and the latter describes a certain matrix multiplication;
#T  probably this distinction is unnecessary.)
##
DeclareCategory( "IsLieMatrix", IsGeneralizedRowVector and IsMatrix );


#############################################################################
##
#C  IsAssociativeElement( <obj> ) . . . elements belonging to assoc. families
#C  IsAssociativeElementCollection( <obj> )
#C  IsAssociativeElementCollColl( <obj> )
##
##  An element <obj> in the category `IsAssociativeElement' knows
##  that the multiplication of any elements in the family of <obj>
##  is associative.
##  For example, all permutations lie in this category, as well as those
##  ordinary matrices (see~"IsOrdinaryMatrix") whose entries are also in
##  `IsAssociativeElement'.
##
DeclareCategory( "IsAssociativeElement", IsMultiplicativeElement );
DeclareCategoryCollections( "IsAssociativeElement" );
DeclareCategoryCollections( "IsAssociativeElementCollection" );


#############################################################################
##
#M  IsAssociativeElement( <mat> ) . . . . . . . for certain ordinary matrices
##
##  Matrices with associative multiplication
##  and with entries in an associative family
##  are themselves associative elements.
##
InstallTrueMethod( IsAssociativeElement,
    IsOrdinaryMatrix and IsAssociativeElementCollColl );


#############################################################################
##
#C  IsAdditivelyCommutativeElement( <obj> )
#C  IsAdditivelyCommutativeElementCollection( <obj> )
#C  IsAdditivelyCommutativeElementCollColl( <obj> )
#C  IsAdditivelyCommutativeElementFamily( <obj> )
##
##  An element <obj> in the category `IsAdditivelyCommutativeElement' knows
##  that the addition of any elements in the family of <obj>
##  is commutative.
##  For example, each finite field element and each rational number lies in
##  this category.
##
DeclareCategory( "IsAdditivelyCommutativeElement", IsNearAdditiveElement );
DeclareCategoryCollections( "IsAdditivelyCommutativeElement" );
DeclareCategoryCollections( "IsAdditivelyCommutativeElementCollection" );

DeclareCategoryFamily( "IsAdditivelyCommutativeElement" );


#############################################################################
##
#M  IsAdditivelyCommutativeElement( <mat> ) . . . . . .  for certain matrices
##
##  Matrices with entries in an additively commutative family
##  are themselves additively commutative elements.
##
InstallTrueMethod( IsAdditivelyCommutativeElement,
    IsMatrix and IsAdditivelyCommutativeElementCollColl );


#############################################################################
##
#M  IsAdditivelyCommutativeElement( <mat> ) . . . . . for certain row vectors
##
##  Row vectors with entries in an additively commutative family
##  are themselves additively commutative elements.
##
InstallTrueMethod( IsAdditivelyCommutativeElement,
    IsRowVector and IsAdditivelyCommutativeElementCollection );


#############################################################################
##
#C  IsCommutativeElement( <obj> ) . . .  elements belonging to comm. families
#C  IsCommutativeElementCollection( <obj> )
#C  IsCommutativeElementCollColl( <obj> )
##
##  An element <obj> in the category `IsCommutativeElement' knows
##  that the multiplication of any elements in the family of <obj>
##  is commutative.
##  For example, each finite field element and each rational number lies in
##  this category.
##
DeclareCategory( "IsCommutativeElement", IsMultiplicativeElement );
DeclareCategoryCollections( "IsCommutativeElement" );
DeclareCategoryCollections( "IsCommutativeElementCollection" );


#############################################################################
##
#C  IsFiniteOrderElement( <obj> )
#C  IsFiniteOrderElementCollection( <obj> )
#C  IsFiniteOrderElementCollColl( <obj> )
##
##  An element <obj> in the category `IsFiniteOrderElement' knows
##  that it has finite multiplicative order.
##  For example, each finite field element and each permutation lies in
##  this category.
##  However the value may be `false' even if <obj> has finite order,
##  but if this was not known when <obj> was constructed.
##
##  Although it is legal to set this filter for any object with finite order,
##  this is really useful only in the case that all elements of a family are
##  known to have finite order.
##
DeclareCategory( "IsFiniteOrderElement",
    IsMultiplicativeElementWithInverse );
DeclareCategoryCollections( "IsFiniteOrderElement" );
DeclareCategoryCollections( "IsFiniteOrderElementCollection" );


