File: ctblmaps.gd

package info (click to toggle)
gap 4r4p10-2
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 29,224 kB
  • ctags: 7,084
  • sloc: ansic: 98,591; sh: 3,284; perl: 2,263; makefile: 467; awk: 6
file content (1436 lines) | stat: -rw-r--r-- 60,854 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
#############################################################################
##
#W  ctblmaps.gd                 GAP library                     Thomas Breuer
##
#H  @(#)$Id: ctblmaps.gd,v 4.32.2.1 2005/05/09 08:49:08 gap Exp $
##
#Y  Copyright (C)  1997,  Lehrstuhl D fuer Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St.  Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the declaration of those functions that are used
##  to construct maps (mostly fusion maps and power maps).
##
##  1. Maps Concerning Character Tables
##  2. Power Maps
##  3. Class Fusions between Character Tables
##  4. Utilities for Parametrized Maps
##  5. Subroutines for the Construction of Power Maps
##  6. Subroutines for the Construction of Class Fusions
##
Revision.ctblmaps_gd :=
    "@(#)$Id: ctblmaps.gd,v 4.32.2.1 2005/05/09 08:49:08 gap Exp $";


#############################################################################
##
##  1. Maps Concerning Character Tables
#1
##  Besides the characters, *power maps* (see~"Power Maps") are an important
##  part of a character table.
##  Often their computation is not easy, and if the table has no access to
##  the underlying group then in general they cannot be obtained from the
##  matrix of irreducible characters;
##  so it is useful to store them on the table.
##
##  If not only a single table is considered but different tables of a group
##  and a subgroup or of a group and a factor group are used,
##  also *class fusion maps* (see~"Class Fusions between Character Tables")
##  must be known to get information about the embedding or simply to induce
##  or restrict characters (see~"Restricted and Induced Class Functions").
##
##  These are examples of functions from conjugacy classes which will be
##  called *maps* in the following.
##  (This should not be confused with the term mapping, see~"Mappings".)
##  In {\GAP}, maps are represented by lists.
##  Also each character, each list of element orders, centralizer orders,
##  or class lengths are maps,
##  and for a permutation <perm> of classes, `ListPerm( <perm> )' is a map.
##
##  When maps are constructed without access to a group, often one only knows
##  that the image of a given class is contained in a set of possible images,
##  e.g., that the image of a class under a subgroup fusion is in the set of
##  all classes with the same element order.
##  Using further information, such as centralizer orders, power maps and the
##  restriction of characters, the sets of possible images can be restricted
##  further.
##  In many cases, at the end the images are uniquely determined.
##
##  Because of this approach, many functions in this chapter work not only
##  with maps but with *parametrized maps* (or paramaps for short).
##  More about parametrized maps can be found in Section~"Parametrized Maps".
##
##  The implementation follows~\cite{Bre91},
##  a description of the main ideas together with several examples
##  can be found in~\cite{Bre99}.
##


#############################################################################
##
##  2. Power Maps
#2
##  The $n$-th power map of a character table is represented by a list that
##  stores at position $i$ the position of the class containing the $n$-th
##  powers of the elements in the $i$-th class.
##  The $n$-th power map can be composed from the power maps of the prime
##  divisors $p$ of $n$,
##  so usually only power maps for primes $p$ are actually stored in the
##  character table.
##
##  For an ordinary character table <tbl> with access to its underlying group
##  $G$,
##  the $p$-th power map of <tbl> can be computed using the identification of
##  the conjugacy classes of $G$ with the classes of <tbl>.
##  For an ordinary character table without access to a group,
##  in general the $p$-th power maps (and hence also the element orders) for
##  prime divisors $p$ of the group order are not uniquely determined
##  by the matrix of irreducible characters.
##  So only necessary conditions can be checked in this case,
##  which in general yields only a list of several possibilities for the
##  desired power map.
##  Character tables of the {\GAP} character table library store all $p$-th
##  power maps for prime divisors $p$ of the group order.
##
##  Power maps of Brauer tables can be derived from the power maps of the
##  underlying ordinary tables.
##
##  For (computing and) accessing the $n$-th power map of a character table,
##  `PowerMap' (see~"PowerMap") can be used;
##  if the $n$-th power map cannot be uniquely determined then `PowerMap'
##  returns `fail'.
##
##  The list of all possible $p$-th power maps of a table in the sense that
##  certain necessary conditions are satisfied can be computed with
##  `PossiblePowerMaps' (see~"PossiblePowerMaps").
##  This provides a default strategy, the subroutines are listed in
##  Section~"Subroutines for the Construction of Power Maps".
##


#############################################################################
##
#O  PowerMap( <tbl>, <n>[, <class>] )
#O  PowerMapOp( <tbl>, <n>[, <class>] )
#A  ComputedPowerMaps( <tbl> )
##
##  Called with first argument a character table <tbl> and second argument an
##  integer <n>,
##  `PowerMap' returns the <n>-th power map of <tbl>.
##  This is a list containing at position $i$ the position of the class of
##  <n>-th powers of the elements in the $i$-th class of <tbl>.
##
##  If the additional third argument <class> is present then the position of
##  <n>-th powers of the <class>-th class is returned.
##
##  If the <n>-th power map is not uniquely determined by <tbl> then `fail'
##  is returned.
##  This can happen only if <tbl> has no access to its underlying group.
##
##  The power maps of <tbl> that were computed already by `PowerMap'
##  are stored in <tbl> as value of the attribute `ComputedPowerMaps',
##  the $n$-th power map at position $n$.
##  `PowerMap' checks whether the desired power map is already stored,
##  computes it using the operation `PowerMapOp' if it is not yet known,
##  and stores it.
##  So methods for the computation of power maps can be installed for
##  the operation `PowerMapOp'.
##
##  % For power maps of groups, see~"PowerMapOfGroup".
##
DeclareOperation( "PowerMap", [ IsNearlyCharacterTable, IsInt ] );
DeclareOperation( "PowerMap", [ IsNearlyCharacterTable, IsInt, IsInt ] );

DeclareOperation( "PowerMapOp", [ IsNearlyCharacterTable, IsInt ] );
DeclareOperation( "PowerMapOp", [ IsNearlyCharacterTable, IsInt, IsInt ] );

DeclareAttributeSuppCT( "ComputedPowerMaps",
    IsNearlyCharacterTable, "mutable", [ "class" ] );


