File: ctblgrp.gd

package info (click to toggle)
gap 4r4p10-2
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 29,224 kB
  • ctags: 7,084
  • sloc: ansic: 98,591; sh: 3,284; perl: 2,263; makefile: 467; awk: 6
file content (292 lines) | stat: -rw-r--r-- 11,922 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
#############################################################################
##
#W  ctblgrp.gd                   GAP library                 Alexander Hulpke
##
#H  @(#)$Id: ctblgrp.gd,v 4.16 2002/04/15 10:04:34 sal Exp $
##
#Y  Copyright (C) 1997
#Y  (C) 1998 School Math and Comp. Sci., University of St.  Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the declarations for the Dixon-Schneider algorithm
##
Revision.ctblgrp_gd :=
    "@(#)$Id: ctblgrp.gd,v 4.16 2002/04/15 10:04:34 sal Exp $";


#############################################################################
##
#1
##  The {\GAP} library implementation of the Dixon-Schneider algorithm
##  first computes the linear characters, using the commutator factor group.
##  If irreducible characters are missing afterwards,
##  they are computed using the techniques described in~\cite{Dix67},
##  \cite{Sch90} and \cite{Hulpke93}.
##
##  Called with a group $G$, the function `CharacterTable'
##  (see~"CharacterTable") returns a character table object that stores
##  already information such as class lengths, but not the irreducible
##  characters.
##  The routines that compute the irreducibles may use the information that
##  is already contained in this table object.
##  In particular the ordering of classes in the computed characters
##  coincides with the ordering of classes in the character table of <G>
##  (see~"The Interface between Character Tables and Groups").
##  Thus it is possible to combine computations using the group
##  with character theoretic computations
##  (see~"Advanced Methods for Dixon-Schneider Calculations" for details),
##  for example one can enter known characters.
##  Note that the user is responsible for the correctness of the characters.
##  (There is little use in providing the trivial character to the routine.)
##
##  The computation of irreducible characters from the group needs to
##  identify the classes of group elements very often,
##  so it can be helpful to store a class list of all group elements.
##  Since this is obviously limited by the group order,
##  it is controlled by the global function `IsDxLargeGroup'
##  (see~"IsDxLargeGroup").
##
##  The routines compute in a prime field of size $p$,
##  such that the exponent of the group divides $(p-1)$ and such that
##  $2 \sqrt{|G|} \< p$.
##  Currently prime fields of size smaller than $65\,536$ are handled more
##  efficiently than larger prime fields,
##  so the runtime of the character calculation depends on how large the
##  chosen prime is.
##
##  The routine stores a Dixon record (see~"DixonRecord") in the group
##  that helps routines that identify classes,
##  for example `FusionConjugacyClasses', to work much faster.
##  Note that interrupting Dixon-Schneider calculations will prevent {\GAP}
##  from cleaning up the Dixon record;
##  when the computation by `IrrDixonSchneider' is complete,
##  the possibly large record is shrunk to an acceptable size.
##


#############################################################################
##
#F  IsDxLargeGroup( <G> )
##
##  returns `true' if the order of the group <G> is smaller than the current
##  value of the global variable `DXLARGEGROUPORDER',
##  and `false' otherwise.
##  In Dixon-Schneider calculations, for small groups in the above sense a
##  class map is stored, whereas for large groups,
##  each occurring element is identified individually.
##
DeclareGlobalFunction( "IsDxLargeGroup" );


#############################################################################
##
#F  DxModularValuePol
#F  DxDegreeCandidates
##
DeclareGlobalFunction("DxModularValuePol");
DeclareGlobalFunction("DxDegreeCandidates");


#############################################################################
##
#A  DixonRecord( <G> )
##
##  The `DixonRecord' of a group contains information used by the routines
##  to compute the irreducible characters and related information via the
##  Dixon-Schneider algorithm such as class arrangement and character spaces
##  split obtained so far.
##  Usually this record is passed as argument to all subfunctions to avoid a
##  long argument list.
##  It has a component `.conjugacyClasses' which contains the classes of <G>
##  *ordered as the algorithm needs them*.
##
DeclareAttribute("DixonRecord",IsGroup,"mutable");


#############################################################################
##
#O  DxPreparation(<G>,<D>)
##
##  Creates enttries in the dixon record <D> of the group <G> which are
##  representation dependent, like functions to identify the class of
##  elements.
DeclareOperation("DxPreparation",[IsGroup,IsRecord]);


#############################################################################
##
#F  ClassComparison(<c>,<d>)  . . . . . . . . . . . . compare classes c and d
##
##  Comparison function for conjugacy classes, used by `Sort'.
##  Comparison is based first on the size of the class and then on the
##  order of the representatives. Thus the 1-Class is in the first position,
##  as required. Since sorting is primary by the class sizes,smaller
##  classes are in earlier positions, making the active columns those to
##  smaller classes, thus reducing the work for calculating class matrices.
##  Additionally, galois conjugated classes are kept together, thus increasing
##  the chance,that with one columns of them active to be several active,
##  again reducing computation time.
##
DeclareGlobalFunction( "ClassComparison");