#############################################################################
##
#C  IsJacobianElement( <obj> )  . elements belong. to fam. with Jacobi ident.
#C  IsJacobianElementCollection( <obj> )
#C  IsJacobianElementCollColl( <obj> )
##
##  An element <obj> in the category `IsJacobianElement' knows
##  that the multiplication of any elements in the family $F$ of <obj>
##  satisfies the Jacobi identity, that is,
##  $x \* y \* z + z \* x \* y + y \* z \* x$ is zero
##  for all $x$, $y$, $z$ in $F$.
##
##  For example, each Lie matrix (see~"IsLieMatrix") lies in this category.
##
DeclareCategory( "IsJacobianElement", IsRingElement );
DeclareCategoryCollections( "IsJacobianElement" );
DeclareCategoryCollections( "IsJacobianElementCollection" );


#############################################################################
##
#C  IsZeroSquaredElement( <obj> ) . . . elements belong. to zero squared fam.
#C  IsZeroSquaredElementCollection( <obj> )
#C  IsZeroSquaredElementCollColl( <obj> )
##
##  An element <obj> in the category `IsZeroSquaredElement' knows
##  that `<obj>^2 = Zero( <obj> )'.
##  For example, each Lie matrix (see~"IsLieMatrix") lies in this category.
##
##  Although it is legal to set this filter for any zero squared object,
##  this is really useful only in the case that all elements of a family are
##  known to have square zero.
##
DeclareCategory( "IsZeroSquaredElement", IsRingElement );
DeclareCategoryCollections( "IsZeroSquaredElement" );
DeclareCategoryCollections( "IsZeroSquaredElementCollection" );


#############################################################################
##
#P  IsZero( <elm> ) . . . . . . . . . . . . . . . . . . test for zero element
##
##  is `true' if `<elm> = Zero( <elm> )', and `false' otherwise.
##
DeclareProperty( "IsZero", IsAdditiveElementWithZero );


#############################################################################
##
#P  IsOne( <elm> )  . . . . . . . . . . . . . . . . test for identity element
##
##  is `true' if `<elm> = One( <elm> )', and `false' otherwise.
##
DeclareProperty( "IsOne", IsMultiplicativeElementWithOne );


#############################################################################
##
#A  ZeroImmutable( <obj> )  . .  additive neutral of an element/domain/family
#A  ZeroAttr( <obj> )            synonym of ZeroImmutable
#A  Zero( <obj> )                synonym of ZeroImmutable
#O  ZeroMutable( <obj> )  . . . . . .  mutable additive neutral of an element
#O  ZeroOp( <obj> )              synonym of ZeroMutable
#O  ZeroSameMutability( <obj> )  mutability preserving zero (0*<obj>)
#O  ZeroSM( <obj> )              synonym of ZeroSameMutability
##
##  `ZeroImmutable', `ZeroMutable', and `ZeroSameMutability' all
##  return the additive neutral element of the additive element <obj>.
##
##  They differ only w.r.t. the mutability of the result.
##  `ZeroImmutable' is an attribute and hence returns an immutable result.
##  `ZeroMutable' is guaranteed to return a new *mutable* object whenever
##  a mutable version of the required element exists in {\GAP}
##  (see~"IsCopyable").
##  `ZeroSameMutability' returns a result that is mutable if <obj> is mutable
##  and if a mutable version of the required element exists in {\GAP};
##  for lists, it returns a result of the same immutability level as
##  the argument. For instance, if the argument is a mutable matrix
##  with immutable rows, it returns a similar object.
##
##  `ZeroSameMutability( <obj> )' is equivalent to `0 \* <obj>'.
##
##  `ZeroAttr' and `Zero' are synonyms of `ZeroImmutable'.
##  `ZeroSM' is a synonym of `ZeroSameMutability'.
##  `ZeroOp' is a synonym of `ZeroMutable'.
##
##  If <obj> is a domain or a family then `Zero' is defined as the zero
##  element of all elements in <obj>,
##  provided that all these elements have the same zero.
##  For example, the family of all cyclotomics has the zero element `0',
##  but a collections family (see~"CollectionsFamily") may contain
##  matrices of all dimensions and then it cannot have a unique zero element.
##  Note that `Zero' is applicable to a domain only if it is an
##  additive magma-with-zero (see~"IsAdditiveMagmaWithZero");
##  use `AdditiveNeutralElement' (see~"AdditiveNeutralElement") otherwise.
##
##  The default method of `Zero' for additive elements calls `ZeroMutable'
##  (note that methods for `ZeroMutable' must *not* delegate to `Zero');
##  so other methods to compute zero elements need to be installed only for
##  `ZeroMutable' and (in the case of copyable objects) `ZeroSameMutability'.
##
##  For domains, `Zero' may call `Representative' (see~"Representative"),
##  but `Representative' is allowed to fetch the zero of a domain <D>
##  only if `HasZero( <D> )' is `true'.
##
DeclareAttribute( "ZeroImmutable", IsAdditiveElementWithZero );
DeclareAttribute( "ZeroImmutable", IsFamily );

