1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
|
#############################################################################
##
#W ctbl.gd GAP library Thomas Breuer
#W & Goetz Pfeiffer
##
#H @(#)$Id: ctbl.gd,v 4.88.2.7 2007/09/18 09:22:12 gap Exp $
##
#Y Copyright (C) 1997, Lehrstuhl D fuer Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St. Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the definition of categories of character table like
## objects, and their properties, attributes, operations, and functions.
##
## 1. Some Remarks about Character Theory in GAP
## 2. Character Table Categories
## 3. The Interface between Character Tables and Groups
## 4. Operators for Character Tables
## 5. Attributes and Properties for Groups as well as for Character Tables
## 6. Attributes and Properties only for Character Tables
## x. Operations Concerning Blocks
## 7. Other Operations for Character Tables
## 8. Creating Character Tables
## 9. Printing Character Tables
## 10. Constructing Character Tables from Others
## 11. Sorted Character Tables
## 12. Storing Normal Subgroup Information
## 13. Auxiliary Stuff
##
Revision.ctbl_gd :=
"@(#)$Id: ctbl.gd,v 4.88.2.7 2007/09/18 09:22:12 gap Exp $";
#T when are two character tables equal? -> same identifier & same permutation?)
#############################################################################
##
#T TODO:
##
#T (about incomplete tables!)
#T
#T For character tables that do *not* store an underlying group,
#T there is no notion of generation, contrary to all {\GAP} domains.
#T Consequently, the correctness or even the consistency of such a character
#T table is hard to decide.
#T Nevertheless, one may want to work with incomplete character tables or
#T hypothetical tables which are, strictly speaking, not character tables
#T but shall be handled like character tables.
#T In such cases, one often has to set attribute values by hand;
#T no need to say that one must be very careful then.
##
#T introduce fusion objects?
##
#T improve `CompatibleConjugacyClasses',
#T unify it with `TransformingPermutationsCharacterTables'!
##
#############################################################################
##
## 1. Some Remarks about Character Theory in GAP
#1
## It seems to be necessary to state some basic facts --and maybe warnings--
## at the beginning of the character theory package.
## This holds for people who are familiar with character theory because
## there is no global reference on computational character theory,
## although there are many papers on this topic,
## such as~\cite{NPP84} or~\cite{LP91}.
## It holds, however, also for people who are familiar with {\GAP} because
## the general concept of domains (see Chapter~"Domains") plays no important
## role here --we will justify this later in this section.
##
## Intuitively, *characters* (or more generally, *class functions*) of a
## finite group $G$ can be thought of as certain mappings defined on $G$,
## with values in the complex number field;
## the set of all characters of $G$ forms a semiring, with both addition
## and multiplication defined pointwise, which is naturally embedded into
## the ring of *generalized* (or *virtual*) *characters* in the natural way.
## A ${\Z}$-basis of this ring, and also a vector space basis of the
## complex vector space of class functions of $G$,
## is given by the irreducible characters of $G$.
##
## At this stage one could ask where there is a problem, since all these
## algebraic structures are supported by {\GAP}.
## But in practice, these structures are of minor importance,
## compared to individual characters and the *character tables* themselves
## (which are not domains in the sense of {\GAP}).
##
## For computations with characters of a finite group $G$ with $n$ conjugacy
## classes, say, we fix an ordering of the classes, and then identify each
## class with its position according to this ordering.
## Each character of $G$ can be represented by a list of length $n$ in which
## the character value for elements of the $i$-th class is stored at
## the $i$-th position.
## Note that we need not know the conjugacy classes of $G$ physically,
## even our knowledge of $G$ may be implicit in the sense that, e.g.,
## we know how many classes of involutions $G$ has, and which length these
## classes have, but we never have seen an element of $G$, or a presentation
## or representation of $G$.
## This allows us to work with the character tables of very large groups,
## e.g., of the so-called monster, where {\GAP} has (currently) no chance
## to deal with the group.
##
## As a consequence, also other information involving characters is given
## implicitly. For example, we can talk about the kernel of a character not
## as a group but as a list of classes (more exactly: a list of their
## positions according to the chosen ordering of classes) forming this
## kernel; we can deduce the group order, the contained cyclic subgroups
## and so on, but we do not get the group itself.
##
## So typical calculations with characters involve loops over lists of
## character values.
## For example, the scalar product of two characters $\chi$, $\psi$ of $G$
## given by
## $$
## [\chi,\psi] = \frac{1}{|G|} \sum_{g\in G} \chi(g) \psi(g^{-1})
## $$
## can be written as
## \begintt
## Sum( [ 1 .. n ], i -> SizesConjugacyClasses( t )[i] * chi[i]
## * ComplexConjugate( psi[i] ) );
## \endtt
## where `t' is the character table of $G$, and `chi', `psi' are the lists
## of values of $\chi$, $\psi$, respectively.
##
## It is one of the advantages of character theory that after one has
## translated a problem concerning groups into a problem concerning
## only characters, the necessary calculations are mostly simple.
## For example, one can often prove that a group is a Galois group over the
## rationals using calculations with structure constants that can be
## computed from the character table,
## and information about (the character tables of) maximal subgroups.
## When one deals with such questions,
## the translation back to groups is just an interpretation by the user,
## it does not take place in {\GAP}.
##
## {\GAP} uses character *tables* to store information such as class
## lengths, element orders, the irreducible characters of $G$ etc.~in a
## consistent way;
## in the example above, we have seen that `SizesConjugacyClasses( t )' is
## the list of class lengths of the character table `t'.
## Note that the values of these attributes rely on the chosen ordering
## of conjugacy classes,
## a character table is not determined by something similar to generators
## of groups or rings in {\GAP} where knowledge could in principle be
## recovered from the generators but is stored mainly for the sake of
## efficiency.
##
## Note that the character table of a group $G$ in {\GAP} must *not* be
## mixed up with the list of complex irreducible characters of $G$.
## The irreducible characters are stored in a character table via the
## attribute `Irr' (see~"Irr").
##
## Two further important instances of information that depends on the
## ordering of conjugacy classes are *power maps* and *fusion maps*.
## Both are represented as lists of integers in {\GAP}.
## The $k$-th power map maps each class to the class of $k$-th powers
## of its elements, the corresponding list contains at each position the
## position of the image.
## A class fusion map between the classes of a subgroup $H$ of $G$ and
## the classes of $G$ maps each class $c$ of $H$ to that class of $G$ that
## contains $c$, the corresponding list contains again the positions of
## image classes;
## if we know only the character tables of $H$ and $G$ but not the groups
## themselves,
## this means with respect to a fixed embedding of $H$ into $G$.
## More about power maps and fusion maps can be found in
## Chapter~"Maps Concerning Character Tables".
##
## So class functions, power maps, and fusion maps are represented by lists
## in {\GAP}.
## If they are plain lists then they are regarded as class functions etc.~of
## an appropriate character table when they are passed to {\GAP} functions
## that expect class functions etc.
## For example, a list with all entries equal to 1 is regarded as the
## trivial character if it is passed to a function that expects a character.
## Note that this approach requires the character table as an argument for
## such a function.
##
## One can construct class function objects that store their underlying
## character table and other attribute values
## (see Chapter~"Class Functions").
## This allows one to omit the character table argument in many functions,
## and it allows one to use infix operations for tensoring or inducing
## class functions.
##
#############################################################################
##
## 2. Character Table Categories
##
#############################################################################
##
#V InfoCharacterTable
##
## is the info class (see~"Info Functions") for computations with
## character tables.
##
DeclareInfoClass( "InfoCharacterTable" );
#############################################################################
##
#C IsNearlyCharacterTable( <obj> )
#C IsCharacterTable( <obj> )
#C IsOrdinaryTable( <obj> )
#C IsBrauerTable( <obj> )
#C IsCharacterTableInProgress( <obj> )
##
## Every ``character table like object'' in {\GAP} lies in the category
## `IsNearlyCharacterTable'.
## There are four important subcategories,
## namely the *ordinary* tables in `IsOrdinaryTable',
## the *Brauer* tables in `IsBrauerTable',
## the union of these two in `IsCharacterTable',
## and the *incomplete ordinary* tables in `IsCharacterTableInProgress'.
##
## We want to distinguish ordinary and Brauer tables because a Brauer table
## may delegate tasks to the ordinary table of the same group,
## for example the computation of power maps.
## A Brauer table is constructed from an ordinary table and stores this
## table upon construction (see~"OrdinaryCharacterTable").
##
## Furthermore, `IsOrdinaryTable' and `IsBrauerTable' denote character
## tables that provide enough information to compute all power maps and
## irreducible characters (and in the case of Brauer tables to get the
## ordinary table), for example because the underlying group
## (see~"UnderlyingGroup!for character tables") is known or because the
## table is a library table
## (see the manual of the {\GAP} Character Table Library).
## We want to distinguish these tables from partially known ordinary tables
## that cannot be asked for all power maps or all irreducible characters.
##
## The character table objects in `IsCharacterTable' are always immutable
## (see~"Mutability and Copyability").
## This means mainly that the ordering of conjugacy classes used for the
## various attributes of the character table cannot be changed;
## see~"Sorted Character Tables" for how to compute a character table with a
## different ordering of classes.
##
## The {\GAP} objects in `IsCharacterTableInProgress' represent incomplete
## ordinary character tables.
## This means that not all irreducible characters, not all power maps are
## known, and perhaps even the number of classes and the centralizer orders
## are known.
## Such tables occur when the character table of a group $G$ is constructed
## using character tables of related groups and information about $G$ but
## for example without explicitly computing the conjugacy classes of $G$.
## An object in `IsCharacterTableInProgress' is first of all *mutable*,
## so *nothing is stored automatically* on such a table,
## since otherwise one has no control of side-effects when
## a hypothesis is changed.
## Operations for such tables may return more general values than for
## other tables, for example class functions may contain unknowns
## (see Chapter~"Unknowns") or lists of possible values in certain
## positions,
## the same may happen also for power maps and class fusions
## (see~"Parametrized Maps").
## *@Incomplete tables in this sense are currently not supported and will be
## described in a chapter of their own when they become available.@*
## Note that the term ``incomplete table'' shall express that {\GAP} cannot
## compute certain values such as irreducible characters or power maps.
## A table with access to its group is therefore always complete,
## also if its irreducible characters are not yet stored.
##
DeclareCategory( "IsNearlyCharacterTable", IsObject );
DeclareCategory( "IsCharacterTable", IsNearlyCharacterTable );
DeclareCategory( "IsOrdinaryTable", IsCharacterTable );
DeclareCategory( "IsBrauerTable", IsCharacterTable );
DeclareCategory( "IsCharacterTableInProgress", IsNearlyCharacterTable );
#############################################################################
##
#V NearlyCharacterTablesFamily
##
## Every character table like object lies in this family (see~"Families").
##
BindGlobal( "NearlyCharacterTablesFamily",
NewFamily( "NearlyCharacterTablesFamily", IsNearlyCharacterTable ) );
#############################################################################
##
#V SupportedCharacterTableInfo
##
## `SupportedCharacterTableInfo' is a list that contains at position $3i-2$
## an attribute getter function, at position $3i-1$ the name of this
## attribute, and at position $3i$ a list containing one or two of the
## strings `\"class\"', `\"character\"',
## depending on whether the attribute value relies on the ordering of
## classes or characters.
## This allows one to set exactly the components with these names in the
## record that is later converted to the new table,
## in order to use the values as attribute values.
## So the record components that shall *not* be regarded as attribute values
## can be ignored.
## Also other attributes of the old table are ignored.
##
## `SupportedCharacterTableInfo' is used when (ordinary or Brauer) character
## table objects are created from records, using `ConvertToCharacterTable'
## (see~"ConvertToCharacterTable").
##
## New attributes and properties can be notified to
## `SupportedCharacterTableInfo' by creating them with
## `DeclareAttributeSuppCT' and `DeclarePropertySuppCT' instead of
## `DeclareAttribute' and `DeclareProperty'.
##
BindGlobal( "SupportedCharacterTableInfo", [] );
#############################################################################
##
#F DeclareAttributeSuppCT( <name>, <filter>[, "mutable"], <depend> )
#F DeclarePropertySuppCT( <name>, <filter>[, "mutable"] )
##
## do the same as `DeclareAttribute' and `DeclareProperty',
## except that the list `SupportedOrdinaryTableInfo' is extended
## by an entry corresponding to the attribute.
##
BindGlobal( "DeclareAttributeSuppCT", function( arg )
local attr;
# Check the arguments.
if not ( Length( arg ) in [ 3, 4 ] and IsString( arg[1] ) and
IsFilter( arg[2] ) and ( IsHomogeneousList( arg[3] ) or
( arg[3] = "mutable" and IsHomogeneousList( arg[4] ) ) ) ) then
Error( "usage: DeclareAttributeSuppCT( <name>,\n",
" <filter>[, \"mutable\"], <depend> )" );
elif not ForAll( arg[ Length( arg ) ],
str -> str in [ "class", "character" ] ) then
Error( "<depend> must contain only \"class\", \"character\"" );
fi;