#############################################################################
##
#O  PossiblePowerMaps( <tbl>, <p>[, <options>] )
##
##  For the ordinary character table <tbl> of the group $G$, say,
##  and a prime integer <p>,
##  `PossiblePowerMaps' returns the list of all maps that have the following
##  properties of the $p$-th power map of <tbl>.
##  (Representative orders are used only if the `OrdersClassRepresentatives'
##  value of <tbl> is known, see~"OrdersClassRepresentatives".)
##  \beginlist%ordered
##  \item{1.}
##       For class $i$, the centralizer order of the image is a multiple of
##       the $i$-th centralizer order;
##       if the elements in the $i$-th class have order coprime to $p$
##       then the centralizer orders of class $i$ and its image are equal.
##  \item{2.}
##       Let $n$ be the order of elements in class $i$.
##       If <prime> divides $n$ then the images have order $n/p$;
##       otherwise the images have order $n$.
##       These criteria are checked in `InitPowerMap' (see~"InitPowerMap").
##  \item{3.}
##       For each character $\chi$ of $G$ and each element $g$ in $G$,
##       the values $\chi(g^p)$ and $`GaloisCyc'( \chi(g), p )$ are
##       algebraic integers that are congruent modulo $p$;
##       if $p$ does not divide the element order of $g$ then the two values
##       are equal.
##       This congruence is checked for the characters specified below in
##       the discussion of the <options> argument;
##       For linear characters $\lambda$ among these characters,
##       the condition $\chi(g)^p = \chi(g^p)$ is checked.
##       The corresponding function is `Congruences' 
##       (see~"Congruences!for character tables").
##  \item{4.}
##       For each character $\chi$ of $G$, the kernel is a normal subgroup
##       $N$, and $g^p \in N$ for all $g \in N$;
##       moreover, if $N$ has index $p$ in $G$ then $g^p \in N$ for all
##       $g \in G$, and if the index of $N$ in $G$ is coprime to $p$ then
##       $g^p \not\in N$ for each $g \not\in N$.
##       These conditions are checked for the kernels of all characters
##       $\chi$ specified below,
##       the corresponding function is `ConsiderKernels'
##       (see~"ConsiderKernels").
##  \item{5.}
##       If $p$ is larger than the order $m$ of an element $g \in G$ then
##       the class of $g^p$ is determined by the power maps for primes
##       dividing the residue of $p$ modulo $m$.
##       If these power maps are stored in the `ComputedPowerMaps' value
##       (see~"ComputedPowerMaps") of <tbl> then this information is used.
##       This criterion is checked in `ConsiderSmallerPowerMaps'
##       (see~"ConsiderSmallerPowerMaps").
##  \item{6.}
##       For each character $\chi$ of $G$, the symmetrization $\psi$
##       defined by $\psi(g) = (\chi(g)^p - \chi(g^p))/p$ is a character.
##       This condition is checked for the kernels of all characters
##       $\chi$ specified below,
##       the corresponding function is `PowerMapsAllowedBySymmetrizations'
##       (see~"PowerMapsAllowedBySymmetrizations").
##  \endlist
##
##  If <tbl> is a Brauer table, the possibilities are computed from those for
##  the underlying ordinary table.
##
##  The optional argument <options> must be a record that may have the
##  following components:
##  \beginitems
##  `chars': &
##       a list of characters which are used for the check of the criteria
##       3., 4., and 6.;
##       the default is `Irr( <tbl> )',
##
##  `powermap': &
##       a parametrized map which is an approximation of the desired map
##
##  `decompose': &
##       a Boolean;
##       a `true' value indicates that all constituents of the
##       symmetrizations of `chars' computed for criterion 6. lie in `chars',
##       so the symmetrizations can be decomposed into elements of `chars';
##       the default value of `decompose' is `true' if `chars' is not bound
##       and `Irr( <tbl> )' is known, otherwise `false',
##
##  `quick': &
##       a Boolean;
##       if `true' then the subroutines are called with value `true' for
##       the argument <quick>;
##       especially, as soon as only one possibility remains
##       this possibility is returned immediately;
##       the default value is `false',
##
##  `parameters': &
##       a record with components `maxamb', `minamb' and `maxlen' which
##       control the subroutine `PowerMapsAllowedBySymmetrizations';
##       it only uses characters with current indeterminateness up to
##       `maxamb',
##       tests decomposability only for characters with current
##       indeterminateness at least `minamb',
##       and admits a branch according to a character only if there is one
##       with at most `maxlen' possible symmetrizations.
##  \enditems
##
DeclareOperation( "PossiblePowerMaps", [ IsCharacterTable, IsInt ] );
DeclareOperation( "PossiblePowerMaps", [ IsCharacterTable, IsInt,
    IsRecord ] );


#############################################################################
##
#F  ElementOrdersPowerMap( <powermap> )
##
##  Let <powermap> be a nonempty list containing at position $p$, if bound,
##  the $p$-th power map of a character table or group.
##  `ElementOrdersPowerMap' returns a list of the same length as each entry
##  in <powermap>, with entry at position $i$ equal to the order of elements
##  in class $i$ if this order is uniquely determined by <powermap>,
##  and equal to an unknown (see Chapter~"Unknowns") otherwise.
##
DeclareGlobalFunction( "ElementOrdersPowerMap" );


#############################################################################
##
#F  PowerMapByComposition( <tbl>, <n> ) . .  for char. table and pos. integer
##
##  <tbl> must be a nearly character table, and <n> a positive integer.
##  If the power maps for all prime divisors of <n> are stored in the
##  `ComputedPowerMaps' list of <tbl> then `PowerMapByComposition' returns
##  the <n>-th power map of <tbl>.
##  Otherwise `fail' is returned.
##
DeclareGlobalFunction( "PowerMapByComposition" );


#############################################################################
##
#3
##  The permutation group of matrix automorphisms (see~"MatrixAutomorphisms")
##  acts on the possible power maps returned by `PossiblePowerMaps'
##  (see~"PossiblePowerMaps")
##  by permuting a list via `Permuted' (see~"Permuted")
##  and then mapping the images via `OnPoints' (see~"OnPoints").
##  Note that by definition, the group of table automorphisms acts trivially.
##


#############################################################################
##
#F  OrbitPowerMaps( <map>, <permgrp> )
##
##  returns the orbit of the power map <map> under the action of the
##  permutation group <permgrp>
##  via a combination of `Permuted' (see~"Permuted") and `OnPoints'
##  (see~"OnPoints").
##
DeclareGlobalFunction( "OrbitPowerMaps" );


#############################################################################
##
#F  RepresentativesPowerMaps( <listofmaps>, <permgrp> )
##
##  returns a list of orbit representatives of the power maps in the list
##  <listofmaps> under the action of the permutation group <permgrp>
##  via a combination of `Permuted' (see~"Permuted") and `OnPoints'
##  (see~"OnPoints").
##
DeclareGlobalFunction( "RepresentativesPowerMaps" );