DeclareSynonymAttr( "ZeroAttr", ZeroImmutable );
DeclareSynonymAttr( "Zero", ZeroImmutable );

DeclareOperationKernel( "ZeroMutable", [ IsAdditiveElementWithZero ],
    ZERO_MUT );
DeclareSynonym( "ZeroOp", ZeroMutable );

DeclareOperationKernel( "ZeroSameMutability", [ IsAdditiveElementWithZero ],
    ZERO );
DeclareSynonym( "ZeroSM", ZeroSameMutability );


#############################################################################
##
#o  `<elm1>+<elm2>' . . . . . . . . . . . . . . . . . . . sum of two elements
##

#DeclareOperation( "+", [ IsExtAElement, IsExtAElement ] );
DeclareOperationKernel( "+", [ IsExtAElement, IsExtAElement ], SUM );


#############################################################################
##
#A  AdditiveInverseImmutable( <elm> )  . . . . additive inverse of an element
#A  AdditiveInverseAttr( <elm> )  . . . .      additive inverse of an element
#A  AdditiveInverse( <elm> )  . . . .          additive inverse of an element
#O  AdditiveInverseMutable( <elm> )  . mutable additive inverse of an element
#O  AdditiveInverseOp( <elm> )       . mutable additive inverse of an element
#O  AdditiveInverseSameMutability( <elm> )  .  additive inverse of an element
#O  AdditiveInverseSM( <elm> )              .  additive inverse of an element
##
##  `AdditiveInverseImmutable', `AdditiveInverseMutable', and 
##  `AdditiveInverseSameMutability' all return the
##  additive inverse of <elm>.
##
##  They differ only w.r.t. the mutability of the result.
##  `AdditiveInverseImmutable' is an attribute and hence returns an
##  immutable result.  `AdditiveInverseMutable' is guaranteed to
##  return a new *mutable* object whenever a mutable version of the
##  required element exists in {\GAP} (see~"IsCopyable").
##  `AdditiveInverseSameMutability' returns a result that is mutable
##  if <elm> is mutable and if a mutable version of the required
##  element exists in {\GAP};
##  for lists, it returns a result of the same immutability level as
##  the argument. For instance, if the argument is a mutable matrix
##  with immutable rows, it returns a similar object.
##
##  `AdditiveInverseSameMutability( <elm> )' is equivalent to `-<elm>'.
##
##  `AdditiveInverseAttr' and `AdditiveInverse' are synonyms of `AdditiveInverseImmutable'.
##  `AdditiveInverseSM' is a synonym of `AdditiveInverseSameMutability'.
##  `AdditiveInverseOp' is a synonym of `AdditiveInverseMutable'.
##
##  The default method of `AdditiveInverse' calls `AdditiveInverseMutable'
##  (note that methods for `AdditiveInverseMutable' must *not* delegate to
##  `AdditiveInverse');
##  so other methods to compute additive inverses need to be installed only
##  for `AdditiveInverseMutable' and (in the case of copyable objects)
##  `AdditiveInverseSameMutability'.
##
DeclareAttribute( "AdditiveInverseImmutable", IsAdditiveElementWithInverse );
DeclareSynonymAttr( "AdditiveInverseAttr", AdditiveInverseImmutable );
DeclareSynonymAttr( "AdditiveInverse", AdditiveInverseImmutable );