# Create/change the attribute as `DeclareAttribute' does.
CallFuncList( DeclareAttribute, arg{ [ 1 .. Length( arg )-1 ] } );
# Do the additional magic.
attr:= ValueGlobal( arg[1] );
Append( SupportedCharacterTableInfo,
[ attr, arg[1], arg[ Length( arg ) ] ] );
end );
BindGlobal( "DeclarePropertySuppCT", function( arg )
local prop;
# Check the arguments.
if not ( Length( arg ) in [ 2, 3 ] and IsString( arg[1] ) and
IsFilter( arg[2] ) and ( Length( arg ) = 2 or
arg[3] = "mutable" ) ) then
Error( "usage: DeclarePropertySuppCT( <name>,\n",
" <filter>[, \"mutable\"] )" );
fi;
# Create/change the property as `DeclareProperty' does.
CallFuncList( DeclareProperty, arg );
# Do the additional magic.
prop:= ValueGlobal( arg[1] );
Append( SupportedCharacterTableInfo, [ prop, arg[1], [] ] );
end );
#############################################################################
##
## 3. The Interface between Character Tables and Groups
#2
## For a character table with underlying group (see~"UnderlyingGroup!for
## character tables"), the interface between table and group consists of
## three attribute values, namely the *group*, the *conjugacy classes*
## stored in the table (see `ConjugacyClasses' below) and the
## *identification* of the conjugacy classes of table and group
## (see~`IdentificationOfConjugacyClasses' below).
##
## Character tables constructed from groups know these values upon
## construction,
## and for character tables constructed without groups, these values are
## usually not known and cannot be computed from the table.
##
## However, given a group $G$ and a character table of a group isomorphic to
## $G$ (for example a character table from the {\GAP} table library),
## one can tell {\GAP} to use the given table as the character table of $G$
## (see~"ConnectGroupAndCharacterTable").
##
## Tasks may be delegated from a group to its character table or vice versa
## only if these three attribute values are stored in the character table.
##
#############################################################################
##
#A UnderlyingGroup( <ordtbl> )
##
## For an ordinary character table <ordtbl> of a finite group,
## the group can be stored as value of `UnderlyingGroup'.
##
## Brauer tables do not store the underlying group,
## they access it via the ordinary table (see~"OrdinaryCharacterTable").
##
DeclareAttributeSuppCT( "UnderlyingGroup", IsOrdinaryTable, [] );
#############################################################################
##
#A ConjugacyClasses( <tbl> )
##
## For a character table <tbl> with known underlying group $G$,
## the `ConjugacyClasses' value of <tbl> is a list of conjugacy classes of
## $G$.
## All those lists stored in the table that are related to the ordering
## of conjugacy classes (such as sizes of centralizers and conjugacy
## classes, orders of representatives, power maps, and all class functions)
## refer to the ordering of this list.
##
## This ordering need *not* coincide with the ordering of conjugacy classes
## as stored in the underlying group of the table
## (see~"Sorted Character Tables").
## One reason for this is that otherwise we would not be allowed to
## use a library table as the character table of a group for which the
## conjugacy classes are stored already.
## (Another, less important reason is that we can use the same group as
## underlying group of character tables that differ only w.r.t.~the ordering
## of classes.)
##
## The class of the identity element must be the first class
## (see~"Conventions for Character Tables").
##
## If <tbl> was constructed from $G$ then the conjugacy classes have been
## stored at the same time when $G$ was stored.
## If $G$ and <tbl> were connected later than in the construction of <tbl>,
## the recommended way to do this is via `ConnectGroupAndCharacterTable'
## (see~"ConnectGroupAndCharacterTable").
## So there is no method for `ConjugacyClasses' that computes the value for
## <tbl> if it is not yet stored.
##
## Brauer tables do not store the ($p$-regular) conjugacy classes,
## they access them via the ordinary table (see~"OrdinaryCharacterTable")
## if necessary.
##
DeclareAttributeSuppCT( "ConjugacyClasses", IsOrdinaryTable, [ "class" ] );
#############################################################################
##
#A IdentificationOfConjugacyClasses( <tbl> )
##
## For an ordinary character table <tbl> with known underlying group $G$,
## `IdentificationOfConjugacyClasses' returns a list of positive integers
## that contains at position $i$ the position of the $i$-th conjugacy class
## of <tbl> in the list $`ConjugacyClasses'( G )$.
##
DeclareAttributeSuppCT( "IdentificationOfConjugacyClasses", IsOrdinaryTable,
[ "class" ] );
#############################################################################
##
#F ConnectGroupAndCharacterTable( <G>, <tbl>[, <arec>] )
#F ConnectGroupAndCharacterTable( <G>, <tbl>, <bijection> )
##
## Let <G> be a group and <tbl> a character table of (a group isomorphic to)
## <G>, such that <G> does not store its `OrdinaryCharacterTable' value
## and <tbl> does not store its `UnderlyingGroup' value.
## `ConnectGroupAndCharacterTable' calls `CompatibleConjugacyClasses',
## trying to identify the classes of <G> with the columns of <tbl>.
##
## If this identification is unique up to automorphisms of <tbl>
## (see~"AutomorphismsOfTable") then <tbl> is stored as `CharacterTable'
## value of <G>,
## in <tbl> the values of `UnderlyingGroup', `ConjugacyClasses', and
## `IdentificationOfConjugacyClasses' are set,
## and `true' is returned.
##
## Otherwise, i.e., if {\GAP} cannot identify the classes of <G> up to
## automorphisms of <G>, `false' is returned.
##
## If a record <arec> is present as third argument, its meaning is the
## same as for `CompatibleConjugacyClasses'
## (see~"CompatibleConjugacyClasses").
##
## If a list <bijection> is entered as third argument,
## it is used as value of `IdentificationOfConjugacyClasses',
## relative to `ConjugacyClasses( <G> )',
## without further checking, and `true' is returned.
##
DeclareGlobalFunction( "ConnectGroupAndCharacterTable" );
#############################################################################
##
#O CompatibleConjugacyClasses( <G>, <ccl>, <tbl>[, <arec>] )
#O CompatibleConjugacyClasses( <tbl>[, <arec>] )
##
## In the first form, <ccl> must be a list of the conjugacy classes of the
## group <G>, and <tbl> the ordinary character table of <G>.
## Then `CompatibleConjugacyClasses' returns a list $l$ of positive integers
## that describes an identification of the columns of <tbl> with the
## conjugacy classes <ccl> in the sense that $l[i]$ is the position in <ccl>
## of the class corresponding to the $i$-th column of <tbl>,
## if this identification is unique up to automorphisms of <tbl>
## (see~"AutomorphismsOfTable");
## if {\GAP} cannot identify the classes, `fail' is returned.
##
## In the second form, <tbl> must be an ordinary character table, and
## `CompatibleConjugacyClasses' checks whether the columns of <tbl> can be
## identified with the conjugacy classes of a group isomorphic to that for
## which <tbl> is the character table;
## the return value is a list of all those sets of class positions for which
## the columns of <tbl> cannot be distinguished with the invariants used,
## up to automorphisms of <tbl>.
## So the identification is unique if and only if the returned list is
## empty.
##
## The usual approach is that one first calls `CompatibleConjugacyClasses'
## in the second form for checking quickly whether the first form will be
## successful, and only if this is the case the more time consuming
## calculations with both group and character table are done.
##
## The following invariants are used.
## \beginlist%ordered
## \item{1.} element orders (see~"OrdersClassRepresentatives"),
## \item{2.} class lengths (see~"SizesConjugacyClasses"),
## \item{3.} power maps (see~"PowerMap", "ComputedPowerMaps"),
## \item{4.} symmetries of the table (see~"AutomorphismsOfTable").
## \endlist
##
## If the optional argument <arec> is present then it must be a record
## whose components describe additional information for the class
## identification.
## The following components are supported.
## \beginitems
## `natchar' &
## if $G$ is a permutation group or matrix group then the value of this
## component is regarded as the list of values of the natural character
## (see~"NaturalCharacter") of <G>,
## w.r.t.~the ordering of classes in <tbl>,
##
## `bijection' &
## a list describing a partial bijection; the $i$-th entry, if bound,
## is the position of the $i$-th conjugacy class of <tbl> in the list
## <ccl>.
## \enditems
##
DeclareOperation( "CompatibleConjugacyClasses",
[ IsGroup, IsList, IsOrdinaryTable ] );
DeclareOperation( "CompatibleConjugacyClasses",
[ IsGroup, IsList, IsOrdinaryTable, IsRecord ] );
DeclareOperation( "CompatibleConjugacyClasses", [ IsOrdinaryTable ] );
DeclareOperation( "CompatibleConjugacyClasses",
[ IsOrdinaryTable, IsRecord ] );
#############################################################################
##
#F CompatibleConjugacyClassesDefault( <G>, <ccl>, <tbl>, <arec> )
#F CompatibleConjugacyClassesDefault( false, false, <tbl>, <arec> )
##
## This is installed as a method for `CompatibleConjugacyClasses'.
## It uses the following invariants.
## Element orders, class lengths, cosets of the derived subgroup,
## power maps of prime divisors of the group order, automorphisms of <tbl>.
##
DeclareGlobalFunction( "CompatibleConjugacyClassesDefault" );
#############################################################################
##
## 4. Operators for Character Tables
#3
## \indextt{\*!for character tables}
## \indextt{/!for character tables}
## \indextt{mod!for character tables}
## \index{character tables!infix operators}
##
## The following infix operators are defined for character tables.
## \beginitems
## `<tbl1> \* <tbl2>' &
## the direct product of two character tables
## (see~"CharacterTableDirectProduct"),
##
## `<tbl> / <list>' &
## the table of the factor group modulo the normal subgroup spanned by
## the classes in the list <list> (see~"CharacterTableFactorGroup"),
##
## `<tbl> mod <p>' &
## the <p>-modular Brauer character table corresponding to the ordinary
## character table <tbl> (see~"CharacterTable"),
##
## `<tbl>.<name>' &
## the position of the class with name <name> in <tbl>
## (see~"ClassNames").
## \enditems
##
#############################################################################
##
## 5. Attributes and Properties for Groups as well as for Character Tables
#4
## Several *attributes for groups* are valid also for character tables.
## These are on one hand those that have the same meaning for both group and
## character table, and whose values can be read off or computed,
## respectively, from the character table,
## such as `Size', `IsAbelian', or `IsSolvable'.
## On the other hand, there are attributes whose meaning for character
## tables is different from the meaning for groups, such as
## `ConjugacyClasses'.
##
#############################################################################
##
#A CharacterDegrees( <G> )
#O CharacterDegrees( <G>, <p> )
#A CharacterDegrees( <tbl> )
##
## In the first two forms, `CharacterDegrees' returns a collected list of
## the degrees of the absolutely irreducible characters of the group <G>;
## the optional second argument <p> must be either zero or a prime integer
## denoting the characteristic, the default value is zero.
## In the third form, <tbl> must be an (ordinary or Brauer) character
## table, and `CharacterDegrees' returns a collected list of the degrees of
## the absolutely irreducible characters of <tbl>.
##
## (The default method for the call with only argument a group is to call
## the operation with second argument `0'.)
##
## For solvable groups, the default method is based on~\cite{Con90b}.
##
DeclareAttribute( "CharacterDegrees", IsGroup );
DeclareOperation( "CharacterDegrees", [ IsGroup, IsInt ] );
DeclareAttributeSuppCT( "CharacterDegrees", IsNearlyCharacterTable, [] );
InstallIsomorphismMaintenance( CharacterDegrees,
IsGroup and HasCharacterDegrees, IsGroup );
#############################################################################
##
#A Irr( <G> )
#O Irr( <G>, <p> )
#A Irr( <tbl> )