#############################################################################
##
##  3. Class Fusions between Character Tables
#4
##  For a group $G$ and a subgroup $H$ of $G$,
##  the fusion map between the character table of $H$ and the character table
##  of $G$ is represented by a list that stores at position $i$ the position
##  of the $i$-th class of the table of $H$ in the classes list of the table
##  of $G$.
##
##  For ordinary character tables <tbl1> and <tbl2> of $H$ and $G$,
##  with access to the groups $H$ and $G$,
##  the class fusion between <tbl1> and <tbl2> can be computed using the
##  identifications of the conjugacy classes of $H$ with the classes of
##  <tbl1> and the conjugacy classes of $G$ with the classes of <tbl2>.
##  For two ordinary character tables without access to its underlying group,
##  or in the situation that the group stored in <tbl1> is not physically a
##  subgroup of the group stored in <tbl2> but an isomorphic copy,
##  in general the class fusion is not uniquely determined by the information
##  stored on the tables such as irreducible characters and power maps.
##  So only necessary conditions can be checked in this case,
##  which in general yields only a list of several possibilities for the
##  desired class fusion.
##  Character tables of the {\GAP} character table library store various
##  class fusions that are regarded as important,
##  for example fusions from maximal subgroups (see~"ComputedClassFusions"
##  and "ctbllib:Maxes" in the manual for the {\GAP} Character Table Library).
##
##  Class fusions between Brauer tables can be derived from the class fusions
##  between the underlying ordinary tables.
##  The class fusion from a Brauer table to the underlying ordinary table is
##  stored when the Brauer table is constructed from the ordinary table,
##  so no method is needed to compute such a fusion.
##
##  For (computing and) accessing the class fusion between two character
##  tables,
##  `FusionConjugacyClasses' (see~"FusionConjugacyClasses") can be used;
##  if the class fusion cannot be uniquely determined then
##  `FusionConjugacyClasses' returns `fail'.
##
##  The list of all possible class fusion between two tables in the sense
##  that certain necessary conditions are satisfied can be computed with
##  `PossibleClassFusions' (see~"PossibleClassFusions").
##  This provides a default strategy, the subroutines are listed in
##  Section~"Subroutines for the Construction of Class Fusions".
##
##  It should be noted that all the following functions except
##  `FusionConjugacyClasses' (see~"FusionConjugacyClasses")
##  deal only with the situation of class fusions from subgroups.
##  The computation of *factor fusions* from a character table to the table
##  of a factor group is not dealt with here.
##  Since the ordinary character table of a group $G$ determines the
##  character tables of all factor groups of $G$, the factor fusion to a
##  given character table of a factor group of $G$ is determined up to table
##  automorphisms (see~"AutomorphismsOfTable") once the class positions of
##  the kernel of the natural epimorphism have been fixed.
##


#############################################################################
##
#O  FusionConjugacyClasses( <tbl1>, <tbl2> )
#O  FusionConjugacyClasses( <H>, <G> )
#O  FusionConjugacyClasses( <hom>[, <tbl1>, <tbl2>] )
#O  FusionConjugacyClassesOp( <tbl1>, <tbl2> )
#A  FusionConjugacyClassesOp( <hom> )
##
##  Called with two character tables <tbl1> and <tbl2>,
##  `FusionConjugacyClasses' returns the fusion of conjugacy classes between
##  <tbl1> and <tbl2>.
##  (If one of the tables is a Brauer table,
##  it will delegate this task to the underlying ordinary table.)
##
##  Called with two groups <H> and <G> where <H> is a subgroup of <G>,
##  `FusionConjugacyClasses' returns the fusion of conjugacy classes between
##  <H> and <G>.
##  This is done by delegating to the ordinary character tables of <H> and
##  <G>,
##  since class fusions are stored only for character tables and not for
##  groups.
##
##  Note that the returned class fusion refers to the ordering of conjugacy
##  classes in the character tables if the arguments are character tables
##  and to the ordering of conjugacy classes in the groups if the arguments
##  are groups (see~"ConjugacyClasses!for character tables").
##
##  Called with a group homomorphism <hom>,
##  `FusionConjugacyClasses' returns the fusion of conjugacy classes between
##  the preimage and the image of <hom>;
##  contrary to the two cases above,
##  also factor fusions can be handled by this variant.
##  If <hom> is the only argument then the class fusion refers to the
##  ordering of conjugacy classes in the groups.
##  If the character tables of preimage and image are given as <tbl1> and
##  <tbl2>, respectively (each table with its group stored),
##  then the fusion refers to the ordering of classes in these tables.
##
##  If no class fusion exists or if the class fusion is not uniquely
##  determined, `fail' is returned;
##  this may happen when `FusionConjugacyClasses' is called with two
##  character tables that do not know compatible underlying groups.
##
##  Methods for the computation of class fusions can be installed for
##  the operation `FusionConjugacyClassesOp'.
##
DeclareOperation( "FusionConjugacyClasses",
    [ IsNearlyCharacterTable, IsNearlyCharacterTable ] );
DeclareOperation( "FusionConjugacyClasses", [ IsGroup, IsGroup ] );
DeclareOperation( "FusionConjugacyClasses", [ IsGeneralMapping ] );
DeclareOperation( "FusionConjugacyClasses",
    [ IsGeneralMapping, IsNearlyCharacterTable, IsNearlyCharacterTable ] );

DeclareAttribute( "FusionConjugacyClassesOp", IsGeneralMapping );

DeclareOperation( "FusionConjugacyClassesOp",
    [ IsNearlyCharacterTable, IsNearlyCharacterTable ] );
DeclareOperation( "FusionConjugacyClassesOp",
    [ IsGeneralMapping, IsNearlyCharacterTable, IsNearlyCharacterTable ] );


#############################################################################
##
#A  ComputedClassFusions( <tbl> )
##
##  The class fusions from the character table <tbl> that have been computed
##  already by `FusionConjugacyClasses' (see~"FusionConjugacyClasses") or
##  explicitly stored by `StoreFusion' (see~"StoreFusion")
##  are stored in the `ComputedClassFusions' list of <tbl1>.
##  Each entry of this list is a record with the following components.
##  \beginitems
##  `name' &
##      the `Identifier' value of the character table to which the fusion
##      maps,
##
##  `map' &
##      the list of positions of image classes,
##
##  `text' (optional) &
##      a string giving additional information about the fusion map,
##      for example whether the map is uniquely determined by the character
##      tables,
##
##  `specification' (optional, rarely used) &
##      a value that distinguishes different fusions between the same tables.
##  \enditems
##
##  Note that stored fusion maps may differ from the maps returned by
##  `GetFusionMap' and the maps entered by `StoreFusion' if the table
##  <destination> has a nonidentity `ClassPermutation' value.
##  So if one fetches a fusion map from a table <tbl1> to a table <tbl2>
##  via access to the data in the `ComputedFusionMaps' list <tbl1> then the
##  stored value must be composed with the `ClassPermutation' value of <tbl2>
##  in order to obtain the correct class fusion.
##  (If one handles fusions only via `GetFusionMap' and `StoreFusion'
##  (see~"GetFusionMap", "StoreFusion") then this adjustment is made
##  automatically.)
##
##  Fusions are identified via the `Identifier' value of the destination
##  table and not by this table itself because many fusions between
##  character tables in the {\GAP} character table library are stored on
##  library tables, and it is not desirable to load together with a library
##  table also all those character tables that occur as destinations of
##  fusions from this table.
##
##  For storing fusions and accessing stored fusions,
##  see also~"GetFusionMap", "StoreFusion".
##  For accessing the identifiers of tables that store a fusion into a
##  given character table, see~"NamesOfFusionSources".
##
DeclareAttributeSuppCT( "ComputedClassFusions",
    IsNearlyCharacterTable, "mutable", [ "class" ] );


#############################################################################
##
#F  GetFusionMap( <source>, <destination> )
#F  GetFusionMap( <source>, <destination>, <specification> )
##
##  For two ordinary character tables <source> and <destination>,
##  `GetFusionMap' checks whether the `ComputedClassFusion' list of <source>
##  (see~"ComputedClassFusions") contains a record with `name' component
##  `Identifier( <destination> )', and returns returns the `map' component
##  of the first such record.
##  `GetFusionMap( <source>, <destination>, <specification> )' fetches
##  that fusion map for which the record additionally has the `specification'
##  component <specification>.
##
##  If both <source> and <destination> are Brauer tables,
##  first the same is done, and if no fusion map was found then
##  `GetFusionMap' looks whether a fusion map between the ordinary tables
##  is stored; if so then the fusion map between <source> and <destination>
##  is stored on <source>, and then returned.
##
##  If no appropriate fusion is found, `GetFusionMap' returns `fail'.
##  For the computation of class fusions, see~"FusionConjugacyClasses".
##
DeclareGlobalFunction( "GetFusionMap" );