DeclareOperationKernel( "AdditiveInverseMutable",
    [ IsAdditiveElementWithInverse ], AINV_MUT);
DeclareSynonym( "AdditiveInverseOp", AdditiveInverseMutable);

DeclareOperationKernel( "AdditiveInverseSameMutability", 
    [ IsAdditiveElementWithInverse ], AINV );
DeclareSynonym( "AdditiveInverseSM", AdditiveInverseSameMutability);


#############################################################################
##
#o  `<elm1>-<elm2>' . . . . . . . . . . . . . . .  difference of two elements
##

#DeclareOperation( "-", [ IsExtAElement, IsAdditiveElementWithInverse ] );
DeclareOperationKernel( "-", 
	[ IsExtAElement, IsNearAdditiveElementWithInverse ], DIFF );


#############################################################################
##
#o  `<elm1>*<elm2>' . . . . . . . . . . . . . . . . . product of two elements
##

#DeclareOperation( "*", [ IsExtRElement, IsExtLElement ] );
DeclareOperationKernel( "*", [ IsExtRElement, IsExtLElement ], PROD );


#############################################################################
##
#A  OneImmutable( <obj> )  multiplicative neutral of an element/domain/family
#A  OneAttr( <obj> )
#A  One( <obj> )
#A  Identity( <obj> )
#O  OneMutable( <obj> )  . . . . . . . .  multiplicative neutral of an element
#O  OneOp( <obj> )  
#O  OneSameMutability( <obj> )
#O  OneSM( <obj> )
##
##  `OneImmutable', `OneMutable', and `OneSameMutability' return the
##  multiplicative neutral element of the multiplicative element <obj>.
##
##  They differ only w.r.t. the mutability of the result.
##  `OneImmutable' is an attribute and hence returns an immutable result.
##  `OneMutable' is guaranteed to return a new *mutable* object whenever
##  a mutable version of the required element exists in {\GAP}
##  (see~"IsCopyable").
##  `OneSameMutability' returns a result that is mutable if <obj> is mutable
##  and if a mutable version of the required element exists in {\GAP};
##  for lists, it returns a result of the same immutability level as
##  the argument. For instance, if the argument is a mutable matrix
##  with immutable rows, it returns a similar object.
##
##  If <obj> is a multiplicative element then `OneSameMutability( <obj> )'
##  is equivalent to `<obj>^0'.
##
##  `OneAttr', `One' and `Identity' are synonyms of `OneImmutable'.
##  `OneSM' is a synonym of `OneSameMutability'.
##  `OneOp' is a synonym of `OneMutable'.
##
##  If <obj> is a domain or a family then `One' is defined as the identity
##  element of all elements in <obj>, 
##  provided that all these elements have the same identity.
##  For example, the family of all cyclotomics has the identity element `1',
##  but a collections family (see~"CollectionsFamily") may contain
##  matrices of all dimensions and then it cannot have a unique identity
##  element.
##  Note that `One' is applicable to a domain only if it is a
##  magma-with-one (see~"IsMagmaWithOne");
##  use `MultiplicativeNeutralElement' (see~"MultiplicativeNeutralElement")
##  otherwise.
##
##  The identity of an object need not be distinct from its zero,
##  so for example a ring consisting of a single element can be regarded as a
##  ring-with-one (see~"Rings").
##  This is particularly useful in the case of finitely presented algebras,
##  where any factor of a free algebra-with-one is again an algebra-with-one,
##  no matter whether or not it is a zero algebra.
##
##  The default method of `One' for multiplicative elements calls
##  `OneMutable' (note that methods for `OneMutable' must *not* delegate to
##  `One');
##  so other methods to compute identity elements need to be installed only
##  for `OneOp' and (in the case of copyable objects) `OneSameMutability'.
##
##  For domains, `One' may call `Representative' (see~"Representative"),
##  but `Representative' is allowed to fetch the identity of a domain <D>
##  only if `HasOne( <D> )' is `true'.
##
DeclareAttribute( "OneImmutable", IsMultiplicativeElementWithOne );
DeclareAttribute( "OneImmutable", IsFamily );

DeclareSynonymAttr( "OneAttr", OneImmutable );
DeclareSynonymAttr( "One", OneImmutable );
DeclareSynonymAttr( "Identity", OneImmutable );