##
## Called with a group <G>, `Irr' returns the irreducible characters of the
## ordinary character table of <G>.
## Called with a group <G> and a prime integer <p>, `Irr' returns the
## irreducible characters of the <p>-modular Brauer table of <G>.
## Called with an (ordinary or Brauer) character table <tbl>,
## `Irr' returns the list of all complex absolutely irreducible characters
## of <tbl>.
##
## For a character table <tbl> with underlying group,
## `Irr' may delegate to the group.
## For a group <G>, `Irr' may delegate to its character table only if the
## irreducibles are already stored there.
##
## (If <G> is <p>-solvable (see~"IsPSolvable") then the <p>-modular
## irreducible characters can be computed by the Fong-Swan Theorem;
## in all other cases, there may be no method.)
##
## Note that the ordering of columns in the `Irr' matrix of the group <G>
## refers to the ordering of conjugacy classes in `CharacterTable( <G> )',
## which may differ from the ordering of conjugacy classes in <G>
## (see~"The Interface between Character Tables and Groups").
## As an extreme example, for a character table obtained from sorting the
## classes of `CharacterTable( <G> )',
## the ordering of columns in the `Irr' matrix respects the sorting of
## classes (see~"Sorted Character Tables"),
## so the irreducibles of such a table will in general not coincide with
## the irreducibles stored as `Irr( <G> )' although also the sorted table
## stores the group <G>.
##
## The ordering of the entries in the attribute `Irr' of a group need *not*
## coincide with the ordering of its `IrreducibleRepresentations'
## (see~"IrreducibleRepresentations") value.
##
DeclareAttribute( "Irr", IsGroup );
DeclareOperation( "Irr", [ IsGroup, IsInt ] );
DeclareAttributeSuppCT( "Irr", IsNearlyCharacterTable,
[ "class", "character" ] );
#############################################################################
##
#A LinearCharacters( <G> )
#O LinearCharacters( <G>, <p> )
#A LinearCharacters( <tbl> )
##
## `LinearCharacters' returns the linear (i.e., degree $1$) characters in
## the `Irr' (see~"Irr") list of the group <G> or the character table <tbl>,
## respectively.
## In the second form, `LinearCharacters' returns the <p>-modular linear
## characters of the group <G>.
##
## For a character table <tbl> with underlying group,
## `LinearCharacters' may delegate to the group.
## For a group <G>, `LinearCharacters' may delegate to its character table
## only if the irreducibles are already stored there.
##
## The ordering of linear characters in <tbl> need not coincide with the
## ordering of linear characters in the irreducibles of <tbl> (see~"Irr").
##
DeclareAttribute( "LinearCharacters", IsGroup );
DeclareOperation( "LinearCharacters", [ IsGroup, IsInt ] );
DeclareAttributeSuppCT( "LinearCharacters", IsNearlyCharacterTable,
[ "class" ] );
#############################################################################
##
#A IBr( <modtbl> )
#O IBr( <G>, <p> )
##
## For a Brauer table <modtbl> or a group <G> and a prime integer <p>,
## `IBr' delegates to `Irr'.
#T This may become interesting as soon as blocks are GAP objects of their own,
#T and one can ask for the ordinary and modular irreducibles in a block.
##
DeclareAttribute( "IBr", IsBrauerTable );
DeclareOperation( "IBr", [ IsGroup, IsPosInt ] );
#############################################################################
##
#A OrdinaryCharacterTable( <G> ) . . . . . . . . . . . . . . . . for a group
#A OrdinaryCharacterTable( <modtbl> ) . . . . for a Brauer character table
##
## `OrdinaryCharacterTable' returns the ordinary character table of the
## group <G> or the Brauer character table <modtbl>, respectively.
##
## Since Brauer character tables are constructed from ordinary tables,
## the attribute value for <modtbl> is already stored
## (cf.~"Character Table Categories").
##
DeclareAttributeSuppCT( "OrdinaryCharacterTable", IsGroup, [] );
#############################################################################
##
#5
## The following operations for groups are applicable to character tables
## and mean the same for a character table as for the group;
## see the chapter about groups for the definition.
## \beginitems
## \indextt{AbelianInvariants!for character tables}
## `AbelianInvariants'&
## \indextt{CommutatorLength!for character tables}
## `CommutatorLength'&
## \indextt{Exponent!for character tables}
## `Exponent'&
## \indextt{IsAbelian!for character tables}
## `IsAbelian'&
## \indextt{IsCyclic!for character tables}
## `IsCyclic'&
## \indextt{IsElementaryAbelian!for character tables}
## `IsElementaryAbelian'&
## \indextt{IsFinite!for character tables}
## `IsFinite'&
## \indextt{IsMonomial!for character tables}
## `IsMonomial'&
## \indextt{IsNilpotent!for character tables}
## `IsNilpotent'&
## \indextt{IsPerfect!for character tables}
## `IsPerfect'&
## \indextt{IsSimple!for character tables}
## `IsSimple'&
## \indextt{IsSolvable!for character tables}
## `IsSolvable'&
## \indextt{IsSporadicSimple!for character tables}
## `IsSporadicSimple'&
## \indextt{IsSupersolvable!for character tables}
## `IsSupersolvable'&
## \indextt{NrConjugacyClasses!for character tables}
## `NrConjugacyClasses'&
## \indextt{Size!for character tables}
## `Size'&
## \enditems
## These operations are mainly useful for selecting character tables with
## certain properties, also for character tables without access to a group.
##
#############################################################################
##
#A AbelianInvariants( <tbl> )
#A CommutatorLength( <tbl> )
#A Exponent( <tbl> )
#P IsAbelian( <tbl> )
#P IsCyclic( <tbl> )
#P IsElementaryAbelian( <tbl> )
#P IsFinite( <tbl> )
#A NrConjugacyClasses( <tbl> )
#A Size( <tbl> )
##
DeclareAttributeSuppCT( "AbelianInvariants", IsNearlyCharacterTable, [] );
DeclareAttributeSuppCT( "CommutatorLength", IsNearlyCharacterTable, [] );
DeclareAttributeSuppCT( "Exponent", IsNearlyCharacterTable, [] );
DeclarePropertySuppCT( "IsAbelian", IsNearlyCharacterTable );
DeclarePropertySuppCT( "IsCyclic", IsNearlyCharacterTable );
DeclarePropertySuppCT( "IsElementaryAbelian", IsNearlyCharacterTable );
DeclarePropertySuppCT( "IsFinite", IsNearlyCharacterTable );
DeclareAttributeSuppCT( "NrConjugacyClasses", IsNearlyCharacterTable, [] );
DeclareAttributeSuppCT( "Size", IsNearlyCharacterTable, [] );
#############################################################################
##
#P IsMonomialCharacterTable( <tbl> )
#P IsNilpotentCharacterTable( <tbl> )
#P IsPerfectCharacterTable( <tbl> )
#P IsSimpleCharacterTable( <tbl> )
#P IsSolvableCharacterTable( <tbl> )
#P IsSporadicSimpleCharacterTable( <tbl> )
#P IsSupersolvableCharacterTable( <tbl> )
##
## These seven properties belong to the ``overloaded'' operations,
## methods for the unqualified properties with argument an ordinary
## character table are installed in `lib/overload.g'.
##
DeclarePropertySuppCT( "IsMonomialCharacterTable", IsNearlyCharacterTable );
DeclarePropertySuppCT( "IsNilpotentCharacterTable", IsNearlyCharacterTable );
DeclarePropertySuppCT( "IsPerfectCharacterTable", IsNearlyCharacterTable );
DeclarePropertySuppCT( "IsSimpleCharacterTable", IsNearlyCharacterTable );
DeclarePropertySuppCT( "IsSolvableCharacterTable", IsNearlyCharacterTable );
DeclarePropertySuppCT( "IsSporadicSimpleCharacterTable",
IsNearlyCharacterTable );
DeclarePropertySuppCT( "IsSupersolvableCharacterTable",
IsNearlyCharacterTable );
InstallTrueMethod( IsAbelian, IsOrdinaryTable and IsCyclic );
InstallTrueMethod( IsAbelian, IsOrdinaryTable and IsElementaryAbelian );
InstallTrueMethod( IsMonomialCharacterTable,
IsOrdinaryTable and IsSupersolvableCharacterTable and IsFinite );
InstallTrueMethod( IsNilpotentCharacterTable,
IsOrdinaryTable and IsAbelian );
InstallTrueMethod( IsPerfectCharacterTable,
IsOrdinaryTable and IsSimpleCharacterTable );
InstallTrueMethod( IsSimpleCharacterTable,
IsOrdinaryTable and IsSporadicSimpleCharacterTable );
InstallTrueMethod( IsSolvableCharacterTable,
IsOrdinaryTable and IsSupersolvableCharacterTable );
InstallTrueMethod( IsSolvableCharacterTable,
IsOrdinaryTable and IsMonomialCharacterTable );
InstallTrueMethod( IsSupersolvableCharacterTable,
IsOrdinaryTable and IsNilpotentCharacterTable );
#############################################################################
##
#F CharacterTable_IsNilpotentFactor( <tbl>, <N> )
##
## returns whether the factor group by the normal subgroup described by the
## classes at positions in the list <N> is nilpotent.
##
DeclareGlobalFunction( "CharacterTable_IsNilpotentFactor" );
#############################################################################
##
#F CharacterTable_IsNilpotentNormalSubgroup( <tbl>, <N> )
##
## returns whether the normal subgroup described by the classes at positions
## in the list <N> is nilpotent.
##
DeclareGlobalFunction( "CharacterTable_IsNilpotentNormalSubgroup" );
#############################################################################
##
## 6. Attributes and Properties only for Character Tables
#6
## The following three *attributes for character tables* would make sense
## also for groups but are in fact *not* used for groups.
## This is because the values depend on the ordering of conjugacy classes
## stored as value of `ConjugacyClasses', and this value may differ for a
## group and its character table
## (see~"The Interface between Character Tables and Groups").
## Note that for character tables, the consistency of attribute values must
## be guaranteed,
## whereas for groups, there is no need to impose such a consistency rule.
##
#############################################################################
##
#A OrdersClassRepresentatives( <tbl> )
##
## is a list of orders of representatives of conjugacy classes of the
## character table <tbl>,
## in the same ordering as the conjugacy classes of <tbl>.
##
DeclareAttributeSuppCT( "OrdersClassRepresentatives",
IsNearlyCharacterTable, [ "class" ] );
#############################################################################
##
#A SizesCentralizers( <tbl> )
##
## is a list that stores at position $i$ the size of the centralizer of any
## element in the $i$-th conjugacy class of the character table <tbl>.
##
DeclareAttributeSuppCT( "SizesCentralizers", IsNearlyCharacterTable,
[ "class" ] );
#############################################################################
##
#A SizesConjugacyClasses( <tbl> )
##
## is a list that stores at position $i$ the size of the $i$-th conjugacy
## class of the character table <tbl>.
##
DeclareAttributeSuppCT( "SizesConjugacyClasses", IsNearlyCharacterTable,
[ "class" ] );
#############################################################################
##
#7
## The following attributes apply only to character tables, not to groups.
##
#############################################################################
##
#A AutomorphismsOfTable( <tbl> )
##
## is the permutation group of all column permutations of the character
## table <tbl> that leave the set of irreducibles and each power map of
## <tbl> invariant (see also~"TableAutomorphisms").
##
DeclareAttributeSuppCT( "AutomorphismsOfTable", IsNearlyCharacterTable,
[ "class" ] );
#T AutomorphismGroup( <tbl> ) ??
#############################################################################
##
#A UnderlyingCharacteristic( <tbl> )
#A UnderlyingCharacteristic( <psi> )
##
## For an ordinary character table <tbl>, the result is `0',
## for a $p$-modular Brauer table <tbl>, it is $p$.
## The underlying characteristic of a class function <psi> is equal to
## that of its underlying character table.
##
## The underlying characteristic must be stored when the table is
## constructed, there is no method to compute it.
##
## We cannot use the attribute `Characteristic' (see~"Characteristic")
## to denote this, since of course each Brauer character is an element
## of characteristic zero in the sense of {\GAP}
## (see Chapter~"Class Functions").
##
DeclareAttributeSuppCT( "UnderlyingCharacteristic",
IsNearlyCharacterTable, [] );
#############################################################################
##
#A ClassNames( <tbl> )
#O ClassNames( <tbl>, \"ATLAS\" )
#A CharacterNames( <tbl> )