#############################################################################
##
#F  StoreFusion( <source>, <fusion>, <destination> )
##
##  For two character tables <source> and <destination>,
##  `StoreFusion' stores the fusion <fusion> from <source> to <destination>
##  in the `ComputedClassFusions' list (see~"ComputedClassFusions")
##  of <source>,
##  and adds the `Identifier' string of <destination> to the
##  `NamesOfFusionSources' list (see~`NamesOfFusionSources')
##  of <destination>.
##
##  <fusion> can either be a fusion map (that is, the list of positions of
##  the image classes) or a record as described in~"ComputedClassFusions".
##
##  If fusions to <destination> are already stored on <source> then
##  another fusion can be stored only if it has a record component
##  `specification' that distinguishes it from the stored fusions.
##  In the case of such an ambiguity, `StoreFusion' raises an error.
##
DeclareGlobalFunction( "StoreFusion" );


#############################################################################
##
#A  NamesOfFusionSources( <tbl> )
##
##  For a character table <tbl>, `NamesOfFusionSources' returns the list of
##  identifiers of all those character tables that are known to have fusions
##  to <tbl> stored.
##  The `NamesOfFusionSources' value is updated whenever a fusion to <tbl>
##  is stored using `StoreFusion' (see~"StoreFusion").
##
DeclareAttributeSuppCT( "NamesOfFusionSources",
    IsNearlyCharacterTable, "mutable", [] );


#############################################################################
##
#O  PossibleClassFusions( <subtbl>, <tbl>[, <options>] )
##
##  For two ordinary character tables <subtbl> and <tbl> of the groups $H$
##  and $G$, say,
##  `PossibleClassFusions' returns the list of all maps that have the
##  following properties of class fusions from <subtbl> to <tbl>.
##  \beginlist%ordered
##  \item{1.}
##      For class $i$, the centralizer order of the image in $G$ is a
##      multiple of the $i$-th centralizer order in $H$,
##      and the element orders in the $i$-th class and its image are equal.
##      These criteria are checked in `InitFusion' (see~"InitFusion").
##  \item{2.}
##      The class fusion commutes with power maps.
##      This is checked using `TestConsistencyMaps'
##      (see~"TestConsistencyMaps").
##  \item{3.}
##      If the permutation character of $G$ corresponding to the action of
##      $G$ on the cosets of $H$ is specified (see the discussion of the
##      <options> argument below) then it prescribes for each class $C$ of
##      $G$ the number of elements of $H$ fusing into $C$.
##      The corresponding function is `CheckPermChar'
##      (see~"CheckPermChar").
##  \item{4.}
##      The table automorphisms of <tbl> (see~"AutomorphismsOfTable") are
##      used in order to compute only orbit representatives.
##      (But note that the list returned by `PossibleClassFusions' contains
##      the full orbits.)
##  \item{5.}
##      For each character $\chi$ of $G$, the restriction to $H$ via the
##      class fusion is a character of $H$.
##      This condition is checked for all characters specified below,
##      the corresponding function is `FusionsAllowedByRestrictions'
##      (see~"FusionsAllowedByRestrictions").
##  \item{6.}
##      The class multiplication coefficients in <subtbl> do not exceed the
##      corresponding coefficients in <tbl>.
##      This is checked in `ConsiderStructureConstants'
##      (see~"ConsiderStructureConstants", and see also the comment on the
##      parameter `verify' below).
##  \endlist
##
##  If <subtbl> and <tbl> are Brauer tables then the possibilities are
##  computed from those for the underlying ordinary tables.
##
##  The optional argument <options> must be a record that may have the
##  following components:
##  \beginitems
##  `chars' &
##       a list of characters of <tbl> which are used for the check of~5.;
##       the default is `Irr( <tbl> )',
##
##  `subchars' &
##       a list of characters of <subtbl> which are constituents of the
##       retrictions of `chars', the default is `Irr( <subtbl> )',
##
##  `fusionmap' &
##       a parametrized map which is an approximation of the desired map,
##
##  `decompose' &
##       a Boolean;
##       a `true' value indicates that all constituents of the restrictions
##       of `chars' computed for criterion 5. lie in `subchars',
##       so the restrictions can be decomposed into elements of `subchars';
##       the default value of `decompose' is `true' if `subchars' is not
##       bound and `Irr( <subtbl> )' is known, otherwise `false',
##
##  `permchar' &
##       (a values list of) a permutation character; only those fusions
##       affording that permutation character are computed,
##
##  `quick' &
##       a Boolean;
##       if `true' then the subroutines are called with value `true' for
##       the argument <quick>;
##       especially, as soon as only one possibility remains
##       then this possibility is returned immediately;
##       the default value is `false',
##
##  `verify' &
##       a Boolean;
##       if `false' then `ConsiderStructureConstants' is called only if more
##       than one orbit of possible class fusions exists, under the action
##       of the groups of table automorphisms;
##       the default value is `false' (because the computation of the
##       structure constants is usually very time comsuming, compared with
##       checking the other criteria),
##
##  `parameters' &
##       a record with components `maxamb', `minamb' and `maxlen'
##       which control the subroutine `FusionsAllowedByRestrictions';
##       it only uses characters with current indeterminateness up to
##       `maxamb',
##       tests decomposability only for characters with current
##       indeterminateness at least `minamb',
##       and admits a branch according to a character only if there is one
##       with at most `maxlen' possible restrictions.
##  \enditems
##
DeclareOperation( "PossibleClassFusions",
    [ IsNearlyCharacterTable, IsNearlyCharacterTable ] );
DeclareOperation( "PossibleClassFusions",
    [ IsNearlyCharacterTable, IsNearlyCharacterTable, IsRecord ] );


#############################################################################
##
#5
##  The permutation groups of table automorphisms
##  (see~"AutomorphismsOfTable")
##  of the subgroup table <subtbl> and the supergroup table <tbl> act on the
##  possible class fusions returned by `PossibleClassFusions'
##  (see~"PossibleClassFusions"),
##  the former by permuting a list via `Permuted' (see~"Permuted"),
##  the latter by mapping the images via `OnPoints' (see~"OnPoints").
##
##  If the set of possible fusions with certain properties was computed
##  that are not invariant under the full groups of table automorphisms
##  then only a smaller group acts.
##  This may happen for example if a permutation character or if an explicit
##  approximation of the fusion map is prescribed in the call of
##  `PossibleClassFusions'.
##


#############################################################################
##
#F  OrbitFusions( <subtblautomorphisms>, <fusionmap>, <tblautomorphisms> )
##
##  returns the orbit of the class fusion map <fusionmap> under the
##  actions of the permutation groups <subtblautomorphisms> and
##  <tblautomorphisms> of automorphisms of the character table of the
##  subgroup and the supergroup, respectively.
##
DeclareGlobalFunction( "OrbitFusions" );