DeclareOperationKernel( "OneMutable", [ IsMultiplicativeElementWithOne ],
    ONE );
DeclareSynonym( "OneOp", OneMutable);

DeclareOperationKernel( "OneSameMutability",
    [ IsMultiplicativeElementWithOne ], ONE_MUT );
DeclareSynonym( "OneSM", OneSameMutability);


#############################################################################
##
#A  InverseImmutable( <elm> )   . . . .  multiplicative inverse of an element
#A  InverseAttr( <elm> )
#A  Inverse( <elm> )
#O  InverseMutable( <elm> )
#O  InverseOp( <elm> )
#O  InverseSameMutability( <elm> )  . .  multiplicative inverse of an element
#O  InverseSM( <elm> )
##
##  `InverseImmutable', `InverseMutable', and `InverseSameMutability'
##  all return the multiplicative inverse of an element <elm>,
##  that is, an element <inv> such that
##  `<elm> * <inv> = <inv> * <elm> = One( <elm> )' holds;
##  if <elm> is not invertible then `fail' (see~"Fail") is returned.
##
##  Note that the above definition implies that a (general) mapping
##  is invertible in the sense of `Inverse' only if its source equals its
##  range (see~"Technical Matters Concerning General Mappings").
##  For a bijective mapping $f$ whose source and range differ,
##  `InverseGeneralMapping' (see~"InverseGeneralMapping") can be used
##  to construct a mapping $g$ with the property
##  that $f `*' g$ is the identity mapping on the source of $f$
##  and $g `*' f$ is the identity mapping on the range of $f$.
##
##  The operations differ only w.r.t. the mutability of the result.
##  `InverseImmutable' is an attribute and hence returns an immutable result.
##  `InverseMutable' is guaranteed to return a new *mutable* object whenever
##  a mutable version of the required element exists in {\GAP}.
##  `InverseSameMutability' returns a result that is mutable if <elm> is
##  mutable and if a mutable version of the required element exists in
##  {\GAP}; for lists, it returns a result of the same immutability level as
##  the argument. For instance, if the argument is a mutable matrix
##  with immutable rows, it returns a similar object.
##
##  `InverseSameMutability( <elm> )' is equivalent to `<elm>^-1'.
##
##  `InverseAttr' and `Inverse' are synonyms of `InverseImmutable'.
##  `InverseSM' is a synonym of `InverseSameMutability'.
##  `InverseOp' is a synonym of `InverseMutable'.
##
##  The default method of `InverseImmutable' calls `InverseMutable' (note that methods
##  for `InverseMutable' must *not* delegate to `InverseImmutable');
##  other methods to compute inverses need to be installed only for
##  `InverseMutable' and (in the case of copyable objects)
##  `InverseSameMutability'.
##
DeclareAttribute( "InverseImmutable", IsMultiplicativeElementWithInverse );
DeclareSynonymAttr( "InverseAttr", InverseImmutable );
DeclareSynonymAttr( "Inverse", InverseImmutable );

DeclareOperationKernel( "InverseMutable",
    [ IsMultiplicativeElementWithInverse ], INV );
DeclareSynonym( "InverseOp", InverseMutable );

DeclareOperationKernel( "InverseSameMutability",
    [ IsMultiplicativeElementWithInverse ], INV_MUT );
DeclareSynonym( "InverseSM", InverseSameMutability );


#############################################################################
##
#o  `<elm1>/<elm2>' . . . . . . . . . . . . . . . .  quotient of two elements
##

#DeclareOperation( "/",
#    [ IsExtRElement, IsMultiplicativeElementWithInverse ] );
DeclareOperationKernel( "/",
    [ IsExtRElement, IsMultiplicativeElementWithInverse ],
    QUO );


#############################################################################
##
#O  LeftQuotient( <elm1>, <elm2> )  . . . . . . left quotient of two elements
##
##  returns the product `<elm1>^(-1) \* <elm2>'.
##  For some types of objects (for example permutations) this product can be
##  evaluated more efficiently than by first inverting <elm1>
##  and then forming the product with <elm2>.
##

#DeclareOperation( "LeftQuotient",
#    [ IsMultiplicativeElementWithInverse, IsExtLElement ] );
DeclareOperationKernel( "LeftQuotient",
    [ IsMultiplicativeElementWithInverse, IsExtLElement ],
    LQUO );


#############################################################################
##
#o  `<elm1>^<elm2>' . . . . . . . . .  . . . . . . . .  power of two elements
##

#DeclareOperation( "^",
#    [ IsMultiplicativeElement, IsMultiplicativeElement ] );
DeclareOperationKernel( "^",
    [ IsMultiplicativeElement, IsMultiplicativeElement ],
    POW );
#T  How is powering defined for nonassociative multiplication ??