##
## `ClassNames' and `CharacterNames' return lists of strings,
## one for each conjugacy class or irreducible character, respectively,
## of the character table <tbl>.
## These names are used when <tbl> is displayed.
##
## The default method for `ClassNames' computes class names consisting of
## the order of an element in the class and at least one distinguishing
## letter.
##
## The default method for `CharacterNames' returns the list
## `[ "X.1", "X.2", ... ]', whose length is the number of
## irreducible characters of <tbl>.
##
## The position of the class with name <name> in <tbl> can be accessed as
## `<tbl>.<name>'.
##
## When `ClassNames' is called with two arguments, the second being the
## string `\"ATLAS\"', the class names returned obey the convention used in
## Chapter~7, Section~5 of the {\ATLAS} of Finite Groups~\cite{CCN85}.
## If one is interested in ``relative'' class names of almost simple
## {\ATLAS} groups, one can use the function `AtlasClassNames' of the {\GAP}
## package AtlasRep.
##
DeclareAttributeSuppCT( "ClassNames", IsNearlyCharacterTable,
[ "class" ] );
DeclareOperation( "ClassNames", [ IsNearlyCharacterTable, IsString ] );
DeclareAttributeSuppCT( "CharacterNames", IsNearlyCharacterTable,
[ "character" ] );
#############################################################################
##
#A ClassParameters( <tbl> )
#A CharacterParameters( <tbl> )
##
## are lists containing a parameter for each conjugacy class or irreducible
## character, respectively, of the character table <tbl>.
##
## It depends on <tbl> what these parameters are,
## so there is no default to compute class and character parameters.
##
## For example, the classes of symmetric groups can be parametrized by
## partitions, corresponding to the cycle structures of permutations.
## Character tables constructed from generic character tables
## (see~"Generic Character Tables") usually have class and character
## parameters stored.
##
## If <tbl> is a $p$-modular Brauer table such that class parameters are
## stored in the underlying ordinary table (see~"OrdinaryCharacterTable")
## of <tbl> then `ClassParameters' returns the sublist of class parameters
## of the ordinary table, for $p$-regular classes.
##
DeclareAttributeSuppCT( "ClassParameters", IsNearlyCharacterTable,
[ "class" ] );
DeclareAttributeSuppCT( "CharacterParameters", IsNearlyCharacterTable,
[ "character" ] );
#############################################################################
##
#A Identifier( <tbl> )
##
## is a string that identifies the character table <tbl> in the current
## {\GAP} session.
## It is used mainly for class fusions into <tbl> that are stored on other
## character tables.
## For character tables without group,
## the identifier is also used to print the table;
## this is the case for library tables,
## but also for tables that are constructed as direct products, factors
## etc.~involving tables that may or may not store their groups.
##
## The default method for ordinary tables constructs strings of the form
## `\"CT<n>\"', where <n> is a positive integer.
## `LARGEST_IDENTIFIER_NUMBER' is a list containing the largest integer <n>
## used in the current {\GAP} session.
##
## The default method for Brauer tables returns the concatenation of the
## identifier of the ordinary table, the string `\"mod\"',
## and the (string of the) underlying characteristic.
##
DeclareAttributeSuppCT( "Identifier", IsNearlyCharacterTable, [] );
#############################################################################
##
#V LARGEST_IDENTIFIER_NUMBER
##
#T We have to use a list in order to admit `DeclareGlobalVariable' and
#T `InstallFlushableValue' ...
##
#T Note that one must be very careful when reading
#T character tables from files!!
#T (signal warnings then?)
##
DeclareGlobalVariable( "LARGEST_IDENTIFIER_NUMBER",
"list containing the largest identifier of an ordinary character table\
in the current session" );
InstallFlushableValue( LARGEST_IDENTIFIER_NUMBER, [ 0 ] );
#############################################################################
##
#A InfoText( <tbl> )
##
## is a mutable string with information about the character table <tbl>.
## There is no default method to create an info text.
##
## This attribute is used mainly for library tables (see the manual of the
## {\GAP} Character Table Library).
## Usual parts of the information are the origin of the table,
## tests it has passed (`1.o.r.' for the test of orthogonality,
## `pow[<p>]' for the construction of the <p>-th power map,
## `DEC' for the decomposition of ordinary into Brauer characters,
## `TENS' for the decomposition of tensor products of irreducibles),
## and choices made without loss of generality.
##
DeclareAttributeSuppCT( "InfoText", IsNearlyCharacterTable, "mutable", [] );
#############################################################################
##
#A InverseClasses( <tbl> )
##
## For a character table <tbl>, `InverseClasses' returns the list mapping
## each conjugacy class to its inverse class.
## This list can be regarded as $(-1)$-st power map of <tbl>
## (see~"PowerMap").
##
DeclareAttribute( "InverseClasses", IsNearlyCharacterTable );
#############################################################################
##
#A RealClasses( <tbl> ) . . . . . . real-valued classes of a character table
##
## \index{classes!real}
##
## For a character table <tbl>, `RealClasses' returns the strictly sorted
## list of positions of classes in <tbl> that consist of real elements.
##
## An element $x$ is *real* iff it is conjugate to its inverse
## $x^{-1} = x^{o(x)-1}$.
##
DeclareAttributeSuppCT( "RealClasses", IsNearlyCharacterTable, [ "class" ] );
#############################################################################
##
#O ClassOrbit( <tbl>, <cc> ) . . . . . . . . . classes of a cyclic subgroup
##
## is the list of positions of those conjugacy classes
## of the character table <tbl> that are Galois conjugate to the <cc>-th
## class.
## That is, exactly the classes at positions given by the list returned by
## `ClassOrbit' contain generators of the cyclic group generated
## by an element in the <cc>-th class.
##
## This information is computed from the power maps of <tbl>.
##
DeclareOperation( "ClassOrbit", [ IsNearlyCharacterTable, IsPosInt ] );
#############################################################################
##
#A ClassRoots( <tbl> ) . . . . . . . . . . . . nontrivial roots of elements
##
## For a character table <tbl>, `ClassRoots' returns a list
## containing at position $i$ the list of positions of the classes
## of all nontrivial $p$-th roots, where $p$ runs over the prime divisors
## of `Size( <tbl> )'.
##
## This information is computed from the power maps of <tbl>.
##
DeclareAttribute( "ClassRoots", IsCharacterTable );
#############################################################################
##
#8
## The following attributes for a character table <tbl> correspond to
## attributes for the group $G$ of <tbl>.
## But instead of a normal subgroup (or a list of normal subgroups) of $G$,
## they return a strictly sorted list of positive integers (or a list of
## such lists) which are the positions
## --relative to `ConjugacyClasses( <tbl> )'--
## of those classes forming the normal subgroup in question.
##
#############################################################################
##
#A ClassPositionsOfNormalSubgroups( <ordtbl> )
#A ClassPositionsOfMaximalNormalSubgroups( <ordtbl> )
#A ClassPositionsOfMinimalNormalSubgroups( <ordtbl> )
##
## correspond to `NormalSubgroups', `MaximalNormalSubgroups', and
## `MinimalNormalSubgroups'
## for the group of the ordinary character table <ordtbl>
## (see~"NormalSubgroups", "MaximalNormalSubgroups",
## "MinimalNormalSubgroups").
##
## The entries of the result lists are sorted according to increasing
## length.
## (So this total order respects the partial order of normal subgroups
## given by inclusion.)
##
DeclareAttribute( "ClassPositionsOfNormalSubgroups", IsOrdinaryTable );
DeclareAttribute( "ClassPositionsOfMaximalNormalSubgroups",
IsOrdinaryTable );
DeclareAttribute( "ClassPositionsOfMinimalNormalSubgroups",
IsOrdinaryTable );
#############################################################################
##
#O ClassPositionsOfAgemo( <ordtbl>, <p> )
##
## corresponds to `Agemo' (see~"Agemo")
## for the group of the ordinary character table <ordtbl>.
##
DeclareOperation( "ClassPositionsOfAgemo", [ IsOrdinaryTable, IsPosInt ] );
#############################################################################
##
#A ClassPositionsOfCentre( <ordtbl> )
##
## corresponds to `Centre' (see~"Centre")
## for the group of the ordinary character table <ordtbl>.
##
DeclareAttribute( "ClassPositionsOfCentre", IsOrdinaryTable );
#############################################################################
##
#A ClassPositionsOfDirectProductDecompositions( <tbl> )
#O ClassPositionsOfDirectProductDecompositions( <tbl>, <nclasses> )
##
## Let <tbl> be the ordinary character table of the group $G$, say.
## Called with the only argument <tbl>,
## `ClassPositionsOfDirectProductDecompositions' returns the list of all
## those pairs $[ l_1, l_2 ]$ where $l_1$ and $l_2$ are lists of
## class positions of normal subgroups $N_1$, $N_2$ of $G$
## such that $G$ is their direct product and $|N_1| \leq |N_2|$ holds.
## Called with second argument a list <nclasses> of class positions of a
## normal subgroup $N$ of $G$,
## `ClassPositionsOfDirectProductDecompositions' returns the list of pairs
## describing the decomposition of $N$ as a direct product of two
## normal subgroups of $G$.
##
DeclareAttributeSuppCT( "ClassPositionsOfDirectProductDecompositions",
IsOrdinaryTable, [ "class" ] );
DeclareOperation( "ClassPositionsOfDirectProductDecompositions",
[ IsOrdinaryTable, IsList ] );
#############################################################################
##
#A ClassPositionsOfDerivedSubgroup( <ordtbl> )
##
## corresponds to `DerivedSubgroup' (see~"DerivedSubgroup")
## for the group of the ordinary character table <ordtbl>.
##
DeclareAttribute( "ClassPositionsOfDerivedSubgroup", IsOrdinaryTable );
#############################################################################
##
#A ClassPositionsOfElementaryAbelianSeries( <ordtbl> )
##
## corresponds to `ElementaryAbelianSeries' (see~"ElementaryAbelianSeries")
## for the group of the ordinary character table <ordtbl>.
##
DeclareAttribute( "ClassPositionsOfElementaryAbelianSeries",
IsOrdinaryTable );
#############################################################################
##
#A ClassPositionsOfFittingSubgroup( <ordtbl> )
##
## corresponds to `FittingSubgroup' (see~"FittingSubgroup")
## for the group of the ordinary character table <ordtbl>.
##
DeclareAttribute( "ClassPositionsOfFittingSubgroup", IsOrdinaryTable );
#############################################################################
##
#F CharacterTable_UpperCentralSeriesFactor( <tbl>, <N> )
##
## Let <tbl> the character table of the group $G$, and <N> the list of
## classes contained in the normal subgroup $N$ of $G$.
## The upper central series $[ Z_1, Z_2, \ldots, Z_n ]$ of $G/N$ is defined
## by $Z_1 = Z(G/N)$, and $Z_{i+1} / Z_i = Z( G / Z_i )$.
## 'UpperCentralSeriesFactor( <tbl>, <N> )' is a list
## $[ C_1, C_2, \ldots, C_n ]$ where $C_i$ is the set of positions of
## $G$-conjugacy classes contained in $Z_i$.
##
## A simpleminded version of the algorithm can be stated as follows.
##
## $M_0:= Irr(G);$
## $Z_1:= Z(G);$
## $i:= 0;$
## repeat
## $i:= i+1;$
## $M_i:= \{ \chi\in M_{i-1} ; Z_i \leq \ker(\chi) \};$
## $Z_{i+1}:= \bigcap_{\chi\in M_i}} Z(\chi);$
## until $Z_i = Z_{i+1};$
##
DeclareGlobalFunction( "CharacterTable_UpperCentralSeriesFactor" );
#############################################################################
##
#A ClassPositionsOfLowerCentralSeries( <tbl> )
##
## corresponds to `LowerCentralSeries' (see~"LowerCentralSeriesOfGroup")
## for the group of the ordinary character table <ordtbl>.
##
DeclareAttribute( "ClassPositionsOfLowerCentralSeries", IsOrdinaryTable );
#############################################################################
##
#A ClassPositionsOfUpperCentralSeries( <ordtbl> )
##
## corresponds to `UpperCentralSeries' (see~"UpperCentralSeriesOfGroup")
## for the group of the ordinary character table <ordtbl>.
##
DeclareAttribute( "ClassPositionsOfUpperCentralSeries", IsOrdinaryTable );
#############################################################################
##
#A ClassPositionsOfSolvableResiduum( <ordtbl> )
##
## corresponds to `SolvableResiduum' (see~"SolvableResiduum")
## for the group of the ordinary character table <ordtbl>.
##
DeclareAttribute( "ClassPositionsOfSolvableResiduum", IsOrdinaryTable );
#############################################################################
##
#A ClassPositionsOfSupersolvableResiduum( <ordtbl> )
##
## corresponds to `SupersolvableResiduum' (see~"SupersolvableResiduum")
## for the group of the ordinary character table <ordtbl>.
##
DeclareAttribute( "ClassPositionsOfSupersolvableResiduum", IsOrdinaryTable );
#############################################################################
##
#O ClassPositionsOfNormalClosure( <ordtbl>, <classes> )
##
## is the sorted list of the positions of all conjugacy classes of the
## ordinary character table <ordtbl> that form the normal closure
## (see~"NormalClosure") of the conjugacy classes at positions in the
## list <classes>.
##
DeclareOperation( "ClassPositionsOfNormalClosure",
[ IsOrdinaryTable, IsHomogeneousList and IsCyclotomicCollection ] );
#############################################################################
##
## x. Operations Concerning Blocks
##
#############################################################################
##
#O PrimeBlocks( <ordtbl>, <p> )
#O PrimeBlocksOp( <ordtbl>, <p> )
#A ComputedPrimeBlockss( <tbl> )