#############################################################################
##
#F  RepresentativesFusions( <subtblautomorphisms>, <listofmaps>,
#F                          <tblautomorphisms> )
#F  RepresentativesFusions( <subtbl>, <listofmaps>, <tbl> )
##
##  returns a list of orbit representatives of class fusion maps in the list
##  <listofmaps> under the action of maximal admissible subgroups
##  of the table automorphisms <subtblautomorphisms> of the subgroup table
##  and <tblautomorphisms> of the supergroup table.
##  Both groups of table automorphisms must be permutation groups.
##
##  Instead of the groups of table automorphisms, also the character tables
##  <subtbl> and <tbl> may be entered.
##  In this case, the `AutomorphismsOfTable' values of the tables are used.
##
DeclareGlobalFunction( "RepresentativesFusions" );


#############################################################################
##
##  4. Utilities for Parametrized Maps
#6
##  A *parametrized map* is a list whose $i$-th entry is either unbound
##  (which means that nothing is known about the image(s) of the $i$-th
##  class) or the image of the $i$-th class
##  (i.e., an integer for fusion maps, power maps, element orders etc.,
##  and a cyclotomic for characters),
##  or a list of possible images of the $i$-th class.
##  In this sense, maps are special parametrized maps.
##  We often identify a parametrized map <paramap> with the set of all maps
##  <map> with the property that either `<map>[i] = <paramap>[i]' or
##  `<map>[i]' is contained in the list `<paramap>[i]';
##  we say then that <map> is contained in <paramap>.
##
##  This definition implies that parametrized maps cannot be used to describe
##  sets of maps where lists are possible images.
##  An exception are strings which naturally arise as images when class names
##  are considered.
##  So strings and lists of strings are allowed in parametrized maps,
##  and character constants (see Chapter~"Strings and Characters")
##  are not allowed in maps.
##


#############################################################################
##
#F  CompositionMaps( <paramap2>, <paramap1>[, <class>] )
##
##  The composition of two parametrized maps <paramap1>, <paramap2> is
##  defined as the parametrized map <comp> that contains
##  all compositions $f_2 \circ f_1$ of elements $f_1$ of <paramap1> and
##  $f_2$ of <paramap2>.
##  For example, the composition of a character $\chi$ of a group $G$ by a
##  parametrized class fusion map from a subgroup $H$ to $G$ is the
##  parametrized map that contains all restrictions of $\chi$ by elements of
##  the parametrized fusion map.
##
##  `CompositionMaps(<paramap2>, <paramap1>)' is a parametrized map with
##  entry `CompositionMaps(<paramap2>, <paramap1>, <class>)' at position
##  <class>.
##  If `<paramap1>[<class>]' is an integer then
##  `CompositionMaps(<paramap2>, <paramap1>, <class>)' is equal to
##  `<paramap2>[ <paramap1>[ <class> ] ]'.
##  Otherwise it is the union of `<paramap2>[<i>]' for <i> in
##  `<paramap1>[ <class> ]'.
##
DeclareGlobalFunction( "CompositionMaps" );


#############################################################################
##
#F  InverseMap( <paramap> ) . . . . . . . . . . inverse of a parametrized map
##
##  For a parametrized map <paramap>,
##  `InverseMap' returns a mutable parametrized map whose $i$-th entry is
##  unbound if $i$ is not in the image of <paramap>,
##  equal to $j$ if $i$ is (in) the image of `<paramap>[<j>]' exactly for
##  $j$, and equal to the set of all preimages of $i$ under <paramap>
##  otherwise.
##
##  We have `CompositionMaps( <paramap>, InverseMap( <paramap> ) )'
##  the identity map.
##
DeclareGlobalFunction( "InverseMap" );


#############################################################################
##
#F  ProjectionMap( <fusionmap> ) . . . .  projection corresp. to a fusion map
##
##  For a map <fusionmap>, `ProjectionMap' returns a parametrized map
##  whose $i$-th entry is unbound if $i$ is not in the image of <fusionmap>,
##  and equal to $j$ if $j$ is the smallest position such that $i$ is
##  the image of `<fusionmap>[<j>]'.
##
##  We have `CompositionMaps( <fusionmap>, ProjectionMap( <fusionmap> ) )'
##  the identity map, i.e., first projecting and then fusing yields the
##  identity.
##  Note that <fusionmap> must *not* be a parametrized map.
##
DeclareGlobalFunction( "ProjectionMap" );


#############################################################################
##
#O  Indirected( <character>, <paramap> )
##
##  For a map <character> and a parametrized map <paramap>, `Indirected'
##  returns a parametrized map whose entry at position $i$ is
##  `<character>[ <paramap>[<i>] ]' if `<paramap>[<i>]' is an integer,
##  and an unknown (see Chapter~"Unknowns") otherwise.
##
DeclareOperation( "Indirected", [ IsList, IsList ] );


#############################################################################
##
#F  Parametrized( <list> )
##
##  For a list <list> of (parametrized) maps of the same length,
##  `Parametrized' returns the smallest parametrized map containing all
##  elements of <list>.
##
##  `Parametrized' is the inverse function to `ContainedMaps'
##  (see~"ContainedMaps").
##
DeclareGlobalFunction( "Parametrized" );


#############################################################################
##
#F  ContainedMaps( <paramap> )
##
##  For a parametrized map <paramap>, `ContainedMaps' returns the set of all
##  maps contained in <paramap>.
##
##  `ContainedMaps' is the inverse function to `Parametrized'
##  (see~"Parametrized") in the sense that
##  `Parametrized( ContainedMaps( <paramap> ) )' is equal to <paramap>.
##
DeclareGlobalFunction( "ContainedMaps" );


#############################################################################
##
#F  UpdateMap( <character>, <paramap>, <indirected> )
##
##  Let <character> be a map, <paramap> a parametrized map, and <indirected>
##  a parametrized map that is contained in
##  `CompositionMaps( <character>, <paramap> )'.
##
##  Then `UpdateMap' changes <paramap> to the parametrized map containing
##  exactly the maps whose composition with <character> is equal to
##  <indirected>.
##
##  If a contradiction is detected then `false' is returned immediately,
##  otherwise `true'.
##
DeclareGlobalFunction( "UpdateMap" );


#############################################################################
##
#F  MeetMaps( <paramap1>, <paramap2> )
##
##  For two parametrized maps <paramap1> and <paramap2>, `MeetMaps' changes
##  <paramap1> such that the image of class $i$ is the intersection of
##  `<paramap1>[<i>]' and `<paramap2>[<i>]'.
##
##  If this implies that no images remain for a class, the position of such a
##  class is returned.
##  If no such inconsistency occurs, `MeetMaps' returns `true'.
##
DeclareGlobalFunction( "MeetMaps" );


#############################################################################
##
#F  ImproveMaps( <map2>, <map1>, <composition>, <class> )
##
##  `ImproveMaps' is a utility for `CommutativeDiagram' and
##  `TestConsistencyMaps'.
##
##  <composition> must be a set that is known to be an upper bound for the
##  composition $( <map2> \circ <map1> )[ <class> ]$.
##  If $`<map1>[ <class> ]' = x$ is unique then $<map2>[ x ]$ must be a set,
##  it will be replaced by its intersection with <composition>;
##  if <map1>[ <class> ] is a set then all elements `x' with empty
##  `Intersection( <map2>[ x ], <composition> )' are excluded.
##
##  `ImproveMaps' returns
##  \beginlist
##  \item{0}
##      if no improvement was found,
##  \item{-1}
##      if <map1>[ <class> ] was improved,
##  \item{<x>}
##      if <map2>[ <x> ] was improved.
##  \endlist
##
DeclareGlobalFunction( "ImproveMaps" );