#############################################################################
##
#O  Comm( <elm1>, <elm2> )  . . . . . . . . . . .  commutator of two elements
##
##  returns the *commutator* of <elm1> and <elm2>. The commutator is defined
##  as the product $<elm1>^{-1} \* <elm2>^{-1} \* <elm1> \* <elm2>$.
##

#DeclareOperation( "Comm",
#    [ IsMultiplicativeElementWithInverse,
#      IsMultiplicativeElementWithInverse ] );
DeclareOperationKernel( "Comm",
    [ IsMultiplicativeElementWithInverse,
      IsMultiplicativeElementWithInverse ],
    COMM );


#############################################################################
##
#O  LieBracket( <elm1>, <elm2> )  . . . . . . . . Lie bracket of two elements
##
##  returns the element `<elm1> \* <elm2> - <elm2> \* <elm1>'.
##
DeclareOperation( "LieBracket", [ IsRingElement, IsRingElement ] );


#############################################################################
##
#o  `<elm1> mod <elm2>' . . . . . . . . . . . . . . . modulus of two elements
##

#DeclareOperation( "mod", [ IsObject, IsObject ] );
DeclareOperationKernel( "mod", [ IsObject, IsObject ], MOD );


#############################################################################
##
#A  Int( <elm> )  . . . . . . . . . . . . . . . . . .  integer value of <elm>
##
##  `Int' returns an integer <int> whose meaning depends on the type
##  of <elm>.
##
##  If <elm> is a rational number (see~"Rational Numbers") then <int> is the
##  integer part of the quotient of numerator and denominator of <elm>
##  (see~"QuoInt").
##
##  If <elm> is an element of a finite prime field
##  (see Chapter~"Finite Fields") then <int> is the smallest
##  nonnegative integer such that `<elm> = <int> \* One( <elm> )'.
##
##  If <elm> is a string (see Chapter~"Strings and Characters") consisting of
##  digits `{'0'}', `{'1'}', $\ldots$, `{'9'}'
##  and `{'-'}' (at the first position) then <int> is the integer
##  described by this string.
##  The operation `String' (see~"String") can be used to compute a string for
##  rational integers, in fact for all cyclotomics.
##
##  \beginexample
##  gap> Int( 4/3 );  Int( -2/3 );
##  1
##  0
##  gap> int:= Int( Z(5) );  int * One( Z(5) );
##  2
##  Z(5)
##  gap> Int( "12345" );  Int( "-27" );  Int( "-27/3" );
##  12345
##  -27
##  fail
##  \endexample
##
DeclareAttribute( "Int", IsObject );


#############################################################################
##
#A  Rat( <elm> )  . . . . . . . . . . . . . . . . . . rational value of <elm>
##
##  `Rat' returns a rational number <rat> whose meaning depends on the type
##  of <elm>.
##
##  If <elm> is a string consisting of digits `{'0'}', `{'1'}', $\ldots$,
##  `{'9'}' and `{'-'}' (at the first position), `{'/'}' and the decimal dot
##  `{'.'}' then <rat> is the rational described by this string.
##  The operation `String' (see~"String") can be used to compute a string for
##  rational numbers, in fact for all cyclotomics.
##
##  \beginexample
##  gap> Rat( "1/2" );  Rat( "35/14" );  Rat( "35/-27" );  Rat( "3.14159" );
##  1/2
##  5/2
##  -35/27
##  314159/100000
##  \endexample
##
DeclareAttribute( "Rat", IsObject );


#############################################################################
##
#O  Sqrt( <obj> )
##
##  `Sqrt' returns a square root of <obj>, that is, an object $x$ with the
##  property that $x \cdot x = <obj>$ holds.
##  If such an $x$ is not unique then the choice of $x$ depends on the type
##  of <obj>.
##  For example, `ER' (see~"ER") is the `Sqrt' method for rationals
##  (see~"IsRat").
##
DeclareOperation( "Sqrt", [ IsMultiplicativeElement ] );