##
## For an ordinary character table <ordtbl> and a prime integer <p>,
## `PrimeBlocks' returns a record with the following components.
## \beginitems
## `block' &
## a list, the value $j$ at position $i$ means that the $i$-th
## irreducible character of <ordtbl> lies in the $j$-th <p>-block
## of <ordtbl>,
##
## `defect' &
## a list containing at position $i$ the defect of the $i$-th block,
##
## `height' &
## a list containing at position $i$ the height of the $i$-th
## irreducible character of <ordtbl> in its block,
##
## `relevant' &
## a list of class positions such that only the restriction to these
## classes need be checked for deciding whether two characters lie
## in the same block, and
##
## `centralcharacter' &
## a list containing at position $i$ a list whose values at the
## positions stored in the component `relevant' are the values of
## a central character in the $i$-th block.
## \enditems
##
## The components `relevant' and `centralcharacters' are
## used by `SameBlock' (see~"SameBlock").
##
## If `InfoCharacterTable' has level at least 2,
## the defects of the blocks and the heights of the characters are printed.
##
## The default method uses the attribute
## `ComputedPrimeBlockss' for storing the computed value at
## position <p>, and calls the operation `PrimeBlocksOp' for
## computing values that are not yet known.
##
## Two ordinary irreducible characters $\chi, \psi$ of a group $G$ are said
## to lie in the same $p$-*block* if the images of their central characters
## $\omega_{\chi}, \omega_{\psi}$ (see~"CentralCharacter") under the
## ring homomorphism $\ast \colon R \rightarrow R / M$ are equal,
## where $R$ denotes the ring of algebraic integers in the complex number
## field, and $M$ is a maximal ideal in $R$ with $pR \subseteq M$.
## (The distribution to $p$-blocks is in fact independent of the choice of
## $M$, see~\cite{Isa76}.)
##
## For $|G| = p^a m$ where $p$ does not divide $m$, the *defect* of a block
## is the integer $d$ such that $p^{a-d}$ is the largest power of $p$ that
## divides the degrees of all characters in the block.
##
## The *height* of a character $\chi$ in the block is defined as the largest
## exponent $h$ for which $p^h$ divides $\chi(1) / p^{a-d}$.
##
DeclareOperation( "PrimeBlocks", [ IsOrdinaryTable, IsPosInt ] );
DeclareOperation( "PrimeBlocksOp", [ IsOrdinaryTable, IsPosInt ] );
DeclareAttributeSuppCT( "ComputedPrimeBlockss", IsOrdinaryTable, "mutable",
[ "character" ] );
#T Admit a list of characters as optional argument,
#T and compute the distribution into blocks.
#T The question is how to determine the defects of the blocks;
#T this should be possible if defect classes can be computed without
#T problems (cf. Isaacs, Thm. 15.31).
#############################################################################
##
#F SameBlock( <p>, <omega1>, <omega2>, <relevant> )
##
## Let <p> be a prime integer, <omega1> and <omega2> be two central
## characters (or their values lists) of a character table,
## and <relevant> be a list of positions as is stored in the component
## `relevant' of a record returned by `PrimeBlocks' (see~"PrimeBlocks").
##
## `SameBlock' returns `true' if <omega1> and <omega2> are equal modulo any
## maximal ideal in the ring of complex algebraic integers containing the
## ideal spanned by <p>, and `false' otherwise.
##
DeclareGlobalFunction( "SameBlock" );
#############################################################################
##
#A BlocksInfo( <modtbl> )
##
## For a Brauer character table <modtbl>, the value of `BlocksInfo'
## is a list of (mutable) records, the $i$-th entry containing information
## about the $i$-th block.
## Each record has the following components.
## \beginitems
## `defect' &
## the defect of the block,
##
## `ordchars' &
## the list of positions of the ordinary characters that belong to the
## block, relative to `Irr( OrdinaryCharacterTable( <modtbl> ) )',
##
## `modchars' &
## the list of positions of the Brauer characters that belong to the
## block, relative to `IBr( <modtbl> )'.
## \enditems
## Optional components are
## \beginitems
## `basicset' &
## a list of positions of ordinary characters in the block whose
## restriction to <modtbl> is maximally linearly independent,
## relative to `Irr( OrdinaryCharacterTable( <modtbl> ) )',
##
## `decmat' &
## the decomposition matrix of the block,
## it is stored automatically when `DecompositionMatrix' is called for
## the block (see~"DecompositionMatrix"),
##
## `decinv' &
## inverse of the decomposition matrix of the block, restricted to the
## ordinary characters described by `basicset',
##
## `brauertree' &
## a list that describes the Brauer tree of the block,
## in the case that the block is of defect $1$.
## \enditems
##
DeclareAttributeSuppCT( "BlocksInfo", IsNearlyCharacterTable, "mutable",
[ "character" ] );
#############################################################################
##
#A DecompositionMatrix( <modtbl> )
#O DecompositionMatrix( <modtbl>, <blocknr> )
##
## Let <modtbl> be a Brauer character table.
##
## In the first version `DecompositionMatrix' returns the decomposition
## matrix of <modtbl>, where the rows and columns are indexed by the
## irreducible characters of the ordinary character table of <modtbl>
## and the irreducible characters of <modtbl>, respectively,
##
## In the second version `DecompositionMatrix' returns the decomposition
## matrix of the block of <modtbl> with number <blocknr>;
## the matrix is stored as value of the `decmat' component of the
## <blocknr>-th entry of the `BlocksInfo' list (see~"BlocksInfo") of
## <modtbl>.
##
## An ordinary irreducible character is in block $i$ if and only if all
## characters before the first character of the same block lie in $i-1$
## different blocks.
## An irreducible Brauer character is in block $i$ if it has nonzero scalar
## product with an ordinary irreducible character in block $i$.
##
## `DecompositionMatrix' is based on the more general function
## `Decomposition' (see~"Decomposition").
##
DeclareAttribute( "DecompositionMatrix", IsBrauerTable );
DeclareOperation( "DecompositionMatrix", [ IsBrauerTable, IsPosInt ] );
#############################################################################
##
#F LaTeXStringDecompositionMatrix( <modtbl>[, <blocknr>][, <options>] )
##
## is a string that contains La{\TeX} code to print a decomposition matrix
## (see~"DecompositionMatrix") nicely.
##
## The optional argument <options>, if present, must be a record with
## components
## `phi', `chi' (strings used in each label for columns and rows),
## `collabels', `rowlabels' (subscripts for the labels).
## The defaults for `phi' and `chi' are `\"{\\tt Y}\"' and `\"{\\tt X}\"',
## the defaults for `collabels' and `rowlabels' are the lists of positions
## of the Brauer characters and ordinary characters in the respective lists
## of irreducibles in the character tables.
##
## The optional components `nrows' and `ncols' denote the maximal number of
## rows and columns per array;
## if they are present then each portion of `nrows' rows and `ncols' columns
## forms an array of its own which is enclosed in `\\[', `\\]'.
##
## If the component `decmat' is bound in <options> then it must be the
## decomposition matrix in question, in this case the matrix is not computed
## from the information in <modtbl>.
##
## For those character tables from the {\GAP} table library that belong to
## the {\ATLAS} of Finite Groups~\cite{CCN85},
## `AtlasLabelsOfIrreducibles' constructs character labels that are
## compatible with those used in the {\ATLAS}
## (see~"ctbllib:ATLAS Tables" and ~"ctbllib:AtlasLabelsOfIrreducibles"
## in the manual of the {\GAP} Character Table Library).
##
DeclareGlobalFunction( "LaTeXStringDecompositionMatrix" );
#############################################################################
##
## 7. Other Operations for Character Tables
#9
## In the following, we list operations for character tables that are not
## attributes.
##
## \>IsInternallyConsistent( <tbl> )!{for character tables} O
##
## For an *ordinary* character table <tbl>, `IsInternallyConsistent'
## checks the consistency of the following attribute values (if stored).
## \beginlist%unordered
## \item{--}
## `Size', `SizesCentralizers', and `SizesConjugacyClasses'.
## \item{--}
## `SizesCentralizers' and `OrdersClassRepresentatives'.
## \item{--}
## `ComputedPowerMaps' and `OrdersClassRepresentatives'.
## \item{--}
## `SizesCentralizers' and `Irr'.
## \item{--}
## `Irr' (first orthogonality relation).
## \endlist
##
## For a *Brauer* table <tbl>, `IsInternallyConsistent'
## checks the consistency of the following attribute values (if stored).
## \beginlist%unordered
## \item{--}
## `Size', `SizesCentralizers', and `SizesConjugacyClasses'.
## \item{--}
## `SizesCentralizers' and `OrdersClassRepresentatives'.
## \item{--}
## `ComputedPowerMaps' and `OrdersClassRepresentatives'.
## \item{--}
## `Irr' (closure under complex conjugation and Frobenius map).
## \endlist
##
## If no inconsistency occurs, `true' is returned,
## otherwise each inconsistency is printed to the screen if the level of
## `InfoWarning' is at least $1$ (see~"Info Functions"),
## and `false' is returned at the end.
##
#############################################################################
##
#O IsPSolvableCharacterTable( <tbl>, <p> )
#O IsPSolvableCharacterTableOp( <tbl>, <p> )
#A ComputedIsPSolvableCharacterTables( <tbl> )
##
## `IsPSolvableCharacterTable' for the ordinary character table <tbl>
## corresponds to `IsPSolvable' for the group of <tbl> (see~"IsPSolvable").
## <p> must be either a prime integer or `0'.
##
## The default method uses the attribute
## `ComputedIsPSolvableCharacterTables' for storing the computed value at
## position <p>, and calls the operation `IsPSolvableCharacterTableOp' for
## computing values that are not yet known.
##
DeclareOperation( "IsPSolvableCharacterTable", [ IsOrdinaryTable, IsInt ] );
DeclareOperation( "IsPSolvableCharacterTableOp",
[ IsOrdinaryTable, IsInt ] );
DeclareAttributeSuppCT( "ComputedIsPSolvableCharacterTables",
IsOrdinaryTable, "mutable", [] );
#############################################################################
##
#F IsClassFusionOfNormalSubgroup( <subtbl>, <fus>, <tbl> )
##
## For two ordinary character tables <tbl> and <subtbl> of a group $G$ and
## its subgroup $U$, say,
## and a list <fus> of positive integers that describes the class fusion of
## $U$ into $G$,
## `IsClassFusionOfNormalSubgroup' returns `true'
## if $U$ is a normal subgroup of $G$, and `false' otherwise.
##
DeclareGlobalFunction( "IsClassFusionOfNormalSubgroup" );
#############################################################################
##
#O Indicator( <tbl>, <n> )
#O Indicator( <tbl>[, <characters>], <n> )
#O Indicator( <modtbl>, 2 )
#O IndicatorOp( <tbl>, <characters>, <n> )
#A ComputedIndicators( <tbl> )
##
## If <tbl> is an ordinary character table then `Indicator' returns the
## list of <n>-th Frobenius-Schur indicators of the characters in the list
## <characters>; the default of <characters> is `Irr( <tbl> )'.
##
## The $n$-th Frobenius-Schur indicator $\nu_n(\chi)$ of an ordinary
## character $\chi$ of the group $G$ is given by
## $\nu_n(\chi) = \frac{1}{|G|} \sum_{g \in G} \chi(g^n)$.
##
## If <tbl> is a Brauer table in characteristic $\not= 2$ and $<n> = 2$
## then `Indicator' returns the second indicator.
##
## The default method uses the attribute
## `ComputedIndicators' for storing the computed value at
## position <n>, and calls the operation `IndicatorOp' for
## computing values that are not yet known.
##
DeclareOperation( "Indicator", [ IsNearlyCharacterTable, IsPosInt ] );
DeclareOperation( "Indicator",
[ IsNearlyCharacterTable, IsList, IsPosInt ] );
DeclareOperation( "IndicatorOp",
[ IsNearlyCharacterTable, IsList, IsPosInt ] );
DeclareAttributeSuppCT( "ComputedIndicators", IsCharacterTable, "mutable",
[ "character" ] );