#############################################################################
##
#F  CommutativeDiagram( <paramap1>, <paramap2>, <paramap3>, <paramap4>[,
#F                      <improvements>] )
##
##  Let <paramap1>, <paramap2>, <paramap3>, <paramap4> be parametrized maps
##  covering parametrized maps $f_1$, $f_2$, $f_3$, $f_4$ with the property
##  that $`CompositionMaps'( f_2, f_1 )$ is equal to
##  $`CompositionMaps'( f_4, f_3 )$.
##
##  `CommutativeDiagram' checks this consistency, and changes the arguments
##  such that all possible images are removed that cannot occur in the
##  parametrized maps $f_i$.
##
##  The return value is `fail' if an inconsistency was found.
##  Otherwise a record with the components `imp1', `imp2', `imp3', `imp4'
##  is returned, each bound to the list of positions where the corresponding
##  parametrized map was changed,
##
##  The optional argument <improvements> must be a record with components
##  `imp1', `imp2', `imp3', `imp4'.
##  If such a record is specified then only diagrams are considered where
##  entries of the $i$-th component occur as preimages of the $i$-th
##  parametrized map.
##
##  When an inconsistency is detected,
##  `CommutativeDiagram' immediately returns `fail'.
##  Otherwise a record is returned that contains four lists `imp1', $\ldots$,
##  `imp4':
##  `imp<i>' is the list of classes where <paramap_i> was changed.
##
DeclareGlobalFunction( "CommutativeDiagram" );


#############################################################################
##
#F  CheckFixedPoints( <inside1>, <between>, <inside2> )
##
##  Let <inside1>, <between>, <inside2> be parametrized maps,
##  where <between> is assumed to map each fixed point of <inside1>
##  (that is, `<inside1>[<i>] = <i>') to a fixed point of <inside2>
##  (that is, <between>[<i>] is either an integer that is fixed by <inside2>
##  or a list that has nonempty intersection with the union of its images
##  under <inside2>).
##  `CheckFixedPoints' changes <between> and <inside2> by removing all those
##  entries violate this condition.
##
##  When an inconsistency is detected,
##  `CheckFixedPoints' immediately returns `fail'.
##  Otherwise the list of positions is returned where changes occurred.
##
DeclareGlobalFunction( "CheckFixedPoints" );


#############################################################################
##
#F  TransferDiagram( <inside1>, <between>, <inside2>[, <improvements>] )
##
##  Let <inside1>, <between>, <inside2> be parametrized maps
##  covering parametrized maps $m_1$, $f$, $m_2$ with the property
##  that $`CompositionMaps'( m_2, f )$ is equal to
##  $`CompositionMaps'( f, m_1 )$.
##
##  `TransferDiagram' checks this consistency, and changes the arguments
##  such that all possible images are removed that cannot occur in the
##  parametrized maps $m_i$ and $f$.
##
##  So `TransferDiagram' is similar to `CommutativeDiagram'
##  (see~"CommutativeDiagram"),
##  but <between> occurs twice in each diagram checked.
##
##  If a record <improvements> with fields `impinside1', `impbetween' and
##  `impinside2' is specified, only those diagrams with elements of
##  `impinside1' as preimages of <inside1>, elements of `impbetween' as
##  preimages of <between> or elements of `impinside2' as preimages of
##  <inside2> are considered.
##
##  When an inconsistency is detected,
##  `TransferDiagram' immediately returns `fail'.
##  Otherwise a record is returned that contains three lists `impinside1',
##  `impbetween', and `impinside2' of positions where the arguments were
##  changed.
##
DeclareGlobalFunction( "TransferDiagram" );


#############################################################################
##
#F  TestConsistencyMaps( <powermap1>, <fusionmap>, <powermap2>[, <fus_imp>] )
##
##  Let <powermap1> and <powermap2> be lists of parametrized maps,
##  and <fusionmap> a parametrized map,
##  such that for each $i$, the $i$-th entry in <powermap1>, <fusionmap>,
##  and the $i$-th entry in <powermap2> (if bound) are valid arguments for
##  `TransferDiagram' (see~"TransferDiagram").
##  So a typical situation for applying `TestConsistencyMaps' is that
##  <fusionmap> is an approximation of a class fusion, and <powermap1>,
##  <powermap2> are the lists of power maps of the subgroup and the group.
##
##  `TestConsistencyMaps' repeatedly applies `TransferDiagram' to these
##  arguments for all $i$ until no more changes occur.
##
##  If a list <fus_imp> is specified then only those diagrams with
##  elements of <fus_imp> as preimages of <fusionmap> are considered.
##
##  When an inconsistency is detected,
##  `TestConsistencyMaps' immediately returns `false'.
##  Otherwise `true' is returned.
##
DeclareGlobalFunction( "TestConsistencyMaps" );


#############################################################################
##
#F  Indeterminateness( <paramap> ) . . . . the indeterminateness of a paramap
##
##  For a parametrized map <paramap>, `Indeterminateness' returns the number
##  of maps contained in <paramap>, that is, the product of lengths of lists
##  in <paramap> denoting lists of several images.
##
DeclareGlobalFunction( "Indeterminateness" );


#############################################################################
##
#F  IndeterminatenessInfo( <paramap> )
##
DeclareGlobalFunction( "IndeterminatenessInfo" );


#############################################################################
##
#F  PrintAmbiguity( <list>, <paramap> ) . . . .  ambiguity of characters with
##                                                       respect to a paramap
##
##  For each map in the list <list>, `PrintAmbiguity' prints its position in
##  <list>,
##  the indeterminateness (see~"Indeterminateness") of the composition with
##  the parametrized map <paramap>,
##  and the list of positions where a list of images occurs in this
##  composition.
##
DeclareGlobalFunction( "PrintAmbiguity" );


#############################################################################
##
#F  ContainedSpecialVectors( <tbl>, <chars>, <paracharacter>, <func> )
#F  IntScalarProducts( <tbl>, <chars>, <candidate> )
#F  NonnegIntScalarProducts( <tbl>, <chars>, <candidate> )
#F  ContainedPossibleVirtualCharacters( <tbl>, <chars>, <paracharacter> )
#F  ContainedPossibleCharacters( <tbl>, <chars>, <paracharacter> )
##
##  Let <tbl> be an ordinary character table,
##  <chars> a list of class functions (or values lists),
##  <paracharacter> a parametrized class function of <tbl>,
##  and <func> a function that expects the three arguments <tbl>, <chars>,
##  and a values list of a class function, and that returns either `true' or
##  `false'.
##
##  `ContainedSpecialVectors' returns
##  the list of all those elements <vec> of <paracharacter> that
##  have integral norm,
##  have integral scalar product with the principal character of <tbl>,
##  and that satisfy `<func>( <tbl>, <chars>, <vec> ) = true',
##
##  \indextt{IntScalarProducts}\indextt{NonnegIntScalarProducts}
##  \indextt{ContainedPossibleVirtualCharacters}
##  \indextt{ContainedPossibleCharacters}\indextt{ContainedSpecialVectors}
##  Two special cases of <func> are the check whether the scalar products in
##  <tbl> between the vector <vec> and all lists in <chars> are integers or
##  nonnegative integers, respectively.
##  These functions are accessible as global variables `IntScalarProducts'
##  and `NonnegIntScalarProducts',
##  and `ContainedPossibleVirtualCharacters' and
##  `ContainedPossibleCharacters' provide access to these special cases of
##  `ContainedSpecialVectors'.