#############################################################################
##
#O  Root( <n>, <k> )
#O  Root( <n> )
##
DeclareOperation( "Root", [ IsMultiplicativeElement, IS_INT ] );


#############################################################################
##
#O  Log( <elm>, <base> )
##
DeclareOperation( "Log",
    [ IsMultiplicativeElement, IsMultiplicativeElement ] );


#############################################################################
##
#A  Characteristic( <obj> ) . . .  characteristic of an element/domain/family
##
##  `Characteristic' returns the *characteristic* of <obj>,
##  where <obj> must either be an additive element, a domain or a family.
##
##  For a domain <D>, the characteristic is defined if <D> is closed under
##  addition and has a zero element `<z> = Zero( <D> )' (see~"Zero");
##  in this case, `Characteristic( <D> )' is the smallest positive integer
##  <p> such that `<p> * <x> = <z>' for all elements <x> in <D>,
##  if such an integer exists, and the integer zero `0' otherwise.
##
##  If a family has a characteristic then this means
##  that all domains of elements in this family have this characteristic.
##  In this case, also each element in the family has this characteristic.
##  (Note that also the zero element $z$ of a finite field in characteristic
##  $p$ has characteristic $p$, although $n \* z = z$ for any integer $n$.)
##  
DeclareAttribute( "Characteristic", IsObject );


#############################################################################
##
#A  Order( <elm> )
##
##  is the multiplicative order of <elm>.
##  This is the smallest positive integer <n> such that
##  `<elm>^<n> = One( <elm> )' if such an integer exists. If the order is
##  infinite, `Order' may return the value `infinity', but it also might run
##  into an infinite loop trying to test the order.
##
DeclareAttribute( "Order", IsMultiplicativeElementWithOne );


#############################################################################
##
#A  NormedRowVector( <v> )
##
##  returns a scalar multiple `<w> = <c> \* <v>' of the row vector <v>
##  with the property that the first nonzero entry of <w> is an identity
##  element in the sense of `IsOne'.
##
DeclareAttribute( "NormedRowVector", IsRowVector and IsScalarCollection );


#############################################################################
##

#P  IsCommutativeFamily
##
DeclareProperty( "IsCommutativeFamily", IsFamily );


#############################################################################
##
#P  IsSkewFieldFamily
##
DeclareProperty( "IsSkewFieldFamily", IsFamily );


#############################################################################
##
#P  IsUFDFamily( <family> )
##
##  the family <family> is at least a commutative ring-with-one,
##  without zero divisors, and the factorisation of each element into
##  elements of <family> is unique (up to units and ordering).
##
DeclareProperty( "IsUFDFamily", IsFamily );


#############################################################################
##
#R  IsAdditiveElementAsMultiplicativeElementRep( <obj> )
##
DeclareRepresentation("IsAdditiveElementAsMultiplicativeElementRep",
  IsPositionalObjectRep and IsMultiplicativeElement,[]);


#############################################################################
##
#A  AdditiveElementsAsMultiplicativeElementsFamily( <fam> )
##
DeclareAttribute("AdditiveElementsAsMultiplicativeElementsFamily", IsFamily);


#############################################################################
##
#A  AdditiveElementAsMultiplicativeElement( <obj> )
##
##  for an additive element <obj>, this attribute returns a *multiplicative*
##  element, for which multiplication is done via addition of the original
##  element. The original element of such a ``wrapped'' multiplicative
##  element can be obtained as the `UnderlyingElement'.
##
DeclareAttribute("AdditiveElementAsMultiplicativeElement",
  IsAdditiveElement );


#############################################################################
##
#O  UnderlyingElement( <elm> )
##
##  Let <elm> be an object which builds on elements of another domain and
##  just wraps these up to provide another arithmetic.
##
DeclareOperation( "UnderlyingElement", [ IsObject ] );


#############################################################################
##
#P  IsIdempotent( <elt> )
##
##  true iff <elt> is its own square. 
##  (Even if IsZero(<elt>) is also true.)
##
DeclareProperty("IsIdempotent", IsMultiplicativeElement);


#############################################################################
##
#E