#############################################################################
##
#F NrPolyhedralSubgroups( <tbl>, <c1>, <c2>, <c3>) . # polyhedral subgroups
##
## \index{subgroups!polyhedral}
##
## returns the number and isomorphism type of polyhedral subgroups of the
## group with ordinary character table <tbl> which are generated by an
## element $g$ of class <c1> and an element $h$ of class <c2> with the
## property that the product $gh$ lies in class <c3>.
##
## According to p.~233 in~\cite{NPP84}, the number of polyhedral subgroups
## of isomorphism type $V_4$, $D_{2n}$, $A_4$, $S_4$, and $A_5$
## can be derived from the class multiplication coefficient
## (see~"ClassMultiplicationCoefficient!for character tables")
## and the number of Galois
## conjugates of a class (see~"ClassOrbit").
##
## The classes <c1>, <c2> and <c3> in the parameter list must be ordered
## according to the order of the elements in these classes.
#
DeclareGlobalFunction( "NrPolyhedralSubgroups" );
#############################################################################
##
#O ClassMultiplicationCoefficient( <tbl>, <i>, <j>, <k> )
##
## \index{class multiplication coefficient}
## \index{structure constant}
##
## returns the class multiplication coefficient of the classes <i>, <j>,
## and <k> of the group $G$ with ordinary character table <tbl>.
##
## The class multiplication coefficient $c_{i,j,k}$ of the classes <i>,
## <j>, <k> equals the number of pairs $(x,y)$ of elements $x, y \in G$
## such that $x$ lies in class <i>, $y$ lies in class <j>,
## and their product $xy$ is a fixed element of class <k>.
##
## In the center of the group algebra of $G$, these numbers are found as
## coefficients of the decomposition of the product of two class sums $K_i$
## and $K_j$ into class sums,
## $$
## K_i K_j = \sum_k c_{ijk} K_k\.
## $$
## Given the character table of a finite group $G$,
## whose classes are $C_1, \dots, C_r$ with representatives $g_i \in C_i$,
## the class multiplication coefficient $c_{ijk}$ can be computed
## by the following formula.
## $$
## c_{ijk} = \frac{\|C_i\|\|C_j\|}{\|G\|}
## \sum_{\chi \in Irr(G)}
## \frac{\chi(g_i) \chi(g_j) \overline{\chi(g_k)}}{\chi(1)}\.
## $$
## On the other hand the knowledge of the class multiplication coefficients
## admits the computation of the irreducible characters of $G$.
## (see~"IrrDixonSchneider").
##
DeclareOperation( "ClassMultiplicationCoefficient",
[ IsOrdinaryTable, IsPosInt, IsPosInt, IsPosInt ] );
#############################################################################
##
#F MatClassMultCoeffsCharTable( <tbl>, <i> )
##
## \index{structure constant}
## \index{class multiplication coefficient}
##
## For an ordinary character table <tbl> and a class position <i>,
## `MatClassMultCoeffsCharTable' returns the matrix
## $[ a_{ijk} ]_{j,k}$ of structure constants
## (see~"ClassMultiplicationCoefficient!for character tables").
##
DeclareGlobalFunction( "MatClassMultCoeffsCharTable" );
#############################################################################
##
#F ClassStructureCharTable( <tbl>, <classes> ) . . gener. class mult. coeff.
##
## \index{class multiplication coefficient}
## \index{structure constant}
##
## returns the so-called class structure of the classes in the list
## <classes>, for the character table <tbl> of the group $G$.
## The length of <classes> must be at least 2.
##
## Let $C = (C_1, C_2, \dots, C_n)$ denote the $n$-tuple of conjugacy
## classes of $G$ that are indexed by <classes>.
## The class structure $n(C)$ equals
## the number of $n$-tuples $(g_1, g_2, \ldots, g_n)$ of elements
## $g_i\in C_i$ with $g_1 g_2 \cdots g_n = 1$.
## Note the difference to the definition of the class multiplication
## coefficients in `ClassMultiplicationCoefficient'
## (see~"ClassMultiplicationCoefficient!for character tables").
##
## $n(C_1, C_2, \ldots, C_n)$ is computed using the formula
## $$
## n(C_1, C_2, \ldots, C_n)
## = \frac{\|C_1\|\|C_2\|\cdots\|C_n\|}{\|G\|}
## \sum_{\chi \in Irr(G)}
## \frac{\chi(g_1)\chi(g_2)\cdots\chi(g_n)}{\chi(1)^{n-2}}.
## $$
##
DeclareGlobalFunction( "ClassStructureCharTable" );
#############################################################################
##
## 8. Creating Character Tables
#10
## There are in general five different ways to get a character table in
## {\GAP}.
## You can
## \beginlist%ordered
## \item{1.}
## compute the table from a group,
## \item{2.}
## read a file that contains the table data,
## \item{3.}
## construct the table using generic formulae,
## \item{4.}
## derive it from known character tables, or
## \item{5.}
## combine partial information about conjugacy classes, power maps
## of the group in question, and about (character tables of) some
## subgroups and supergroups.
## \endlist
##
## In 1., the computation of the irreducible characters is the hardest part;
## the different algorithms available for this are described
## in~"Computing the Irreducible Characters of a Group".
## Possibility 2.~is used for the character tables in the {\GAP} Character
## Table Library, see the manual of this library.
## Generic character tables --as addressed by 3.-- are described
## in~"ctbllib:Generic Character Tables" in the manual of the {\GAP}
## Character Table Library.
## Several occurrences of 4.~are described
## in~"Constructing Character Tables from Others".
## The last of the above possibilities
## *@is currently not supported and will be described in a chapter of its
## own when it becomes available@*.
##
## The operation `CharacterTable' (see~"CharacterTable") can be used for the
## cases 1.--3.
##
#############################################################################
##
#O CharacterTable( <G> ) . . . . . . . . . . ordinary char. table of a group
#O CharacterTable( <G>, <p> ) . . . . . characteristic <p> table of a group
#O CharacterTable( <ordtbl>, <p> )
#O CharacterTable( <name>[, <param>] ) . . . . library table with given name
##
## Called with a group <G>, `CharacterTable' calls the attribute
## `OrdinaryCharacterTable' (see~"OrdinaryCharacterTable").
## Called with first argument a group <G> or an ordinary character table
## <ordtbl>, and second argument a prime <p>, `CharacterTable' calls
## the operation `BrauerTable' (see~"BrauerTable").
## Called with a string <name> and perhaps optional parameters <param>,
## `CharacterTable' delegates to `CharacterTableFromLibrary', which
## tries to access the {\GAP} Character Table Library (see the manual of
## this library for an overview of admissible strings <name>).
##
## Probably the most interesting information about the character table is
## its list of irreducibles, which can be accessed as the value of the
## attribute `Irr' (see~"Irr").
## If the argument of `CharacterTable' is a string <name> then the
## irreducibles are just read from the library file,
## therefore the returned table stores them already.
## However, if `CharacterTable' is called with a group <G> or with an
## ordinary character table <ordtbl>, the irreducible characters are *not*
## computed by `CharacterTable'.
## They are only computed when the `Irr' value is accessed for the first
## time, for example when `Display' is called for the table
## (see~"Printing Character Tables").
## This means for example that `CharacterTable' returns its result very
## quickly, and the first call of `Display' for this table may take some
## time because the irreducible characters must be computed at that time
## before they can be displayed together with other information stored on
## the character table.
## The value of the filter `HasIrr' indicates whether the irreducible
## characters have been computed already.
##
## The reason why `CharacterTable' does not compute the irreducible
## characters is that there are situations where one only needs the
## ``table head'', that is, the information about class lengths, power maps
## etc., but not the irreducibles.
## For example, if one wants to inspect permutation characters of a group
## then all one has to do is to induce the trivial characters of subgroups
## one is interested in; for that, only class lengths and the class fusion
## are needed.
## Or if one wants to compute the Molien series (see~"MolienSeries") for a
## given complex matrix group, the irreducible characters of this group are
## in general of no interest.
##
## For details about different algorithms to compute the irreducible
## characters, see~"Computing the Irreducible Characters of a Group".
##
## If the group <G> is given as an argument, `CharacterTable' accesses the
## conjugacy classes of <G> and therefore causes that these classes are
## computed if they were not yet stored
## (see~"The Interface between Character Tables and Groups").
##
DeclareOperation( "CharacterTable", [ IsGroup ] );
DeclareOperation( "CharacterTable", [ IsGroup, IsInt ] );
DeclareOperation( "CharacterTable", [ IsOrdinaryTable, IsInt ] );
DeclareOperation( "CharacterTable", [ IsString ] );
#############################################################################
##
#O BrauerTable( <ordtbl>, <p> )
#O BrauerTable( <G>, <p> )
#O BrauerTableOp( <ordtbl>, <p> )
#A ComputedBrauerTables( <ordtbl> ) . . . . . . . . . . known Brauer tables
##
## Called with an ordinary character table <ordtbl> or a group <G>,
## `BrauerTable' returns its <p>-modular character table
## if {\GAP} can compute this table, and `fail' otherwise.
## The <p>-modular table can be computed for <p>-solvable groups
## (using the Fong-Swan Theorem) and in the case that <ordtbl> is a table
## from the {\GAP} character table library for which also the <p>-modular
## table is contained in the table library.
##
## The default method for a group and a prime delegates to `BrauerTable' for
## the ordinary character table of this group.
## The default method for <ordtbl> uses the attribute
## `ComputedBrauerTables' for storing the computed Brauer table
## at position <p>, and calls the operation `BrauerTableOp' for
## computing values that are not yet known.
##
## So if one wants to install a new method for computing Brauer tables
## then it is sufficient to install it for `BrauerTableOp'.
##
## The `\\mod' operator for a character table and a prime
## (see~"Operators for Character Tables") delegates to
## `BrauerTable'.
##
DeclareOperation( "BrauerTable", [ IsOrdinaryTable, IsPosInt ] );
DeclareOperation( "BrauerTable", [ IsGroup, IsPosInt ] );
DeclareOperation( "BrauerTableOp", [ IsOrdinaryTable, IsPosInt ] );
DeclareAttribute( "ComputedBrauerTables", IsOrdinaryTable, "mutable" );
#############################################################################
##
#F CharacterTableRegular( <tbl>, <p> ) . table consist. of <p>-reg. classes
##
## For an ordinary character table <tbl> and a prime integer <p>,
## `CharacterTableRegular' returns the ``table head'' of the
## <p>-modular Brauer character table of <tbl>.
## This is the restriction of <tbl> to its <p>-regular classes,
## like the return value of `BrauerTable' (see~"BrauerTable"),
## but without the irreducible Brauer characters.
## (In general, these characters are hard to compute,
## and `BrauerTable' may return `fail' for the given
## arguments,
## for example if <tbl> is a table from the {\GAP} character table
## library.)
##
## The returned table head can be used to create <p>-modular Brauer
## characters, by restricting ordinary characters, for example when one
## is interested in approximations of the (unknown) irreducible Brauer
## characters.
##
DeclareGlobalFunction( "CharacterTableRegular" );
#############################################################################
##
#F ConvertToCharacterTable( <record> ) . . . . create character table object
#F ConvertToCharacterTableNC( <record> ) . . . create character table object
##
## Let <record> be a record.
## `ConvertToCharacterTable' converts <record> into a component object
## (see~"prg:Component Objects" in ``Programming in {\GAP}'')
## representing a character table.
## The values of those components of <record> whose names occur in
## `SupportedCharacterTableInfo' (see~"SupportedCharacterTableInfo")
## correspond to attribute values of the returned character table.
## All other components of the record simply become components of the
## character table object.
##
## If inconsistencies in <record> are detected, `fail' is returned.
## <record> must have the component `UnderlyingCharacteristic' bound
## (see~"UnderlyingCharacteristic"),
## since this decides about whether the returned character table lies in
## `IsOrdinaryTable' or in `IsBrauerTable'
## (see~"IsOrdinaryTable", "IsBrauerTable").
##
## `ConvertToCharacterTableNC' does the same except that all checks of
## <record> are omitted.
##
## An example of a conversion from a record to a character table object
## can be found in Section~"PrintCharacterTable".
##
DeclareGlobalFunction( "ConvertToCharacterTable" );
DeclareGlobalFunction( "ConvertToCharacterTableNC" );
#############################################################################
##
#F ConvertToLibraryCharacterTableNC( <record> )
##
## For a record <record> that shall be converted into an ordinary or Brauer
## character table that knows to belong to the {\GAP} character table
## library, `ConvertToLibraryCharacterTableNC' does the same as
## `ConvertToOrdinaryTableNC', except that additionally the filter
## `IsLibraryCharacterTableRep' is set
## (see the manual of the {\GAP} Character Table Library).
##
## But if <record> has the component `isGenericTable', with value `true',
## then no attribute values are set.
##
## (The handling of generic character tables may change in the future.
## Currently they are used just just for specialization,
## see~"ctbllib:Generic Character Tables" in the manual of the {\GAP}
## Character Table Library.)
##
DeclareGlobalFunction( "ConvertToLibraryCharacterTableNC" );