DeclareGlobalFunction( "ContainedSpecialVectors" );
DeclareGlobalFunction( "IntScalarProducts" );
DeclareGlobalFunction( "NonnegIntScalarProducts" );
DeclareGlobalFunction( "ContainedPossibleVirtualCharacters" );
DeclareGlobalFunction( "ContainedPossibleCharacters" );


#############################################################################
##
#F  ContainedDecomposables( <constituents>, <moduls>, <parachar>, <func> )
#F  ContainedCharacters( <tbl>, <constituents>, <parachar> )
##
##  For these functions, 
##  let <constituents> be a list of *rational* class functions,
##  <moduls> a list of positive integers,
##  <parachar> a parametrized rational class function,
##  <func> a function that returns either `true' or `false' when called
##  with (a values list of) a class function,
##  and <tbl> a character table.
##
##  `ContainedDecomposables' returns the set of all elements $\chi$ of
##  <parachar> that satisfy $<func>( \chi ) = `true'$
##  and that lie in the $\Z$-lattice spanned by <constituents>,
##  modulo <moduls>.
##  The latter means they lie in the $\Z$-lattice spanned by <constituents>
##  and the set
##  $$
##  \{ <moduls>[i] . e_i; 1 \leq i \leq n \},
##  $$
##  where $n$ is the length of <parachar> and  $e_i$ is the $i$-th standard
##  basis vector.
##
##  One application of `ContainedDecomposables' is the following.
##  <constituents> is a list of (values lists of) rational characters of an
##  ordinary character table <tbl>,
##  <moduls> is the list of centralizer orders of <tbl>
##  (see~"SizesCentralizers"),
##  and <func> checks whether a vector in the lattice mentioned above has
##  nonnegative integral scalar product in <tbl> with all entries of
##  <constituents>.
##  This situation is handled by `ContainedCharacters'.
##  Note that the entries of the result list are *not* necessary linear
##  combinations of <constituents>,
##  and they are *not* necessarily characters of <tbl>.
##
DeclareGlobalFunction( "ContainedDecomposables" );
DeclareGlobalFunction( "ContainedCharacters" );


#############################################################################
##
##  5. Subroutines for the Construction of Power Maps
##


#############################################################################
##
#F  InitPowerMap( <tbl>, <prime> )
##
##  For an ordinary character table <tbl> and a prime <prime>,
##  `InitPowerMap' returns a parametrized map that is a first approximation
##  of the <prime>-th powermap of <tbl>,
##  using the conditions 1.~and 2.~listed in the description of
##  `PossiblePowerMaps' (see~"PossiblePowerMaps").
##
##  If there are classes for which no images are possible, according to these
##  criteria, then `fail' is returned.
##
DeclareGlobalFunction( "InitPowerMap" );


#############################################################################
##
#7
##  In the argument lists of the functions `Congruences', `ConsiderKernels',
##  and `ConsiderSmallerPowerMaps',
##  <tbl> is an ordinary character table,
##  <chars> a list of (values lists of) characters of <tbl>,
##  <prime> a prime integer,
##  <approxmap> a parametrized map that is an approximation for the
##  <prime>-th power map of <tbl>
##  (e.g., a list returned by `InitPowerMap', see~"InitPowerMap"),
##  and <quick> a Boolean.
##
##  The <quick> value `true' means that only those classes are considered
##  for which <approxmap> lists more than one possible image.
##


#############################################################################
##
#F  Congruences( <tbl>, <chars>, <approxmap>, <prime>, <quick> )
##
##  `Congruences' replaces the entries of <approxmap> by improved values,
##  according to condition 3.~listed in the description of
##  `PossiblePowerMaps' (see~"PossiblePowerMaps").
##
##  For each class for which no images are possible according to the tests,
##  the new value of <approxmap> is an empty list.
##  `Congruences' returns `true' if no such inconsistencies occur,
##  and `false' otherwise.
##
DeclareGlobalFunction( "Congruences" );


#############################################################################
##
#F  ConsiderKernels( <tbl>, <chars>, <approxmap>, <prime>, <quick> )
##
##  `ConsiderKernels' replaces the entries of <approxmap> by improved values,
##  according to condition 4.~listed in the description of
##  `PossiblePowerMaps' (see~"PossiblePowerMaps").
##
##  `Congruences' returns `true' if the orders of the kernels of all
##  characters in <chars> divide the order of the group of <tbl>,
##  and `false' otherwise.
##
DeclareGlobalFunction( "ConsiderKernels" );


#############################################################################
##
#F  ConsiderSmallerPowerMaps( <tbl>, <approxmap>, <prime>, <quick> )
##
##  `ConsiderSmallerPowerMaps' replaces the entries of <approxmap>
##  by improved values,
##  according to condition 5.~listed in the description of
##  `PossiblePowerMaps' (see~"PossiblePowerMaps").
##
##  `ConsiderSmallerPowerMaps' returns `true' if each class admits at least
##  one image after the checks, otherwise `false' is returned.
##  If no element orders of <tbl> are stored
##  (see~"OrdersClassRepresentatives") then `true' is returned without any
##  tests.
##
DeclareGlobalFunction( "ConsiderSmallerPowerMaps" );


#############################################################################
##
#F  MinusCharacter( <character>, <prime_powermap>, <prime> )
##
##  Let <character> be (the list of values of) a class function $\chi$,
##  <prime> a prime integer $p$, and <prime_powermap> a parametrized map
##  that is an approximation of the $p$-th power map for the character table
##  of $\chi$.
##  `MinusCharacter' returns the parametrized map of values of $\chi^{p-}$,
##  which is defined by $\chi^{p-}(g) = ( \chi(g)^p - \chi(g^p) ) / p$.
##
DeclareGlobalFunction( "MinusCharacter" );