#############################################################################
##
#F  DxIncludeIrreducibles( <D>, <new>[, <newmod>] )
##
##  This function takes a list of irreducible characters <new>, each given as
##  a list of values (corresponding to the class arrangement in <D>), and
##  adds these to a partial computed list of irreducibles as maintained by
##  the Dixon record <D>.
##  This permits one to add characters in interactive use obtained from other
##  sources and to continue the Dixon-Schneider calculation afterwards.
##  If the optional argument <newmod> is given, it must be a
##  list of reduced characters, corresponding to <new>.
##  (Otherwise the function has to reduce the characters itself.)
##
##  The function closes the new characters under the action of Galois
##  automorphisms and tensor products with linear characters.
##
DeclareGlobalFunction( "DxIncludeIrreducibles" );


#############################################################################
##
#F  SplitCharacters( <D>, <list> )   split characters according to the spaces
##
##  This routine decomposes the characters given in <list> according to the
##  character spaces found up to this point. By applying this routine to
##  tensor products etc., it may result in characters with smaller norm,
##  even irreducible ones. Since the recalculation of characters is only
##  possible if the degree is small enough, the splitting process is
##  applied only to characters of sufficiently small degree.
##
DeclareGlobalFunction( "SplitCharacters" );


#############################################################################
##
#F  OrbitSplit(<D>) . . . . . . . . . . . . . . try to split two-orbit-spaces
##
##  Tries to split two-orbit character spaces.
##
DeclareGlobalFunction("OrbitSplit");


#############################################################################
##
#F  DxSplitDegree(<D>,<space>,<r>)                                    local
##
##  estimates the number of parts obtained when splitting the character space
##  <space> with matrix number <r>. This estimate is obtained using charcter
##  morphisms.
##
DeclareGlobalFunction("DxSplitDegree");


#############################################################################
##
#F  BestSplittingMatrix(<D>)
##
##  returns the number of the class sum matrix that is assumed to yield the 
##  best (cost/earning ration) split. This matrix then will be the next one
##  computed and used.
##
##  The global option `maxclasslen' (defaulting to `infinity') is recognized
##  by `BestSplittingMatrix': Only classes whose length is limited by the
##  value of this option will be considered for splitting. If no usable class
##  remains, `fail' is returned.
##
DeclareGlobalFunction("BestSplittingMatrix");


#############################################################################
##
#F  DixonInit( <G> ) . . . . . . . . . . initialize Dixon-Schneider algorithm
##
##  This function does all the initializations for the Dixon-Schneider
##  algorithm. This includes calculation of conjugacy classes, power maps,
##  linear characters and character morphisms.
##  It returns a record (see~"DixonRecord", "Components of a Dixon Record")
##  that can be used when calculating the irreducible characters of <G>
##  interactively.
##
DeclareGlobalFunction( "DixonInit" );


#############################################################################
##
#F  DixonSplit( <D> ) .  calculate matrix, split spaces and obtain characters
##
##  This function performs one splitting step in the Dixon-Schneider
##  algorithm. It selects a class, computes the (partial) class sum matrix,
##  uses it to split character spaces and stores all the irreducible
##  characters obtained that way.
##
##  The class to use for splitting is chosen via `BestSplittingMatrix' and
##  the options described for this function apply here.
##
##  `DixonSplit' returns `true' if a split was performed and `fail'
##  otherwise.
##
DeclareGlobalFunction( "DixonSplit" );
DeclareGlobalFunction( "SplitStep" );

#############################################################################
##
#F  DixontinI( <D> )  . . . . . . . . . . . . . . . .  reverse initialisation
##
##  This function ends a Dixon-Schneider calculation.
##  It sorts the characters according to the degree and
##  unbinds components in the Dixon record that are not of use any longer.
##  It returns a list of irreducible characters.
##
DeclareGlobalFunction( "DixontinI" );


#############################################################################
##
#A  IrrDixonSchneider( <G> ) . . . . irreducible characters of finite group G
##
##  computes the irreducible characters of the finite group <G>,
##  using the Dixon-Schneider method (see~"The Dixon-Schneider Algorithm").
##  It calls `DixonInit' and `DixonSplit',
#T  and `OrbitSplit', % is not documented!
##  and finally returns the list returned by `DixontinI'
##  (see~"Advanced Methods for Dixon-Schneider Calculations",
##  "Components of a Dixon Record",
##  "An Example of Advanced Dixon-Schneider Calculations").
##
DeclareAttribute( "IrrDixonSchneider", IsGroup );
DeclareOperation( "IrrDixonSchneider", [ IsGroup, IsRecord ] );

#############################################################################
##
#F  IrreducibleRepresentationsDixon(<G>)
#F  IrreducibleRepresentationsDixon(<G>,<chi>)
#F  IrreducibleRepresentationsDixon(<G>,<chilist>)
##
##  computes (reresentatives of) all irreducible complex representations for
##  the finite group <G>, using the method of~\cite{Dix93}, which computes
##  the character table and computes the representation as constituent of an
##  induced monomial representation of a subgroup.
##
##  This method can be quite expensive for larger groups, for example it
##  might involve calculation of the subgroup lattice of <G>.
##
##  If given, <chi> must be a character, in this case only a representation
##  for <chi> is returned.
##
##  If given, <chilist> must be a list of characters, in this case only
##  representations for characters in <chilist> are computed.
##
##  Note that this method might fail if for an irreducible representation
##  there is no subgroup in which its reduction has a linear constituent
##  with multiplicity one.
DeclareGlobalFunction("IrreducibleRepresentationsDixon");


#############################################################################
##
#E