#############################################################################
##
## 9. Printing Character Tables
#11
## \indextt{ViewObj!for character tables}
## The default `ViewObj' (see~"ViewObj") method for ordinary character
## tables prints the string `\"CharacterTable\"', followed by the identifier
## (see~"Identifier!for character tables") or, if known, the group of the
## character table enclosed in brackets. `ViewObj' for Brauer tables does
## the same, except that the first string is replaced by `\"BrauerTable\"',
## and that the characteristic is also shown.
##
## \indextt{PrintObj!for character tables}
## The default `PrintObj' (see~"PrintObj") method for character tables
## does the same as `ViewObj',
## except that the group is is `Print'-ed instead of `View'-ed.
##
## \indextt{Display!for character tables}
## There are various ways to customize the `Display' (see~"Display") output
## for character tables.
## First we describe the default behaviour,
## alternatives are then described below.
##
## The default `Display' method prepares the data in <tbl> for a columnwise
## output.
## The number of columns printed at one time depends on the actual
## line length, which can be accessed and changed by the function
## `SizeScreen' (see~"SizeScreen").
##
## An interesting variant of `Display' is the function `PageDisplay'
## which belongs to the \package{GAPDoc} package.
## Convenient ways to print the `Display' format to a file are given
## by the \package{GAPDoc} function `PrintTo1'
## or by using `PageDisplay' and the facilities of the pager used,
## cf.~"Pager".
##
## `Display' shows certain characters (by default all irreducible
## characters) of <tbl>, together with the orders of the centralizers in
## factorized form and the available power maps (see~"ComputedPowerMaps").
## The <n>-th displayed character is given the name `X.<n>'.
##
## The first lines of the output describe the order of the centralizer
## of an element of the class factorized into its prime divisors.
##
## The next line gives the name of each class.
## If no class names are stored on <tbl>, `ClassNames' is called
## (see~"ClassNames").
##
## Preceded by a name `P<n>', the next lines show the <n>th power maps
## of <tbl> in terms of the former shown class names.
##
## Every ambiguous or unknown (see Chapter~"Unknowns") value of the table
## is displayed as a question mark `?'.
##
## Irrational character values are not printed explicitly because the
## lengths of their printed representation might disturb the layout.
## Instead of that every irrational value is indicated by a name,
## which is a string of at least one capital letter.
##
## Once a name for an irrational value is found, it is used all over the
## printed table.
## Moreover the complex conjugate (see~"ComplexConjugate", "GaloisCyc")
## and the star of an irrationality (see~"StarCyc") are represented by
## that very name preceded by a `/' and a `\*', respectively.
##
## The printed character table is then followed by a legend,
## a list identifying the occurring symbols with their actual values.
## Occasionally this identification is supplemented by a quadratic
## representation of the irrationality (see~"Quadratic") together with
## the corresponding {\ATLAS} notation (see~\cite{CCN85}).
##
## This default style can be changed by prescribing a record <arec> of
## options, which can be given
## \beginlist%unordered
## \item{--}
## as an optional argument in the call to `Display',
## \item{--}
## as the value of the attribute `DisplayOptions' (see~"DisplayOptions")
## if this value is stored in the table,
## \item{--}
## as the value of the global variable
## `CharacterTableDisplayDefaults.User', or
## \item{--}
## as the value of the global variable
## `CharacterTableDisplayDefaults.Global'
## \endlist
## (in this order of precedence).
##
## The following components of <arec> are supported.
##
## \beginitems
## `centralizers' &
## `false' to suppress the printing of the orders of the centralizers,
## or the string `\"ATLAS\"' to force the printing of non-factorized
## centralizer orders in a style similar to that used in the
## {\ATLAS} of Finite Groups~\cite{CCN85},
##
## `chars' &
## an integer or a list of integers to select a sublist of the
## irreducible characters of <tbl>,
## or a list of characters of <tbl>
## (in this case the letter `\"X\"' is replaced by `\"Y\"'),
##
## `classes' &
## an integer or a list of integers to select a sublist of the
## classes of <tbl>,
##
## `indicator' &
## `true' enables the printing of the second Frobenius Schur indicator,
## a list of integers enables the printing of the corresponding
## indicators (see~"Indicator"),
##
## `letter' &
## a single capital letter (e.~g.~`\"P\"' for permutation characters)
## to replace the default `\"X\"' in character names,
##
## `powermap' &
## an integer or a list of integers to select a subset of the
## available power maps,
## `false' to suppress the printing of power maps,
## or the string `\"ATLAS\"' to force a printing of class names and
## power maps in a style similar to that used in the
## {\ATLAS} of Finite Groups~\cite{CCN85},
##
## `Display' &
## the function that is actually called in order to display the table;
## the arguments are the table and the optional record, whose components
## can be used inside the `Display' function,
##
## `StringEntry' &
## a function that takes either a character value or a character value
## and the return value of `StringEntryData' (see below),
## and returns the string that is actually displayed;
## it is called for all character values to be displayed,
## and also for the displayed indicator values (see above),
##
## `StringEntryData' &
## a unary function that is called once with argument <tbl> before the
## character values are displayed;
## it returns an object that is used as second argument of the function
## `StringEntry',
##
## `Legend' &
## a function that takes the result of the `StringEntryData' call as its
## only argument, after the character table has been displayed;
## the return value is a string that describes the symbols used in the
## displayed table in a formatted way,
## it is printed below the displayed table.
## \enditems
##
#############################################################################
##
#A DisplayOptions( <tbl> )
##
#T is a more general attribute?
## There is no default method to compute a value,
## one can set a value with `SetDisplayOptions'.
##
DeclareAttribute( "DisplayOptions", IsNearlyCharacterTable );
#############################################################################
##
#V CharacterTableDisplayDefaults
##
## This is a record with at least the component `Global', which is used as
## the default value for the second argument of `Display' for character
## tables.
##
## If also the component `User' is bound then this value is taken instead.
## So one can customize the default behaviour of `Display' by adding this
## component, and return to the previous behaviour by unbinding it.
##
DeclareGlobalVariable( "CharacterTableDisplayDefaults" );
#############################################################################
##
#F PrintCharacterTable( <tbl>, <varname> )
##
## Let <tbl> be a nearly character table, and <varname> a string.
## `PrintCharacterTable' prints those values of the supported attributes
## (see~"SupportedCharacterTableInfo") that are known for <tbl>;
#T If <tbl> is a library table then also the known values of supported
#T components (see~"SupportedLibraryTableComponents") are printed.
##
## The output of `PrintCharacterTable' is {\GAP} readable;
## actually reading it into {\GAP} will bind the variable with name
## <varname> to a character table that coincides with <tbl> for all
## printed components.
##
## This is used mainly for saving character tables to files.
## A more human readable form is produced by `Display'.
##
DeclareGlobalFunction( "PrintCharacterTable" );
#############################################################################
##
## 10. Constructing Character Tables from Others
#12
##
## The following operations take one or more character table arguments,
## and return a character table.
## This holds also for `BrauerTable' (see~"BrauerTable");
## note that the return value of `BrauerTable' will in general not
## know the irreducible Brauer characters,
## and {\GAP} might be unable to compute these characters.
##
## *Note* that whenever fusions between input and output tables occur in
## these operations,
## they are stored on the concerned tables,
## and the `NamesOfFusionSources' values are updated.
##
## (The interactive construction of character tables using character
## theoretic methods and incomplete tables is not described here.)
## *@Currently it is not supported and will be described in a chapter of its
## own when it becomes available@*.
##
#############################################################################
##
#O CharacterTableDirectProduct( <tbl1>, <tbl2> )
##
## is the table of the direct product of the character tables <tbl1>
## and <tbl2>.
##
## The matrix of irreducibles of this table is the Kronecker product
## (see~"KroneckerProduct") of the irreducibles of <tbl1> and <tbl2>.
##
## Products of ordinary and Brauer character tables are supported.
##
## In general, the result will not know an underlying group,
## so missing power maps (for prime divisors of the result)
## and irreducibles of the input tables may be computed in order to
## construct the table of the direct product.
##
## The embeddings of the input tables into the direct product are stored,
## they can be fetched with `GetFusionMap' (see~"GetFusionMap");
## if <tbl1> is equal to <tbl2> then the two embeddings are distinguished
## by their `specification' components `"1"' and `"2"', respectively.
##
## Analogously, the projections from the direct product onto the input
## tables are stored, and can be distinguished by the `specification'
## components.
##
#T generalize this to arbitrarily many arguments!
##
## The attribute `FactorsOfDirectProduct' (see~"FactorsOfDirectProduct")
## is set to the lists of arguments.
##
## The `\*' operator for two character tables
## (see~"Operators for Character Tables") delegates to
## `CharacterTableDirectProduct'.
##
DeclareOperation( "CharacterTableDirectProduct",
[ IsNearlyCharacterTable, IsNearlyCharacterTable ] );
#############################################################################
##
#A FactorsOfDirectProduct( <tbl> )
##
## For an ordinary character table that has been constructed via
## `CharacterTableDirectProduct' (see~"CharacterTableDirectProduct"),
## the value of `FactorsOfDirectProduct' is the list of arguments in the
## `CharacterTableDirectProduct' call.
##
## Note that there is no default method for *computing* the value of
## `FactorsOfDirectProduct'.
##
DeclareAttributeSuppCT( "FactorsOfDirectProduct", IsNearlyCharacterTable,
[] );
#############################################################################
##
#F CharacterTableHeadOfFactorGroupByFusion( <tbl>, <factorfusion> )
##
## is the character table of the factor group of the ordinary character
## table <tbl> defined by the list <factorfusion> that describes the
## factor fusion.
## The irreducible characters of the factor group are *not* computed.
##
DeclareGlobalFunction( "CharacterTableHeadOfFactorGroupByFusion" );
#############################################################################
##
#O CharacterTableFactorGroup( <tbl>, <classes> )
##
## is the character table of the factor group of the ordinary character
## table <tbl> by the normal closure of the classes whose positions are
## contained in the list <classes>.
##
## The `\/' operator for a character table and a list of class positions
## (see~"Operators for Character Tables") delegates to
## `CharacterTableFactorGroup'.
##
DeclareOperation( "CharacterTableFactorGroup",
[ IsNearlyCharacterTable, IsHomogeneousList ] );
#############################################################################
##
#A CharacterTableIsoclinic( <tbl> )
#O CharacterTableIsoclinic( <tbl>, <classes> )
#O CharacterTableIsoclinic( <tbl>, <classes>, <centre> )
##
## If <tbl> is the (ordinary or modular) character table of a group with the
## structure $2\.G\.2$ with a central subgroup $Z$ of order $2$ and a normal
## subgroup $N$ of index $2$ that contains $Z$
## then `CharacterTableIsoclinic' returns the table of the isoclinic group
## in the sense of the {\ATLAS} of Finite Groups~\cite{CCN85}, Chapter~6,
## Section~7.
## If $N$ is not uniquely determined then the positions of the classes
## forming $N$ must be entered as list <classes>.
## If $Z$ is not unique in $N$ then the position of the class consisting
## of the involution in $Z$ must be entered as <centre>.
##
## Note that also if <tbl> is a Brauer table then <classes> and <centre>
## denote class numbers w.r.t.~the *ordinary* character table.
##
DeclareAttribute( "CharacterTableIsoclinic", IsNearlyCharacterTable );
DeclareOperation( "CharacterTableIsoclinic",
[ IsNearlyCharacterTable, IsList and IsCyclotomicCollection ] );
DeclareOperation( "CharacterTableIsoclinic",
[ IsNearlyCharacterTable, IsList and IsCyclotomicCollection, IsPosInt ]);
#############################################################################
##
#A SourceOfIsoclinicTable( <tbl> )
##
## For an ordinary character table that has been constructed via
## `CharacterTableIsoclinic' (see~"CharacterTableIsoclinic"),
## the value of `SourceOfIsoclinicTable' is the list of three arguments in
## the `CharacterTableIsoclinic' call.
##
## Note that there is no default method for *computing* the value of
## `SourceOfIsoclinicTable'.
##
DeclareAttributeSuppCT( "SourceOfIsoclinicTable", IsNearlyCharacterTable,
[ "class" ] );
#############################################################################
##
#F CharacterTableOfNormalSubgroup( <ordtbl>, <classes> )
##
## returns the restriction of the ordinary character table <ordtbl>
## to the classes in the list <classes>.
##
## In most cases, this table is only an approximation of the character table
## of this normal subgroup, and some classes of the normal subgroup must be
## split (see~"CharacterTableSplitClasses") in order to get a character
## table.
## The result is only a table in progress then
## (see~"Character Table Categories").
##
## If the classes in <classes> need not to be split then the result is a
## proper character table.
##
DeclareGlobalFunction( "CharacterTableOfNormalSubgroup" );
#############################################################################
##
## 11. Sorted Character Tables
##
#############################################################################
##
#F PermutationToSortCharacters( <tbl>, <chars>, <degree>, <norm>, <galois> )