#############################################################################
##
#F  PowerMapsAllowedBySymmetrizations( <tbl>, <subchars>, <chars>,
#F                                     <approxmap>, <prime>, <parameters> )
##
##  Let <tbl> be an ordinary character table,
##  <prime> a prime integer,
##  <approxmap> a parametrized map that is an approximation of the <prime>-th
##  power map of <tbl>
##  (e.g., a list returned by `InitPowerMap', see~"InitPowerMap"),
##  <chars> and <subchars> two lists of (values lists of) characters of
##  <tbl>,
##  and <parameters> a record with components
##  `maxlen', `minamb', `maxamb' (three integers),
##  `quick' (a Boolean),
##  and `contained' (a function).
##  Usual values of `contained' are `ContainedCharacters' or
##  `ContainedPossibleCharacters'.
##
##  `PowerMapsAllowedBySymmetrizations' replaces the entries of <approxmap>
##  by improved values,
##  according to condition 6.~listed in the description of
##  `PossiblePowerMaps' (see~"PossiblePowerMaps").
##
##  More precisely, the strategy used is as follows.
##
##  First, for each $\chi \in <chars>$,
##  let `minus:= MinusCharacter($\chi$, <approxmap>, <prime>)'.
##  \beginlist%unordered
##  \item{--}
##      If $`Indeterminateness( minus )' = 1$ and
##      `<parameters>.quick = false' then the scalar products of `minus' with
##      <subchars> are checked;
##      if not all scalar products are nonnegative integers then
##      an empty list is returned,
##      otherwise $\chi$ is deleted from the list of characters to inspect.
##  \item{--}
##      Otherwise if `Indeterminateness( minus )' is smaller than
##      `<parameters>.minamb' then $\chi$ is deleted from the list of
##      characters.
##  \item{--}
##      If `<parameters>.minamb' $\leq$ `Indeterminateness( minus )' $\leq$
##      `<parameters>.maxamb' then
##      construct the list of contained class functions
##      `poss:= <parameters>.contained(<tbl>, <subchars>, minus)'
##      and `Parametrized( poss )',
##      and improve the approximation of the power map using `UpdateMap'.
##  \endlist
##
##  If this yields no further immediate improvements then we branch.
##  If there is a character from <chars> left with less or equal
##  `<parameters>.maxlen' possible symmetrizations,
##  compute the union of power maps allowed by these possibilities.
##  Otherwise we choose a class $C$ such that the possible symmetrizations of
##  a character in <chars> differ at $C$,
##  and compute recursively the union of all allowed power maps with image
##  at $C$ fixed in the set given by the current approximation of the power
##  map.
##
DeclareGlobalFunction( "PowerMapsAllowedBySymmetrizations" );
DeclareSynonym( "PowerMapsAllowedBySymmetrisations",
    PowerMapsAllowedBySymmetrizations );


#############################################################################
##
##  6. Subroutines for the Construction of Class Fusions
##


#############################################################################
##
#F  InitFusion( <subtbl>, <tbl> )
##
##  For two ordinary character tables <subtbl> and <tbl>,
##  `InitFusion' returns a parametrized map that is a first approximation
##  of the class fusion from <subtbl> to <tbl>,
##  using condition~1.~listed in the description of `PossibleClassFusions'
##  (see~"PossibleClassFusions").
##
##  If there are classes for which no images are possible, according to this
##  criterion, then `fail' is returned.
##
DeclareGlobalFunction( "InitFusion" );


#############################################################################
##
#F  CheckPermChar( <subtbl>, <tbl>, <approxmap>, <permchar> )
##
##  `CheckPermChar' replaces the entries of the parametrized map <approxmap>
##  by improved values,
##  according to condition~3.~listed in the description of
##  `PossibleClassFusions' (see~"PossibleClassFusions").
##
##  `CheckPermChar' returns `true' if no inconsistency occurred, and `false'
##  otherwise.
##
DeclareGlobalFunction( "CheckPermChar" );


#############################################################################
##
#F  ConsiderTableAutomorphisms( <approxmap>, <grp> )
##
##  `ConsiderTableAutomorphisms' replaces the entries of the parametrized map
##  <approxmap> by improved values, according to condition~4.~listed in the
##  description of `PossibleClassFusions' (see~"PossibleClassFusions").
##
##  Afterwards exactly one representative of fusion maps (contained in
##  <approxmap>) in each orbit under the action of the permutation group
##  <grp> is contained in the modified parametrized map.
##
##  `ConsiderTableAutomorphisms' returns the list of positions where
##  <approxmap> was changed.
##
DeclareGlobalFunction( "ConsiderTableAutomorphisms" );


#############################################################################
##
#F  FusionsAllowedByRestrictions( <subtbl>, <tbl>, <subchars>, <chars>,
#F                                <approxmap>, <parameters> )
##
##  Let <subtbl> and <tbl> be ordinary character tables,
##  <subchars> and <chars> two lists of (values lists of) characters of
##  <subtbl> and <tbl>, respectively,
##  <approxmap> a parametrized map that is an approximation of the class
##  fusion of <subtbl> in <tbl>,
##  and <parameters> a record with components
##  `maxlen', `minamb', `maxamb' (three integers),
##  <quick> (a Boolean),
##  and `contained' (a function).
##  Usual values of `contained' are `ContainedCharacters' or
##  `ContainedPossibleCharacters'.
##
##  `FusionsAllowedByResrictions' replaces the entries of <approxmap>
##  by improved values,
##  according to condition 5.~listed in the description of
##  `PossibleClassFusions' (see~"PossibleClassFusions").
##
##  More precisely, the strategy used is as follows.
##
##  First, for each $\chi \in <chars>$,
##  let `restricted:= CompositionMaps( $\chi$, <approxmap> )'.
##  \beginlist%unordered
##  \item{--}
##      If $`Indeterminateness( restricted )' = 1$ and
##      `<parameters>.quick = false' then the scalar products of `restricted'
##      with <subchars> are checked;
##      if not all scalar products are nonnegative integers then
##      an empty list is returned,
##      otherwise $\chi$ is deleted from the list of characters to inspect.
##  \item{--}
##      Otherwise if `Indeterminateness( minus )' is smaller than
##      `<parameters>.minamb' then $\chi$ is deleted from the list of
##      characters.
##  \item{--}
##      If `<parameters>.minamb' $\leq$ `Indeterminateness( restricted )'
##      $\leq$ `<parameters>.maxamb' then construct
##      `poss:= <parameters>.contained( <subtbl>, <subchars>, restricted )'
##      and `Parametrized( poss )',
##      and improve the approximation of the fusion map using `UpdateMap'.
##  \endlist
#T Would it help to exploit that the restriction of a *linear* character
#T is again a linear character (not only a linear combination of linear
#T characters?
#T Branching in these cases would yield a short list of possibilities,
#T so it should be recommended ...
##
##  If this yields no further immediate improvements then we branch.
##  If there is a character from <chars> left with less or equal
##  `<parameters>.maxlen' possible restrictions,
##  compute the union of fusion maps allowed by these possibilities.
##  Otherwise we choose a class $C$ such that the possible restrictions of a
##  character in <chars> differ at $C$,
##  and compute recursively the union of all allowed fusion maps with image
##  at $C$ fixed in the set given by the current approximation of the fusion
##  map.
##
DeclareGlobalFunction( "FusionsAllowedByRestrictions" );


#############################################################################
##
#F  ConsiderStructureConstants( <subtbl>, <tbl>, <fusions>, <quick> )
##
##  Let <subtbl> and <tbl> be ordinary character tables and <fusions> be a
##  list of possible class fusions from <subtbl> to <tbl>.
##  `ConsiderStructureConstants' returns the list of those maps $\sigma$ in
##  <fusions> with the property that for all triples $(i,j,k)$ of class
##  positions, $`ClassMultiplicationCoefficient'( <subtbl>, i, j, k )$ is not
##  bigger than $`ClassMultiplicationCoefficient'( <tbl>, \sigma[i],
##  \sigma[j], \sigma[k] )$;
##  see~"ClassMultiplicationCoefficient!for character tables" for the
##  definition of class multiplication coefficients/structure constants.
##
##  The argument <quick> must be a Boolean; if it is `true' then only those
##  triples are checked for which for which at least two entries in <fusions>
##  have different images.
##
DeclareGlobalFunction( "ConsiderStructureConstants" );


#############################################################################
##
#E