##
## returns a permutation $\pi$, say, that can be applied to the list <chars>
## of characters of the character table <tbl> in order to sort this list
## w.r.t.~increasing degree, norm, or both.
## The arguments <degree>, <norm>, and <galois> must be Booleans.
## If <norm> is `true' then characters of smaller norm precede characters
## of larger norm after permuting with $\pi$.
## If both <degree> and <norm> are `true' then additionally characters of
## same norm are sorted w.r.t.~increasing degree after permuting with $\pi$.
## If only <degree> is `true' then characters of smaller degree precede
## characters of larger degree after permuting with $\pi$.
## If <galois> is `true' then each family of algebraic conjugate characters
## in <chars> is consecutive after permuting with $\pi$.
##
## Rational characters in the permuted list precede characters with
## irrationalities of same norm and/or degree, and the trivial character
## will be sorted to position $1$ if it occurs in <chars>.
##
DeclareGlobalFunction( "PermutationToSortCharacters" );
#############################################################################
##
#O CharacterTableWithSortedCharacters( <tbl> )
#O CharacterTableWithSortedCharacters( <tbl>, <perm> )
##
## is a character table that differs from <tbl> only by the succession of
## its irreducible characters.
## This affects the values of the attributes `Irr' (see~"Irr") and
## `CharacterParameters' (see~"ctbllib:CharacterParameters" in the manual
## for the {\GAP} Character Table Library).
## Namely, these lists are permuted by the permutation <perm>.
##
## If no second argument is given then a permutation is used that yields
## irreducible characters of increasing degree for the result.
## For the succession of characters in the result, see~"SortedCharacters".
##
## The result has all those attributes and properties of <tbl> that are
## stored in `SupportedCharacterTableInfo' and do not depend on the
## ordering of characters (see~"SupportedCharacterTableInfo").
##
DeclareOperation( "CharacterTableWithSortedCharacters",
[ IsNearlyCharacterTable ] );
DeclareOperation( "CharacterTableWithSortedCharacters",
[ IsNearlyCharacterTable, IsPerm ] );
#############################################################################
##
#O SortedCharacters( <tbl>, <chars> )
#O SortedCharacters( <tbl>, <chars>, \"norm\" )
#O SortedCharacters( <tbl>, <chars>, \"degree\" )
##
## is a list containing the characters <chars>, ordered as specified
## by the other arguments.
##
## There are three possibilities to sort characters:
## They can be sorted according to ascending norms (parameter `\"norm\"'),
## to ascending degree (parameter `\"degree\"'),
## or both (no third parameter),
## i.e., characters with same norm are sorted according to ascending degree,
## and characters with smaller norm precede those with bigger norm.
##
## Rational characters in the result precede other ones with same norm
## and/or same degree.
##
## The trivial character, if contained in <chars>, will always be sorted to
## the first position.
##
DeclareOperation( "SortedCharacters",
[ IsNearlyCharacterTable, IsHomogeneousList ] );
DeclareOperation( "SortedCharacters",
[ IsNearlyCharacterTable, IsHomogeneousList, IsString ] );
#############################################################################
##
#F PermutationToSortClasses( <tbl>, <classes>, <orders>, <galois> )
##
## returns a permutation $\pi$, say, that can be applied to the columns in
## the character table <tbl> in order to sort this table w.r.t.~increasing
## class length, element order, or both.
## <classes> and <orders> must be Booleans.
## If <orders> is `true' then classes of element of smaller order precede
## classes of elements of larger order after peruting with $\pi$.
## If both <classes> and <orders> are `true' then additionally classes of
## elements of the same order are sorted w.r.t.~increasing length after
## permuting with $\pi$.
## If <classes> is `true' but <orders> is `false' then smaller classes
## precede larger ones after permuting with $\pi$.
## If <galois> is `true' then each family of algebraic conjugate classes
## in <tbl> is consecutive after permuting with $\pi$.
##
DeclareGlobalFunction( "PermutationToSortClasses" );
#############################################################################
##
#O CharacterTableWithSortedClasses( <tbl> )
#O CharacterTableWithSortedClasses( <tbl>, \"centralizers\" )
#O CharacterTableWithSortedClasses( <tbl>, \"representatives\" )
#O CharacterTableWithSortedClasses( <tbl>, <permutation> )
##
## is a character table obtained by permutation of the classes of <tbl>.
## If the second argument is the string `\"centralizers\"' then the classes
## of the result are sorted according to descending centralizer orders.
## If the second argument is the string `\"representatives\"' then the
## classes of the result are sorted according to ascending representative
## orders.
## If no second argument is given then the classes of the result are sorted
## according to ascending representative orders,
## and classes with equal representative orders are sorted according to
## descending centralizer orders.
##
## If the second argument is a permutation <perm> then the classes of the
## result are sorted by application of this permutation.
##
## The result has all those attributes and properties of <tbl> that are
## stored in `SupportedCharacterTableInfo' and do not depend on the
## ordering of classes (see~"SupportedCharacterTableInfo").
##
DeclareOperation( "CharacterTableWithSortedClasses",
[ IsNearlyCharacterTable ] );
DeclareOperation( "CharacterTableWithSortedClasses",
[ IsNearlyCharacterTable, IsString ] );
DeclareOperation( "CharacterTableWithSortedClasses",
[ IsNearlyCharacterTable, IsPerm ] );
#############################################################################
##
#F SortedCharacterTable( <tbl>, <kernel> )
#F SortedCharacterTable( <tbl>, <normalseries> )
#F SortedCharacterTable( <tbl>, <facttbl>, <kernel> )
##
## is a character table obtained on permutation of the classes and the
## irreducibles characters of <tbl>.
##
## The first form sorts the classes at positions contained in the list
## <kernel> to the beginning, and sorts all characters in
## `Irr( <tbl> )' such that the first characters are those that contain
## <kernel> in their kernel.
##
## The second form does the same successively for all kernels $k_i$ in
## the list $<normalseries> = [ k_1, k_2, \ldots, k_n ]$ where
## $k_i$ must be a sublist of $k_{i+1}$ for $1 \leq i \leq n-1$.
##
## The third form computes the table $F$ of the factor group of <tbl>
## modulo the normal subgroup formed by the classes whose positions are
## contained in the list <kernel>;
## $F$ must be permutation equivalent to the table <facttbl>,
## in the sense of `TransformingPermutationsCharacterTables'
## (see~"TransformingPermutationsCharacterTables"),
## otherwise `fail' is returned.
## The classes of <tbl> are sorted such that the preimages
## of a class of $F$ are consecutive,
## and that the succession of preimages is that of <facttbl>.
## `Irr( <tbl> )' is sorted as with `SortCharTable( <tbl>, <kernel> )'.
##
## (*Note* that the transformation is only unique up to table automorphisms
## of $F$, and this need not be unique up to table automorphisms of <tbl>.)
##
## All rearrangements of classes and characters are stable,
## i.e., the relative positions of classes and characters that are not
## distinguished by any relevant property is not changed.
##
## The result has all those attributes and properties of <tbl> that are
## stored in `SupportedCharacterTableInfo' and do not depend on the
## ordering of classes and characters (see~"SupportedCharacterTableInfo").
##
## The `ClassPermutation' value of <tbl> is changed if necessary,
## see~"Conventions for Character Tables".
##
## `SortedCharacterTable' uses `CharacterTableWithSortedClasses' and
## `CharacterTableWithSortedCharacters'
## (see~"CharacterTableWithSortedClasses",
## "CharacterTableWithSortedCharacters").
##
DeclareGlobalFunction( "SortedCharacterTable" );
#############################################################################
##
#A ClassPermutation( <tbl> )
##
## is a permutation $\pi$ of classes of the character table <tbl>.
## If it is stored then class fusions into <tbl> that are stored on other
## tables must be followed by $\pi$ in order to describe the correct
## fusion.
##
## This attribute value is bound only if <tbl> was obtained from another
## table by permuting the classes, using
## `CharacterTableWithSortedClasses' or `SortedCharacterTable',
## (see~"CharacterTableWithSortedClasses", "SortedCharacterTable").
##
## It is necessary because the original table and the sorted table have the
## same identifier (and the same group if known),
## and hence the same fusions are valid for the two tables.
##
DeclareAttributeSuppCT( "ClassPermutation", IsNearlyCharacterTable,
[ "class" ] );
#############################################################################
##
## 12. Storing Normal Subgroup Information
##
##############################################################################
##
#A NormalSubgroupClassesInfo( <tbl> )
##
## Let <tbl> be the ordinary character table of the group $G$.
## Many computations for group characters of $G$ involve computations
## in normal subgroups or factor groups of $G$.
##
## In some cases the character table <tbl> is sufficient;
## for example questions about a normal subgroup $N$ of $G$ can be answered
## if one knows the conjugacy classes that form $N$,
## e.g., the question whether a character of $G$ restricts
## irreducibly to $N$.
## But other questions require the computation of $N$ or
## even more information, like the character table of $N$.
##
## In order to do these computations only once, one stores in the group a
## record with components to store normal subgroups, the corresponding lists
## of conjugacy classes, and (if necessary) the factor groups, namely
##
## \beginitems
## `nsg': &
## list of normal subgroups of $G$, may be incomplete,
##
## `nsgclasses': &
## at position $i$, the list of positions of conjugacy
## classes of <tbl> forming the $i$-th entry of the `nsg' component,
##
## `nsgfactors': &
## at position $i$, if bound, the factor group
## modulo the $i$-th entry of the `nsg' component.
## \enditems
##
## `NormalSubgroupClasses',
## `FactorGroupNormalSubgroupClasses', and
## `ClassPositionsOfNormalSubgroup'
## each use these components, and they are the only functions to do so.
##
## So if you need information about a normal subgroup for that you know the
## conjugacy classes, you should get it using `NormalSubgroupClasses'. If
## the normal subgroup was already used it is just returned, with all the
## knowledge it contains. Otherwise the normal subgroup is added to the
## lists, and will be available for the next call.
##
## For example, if you are dealing with kernels of characters using the
## `KernelOfCharacter' function you make use of this feature
## because `KernelOfCharacter' calls `NormalSubgroupClasses'.
##
DeclareAttribute( "NormalSubgroupClassesInfo", IsOrdinaryTable, "mutable" );
##############################################################################
##
#F ClassPositionsOfNormalSubgroup( <tbl>, <N> )
##
## is the list of positions of conjugacy classes of the character table
## <tbl> that are contained in the normal subgroup <N>
## of the underlying group of <tbl>.
##
DeclareGlobalFunction( "ClassPositionsOfNormalSubgroup" );
##############################################################################
##
#F NormalSubgroupClasses( <tbl>, <classes> )
##
## returns the normal subgroup of the underlying group $G$ of the ordinary
## character table <tbl>
## that consists of those conjugacy classes of <tbl> whose positions are in
## the list <classes>.
##
## If `NormalSubgroupClassesInfo( <tbl> ).nsg' does not yet contain
## the required normal subgroup,
## and if `NormalSubgroupClassesInfo( <tbl> ).normalSubgroups' is bound then
## the result will be identical to the group in
## `NormalSubgroupClassesInfo( <tbl> ).normalSubgroups'.
##
DeclareGlobalFunction( "NormalSubgroupClasses" );
##############################################################################
##
#F FactorGroupNormalSubgroupClasses( <tbl>, <classes> )
##
## is the factor group of the underlying group $G$ of the ordinary character
## table <tbl> modulo the normal subgroup of $G$ that consists of those
## conjugacy classes of <tbl> whose positions are in the list <classes>.
##
DeclareGlobalFunction( "FactorGroupNormalSubgroupClasses" );
#############################################################################
##
## 13. Auxiliary Stuff
##
#############################################################################
##
## The following representation is used for the character table library.
## As the library refers to it, it has to be declared in a library file
## not to enforce installing the character tables library.
##
#############################################################################
##
#V SupportedLibraryTableComponents
#R IsLibraryCharacterTableRep( <tbl> )
##
## Modular library tables may have some components that are meaningless for
## character tables that know their underlying group.
## These components do not justify the introduction of operations to fetch
## them.
##
## Library tables are always complete character tables.
## Note that in spite of the name, `IsLibraryCharacterTableRep' is used
## *not* only for library tables; for example, the direct product of two
## tables with underlying groups or a factor table of a character table with
## underlying group may be in `IsLibraryCharacterTableRep'.
##
BindGlobal( "SupportedLibraryTableComponents", [
# These are used only for Brauer tables, they are set only by `MBT'.
"basicset",
"brauertree",
"decinv",
"defect",
"factorblocks",
"indicator",
] );
DeclareRepresentation( "IsLibraryCharacterTableRep", IsAttributeStoringRep,
SupportedLibraryTableComponents );
#############################################################################
##
#R IsGenericCharacterTableRep( <tbl> )
##
## generic character tables are a special representation of objects since
## they provide just some record components.
## It might be useful to treat them similar to character table like objects,
## for example to display them.
## So they belong to the category of nearly character tables.
##
DeclareRepresentation( "IsGenericCharacterTableRep", IsNearlyCharacterTable,
[
"domain",
"wholetable",
"classparam",
"charparam",
"specializedname",
"size",
"centralizers",
"orders",
"powermap",
"classtext",
"matrix",
"irreducibles",
"text",
] );
#############################################################################
##
#E
|