1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
|
#############################################################################
##
#W dict.gd GAP Library Gene Cooperman
#W Scott Murray
#W Alexander Hulpke
##
#H @(#)$Id: dict.gd,v 4.10.4.1 2005/08/21 16:57:15 gap Exp $
##
#Y Copyright (C) 1999, Lehrstuhl D fuer Mathematik, RWTH Aachen, Germany
#Y (C) 1999 School Math and Comp. Sci., University of St. Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the declarations for dictionaries and for improved
## hash tables.
##
## In the hash tables, we hash by keys and also store a value. Keys
## cannot be removed from the table, but the corresponding value can be
## changed. Fast access to last hash index allows you to efficiently store
## more than one array of values -- this facility should be used with care.
##
## This code works for any kind of object, provided you have a KeyIntDense
## or KeyIntSparse method to convert the key into a positive integer.
## These methods should ideally be implemented efficiently in the core.
##
## Note that, for efficiency, it is currently impossible to create a
## hash table with non-positive integers.
##
## Requires: nothing
## Exports:
## Category IsHash.
## Representations IsDenseHashRep and IsSparseHashRep.
## Operations PrintHashWithNames, Iterator, GetHashEntry, AddHashEntry,
## GetHashEntryAtLastIndex, SetHashEntryAtLastIndex, SetHashEntry,
## [AddHashEntryAtLastIndex], HashFunct, KeyIntDense, KeyIntSparse.
## Functions DenseHash, SparseHash.
## Variables MaxViewSize, LastHashIndex.
##
Revision.dict_gd :=
"@(#)$Id: dict.gd,v 4.10.4.1 2005/08/21 16:57:15 gap Exp $";
#############################################################################
##
#I InfoHash
##
DeclareInfoClass( "InfoHash" );
#############################################################################
##
#O PositionFirstComponentDict(<list>,<obj>)
##
## returns the index <i> in <list> such that $<list>[<i>][1]=<obj>$ and
## `fail' if no such entry exists.
DeclareOperation("PositionFirstComponentDict",[IsList,IsObject]);
#############################################################################
##
#C IsDictionary(<obj>)
##
## A dictionary is a growable collection of objects that permits to add
## objects (with associated values) and to check whether an object is
## already known.
DeclareCategory("IsDictionary",IsCollection);
#############################################################################
##
#C IsLookupDictionary(<obj>)
##
## A *lookup dictionary* is a dictionary, which permits not only to check
## whether an object is contained, but also to retrieve associated values,
## using the operation `LookupDictionary'.
##
DeclareCategory("IsLookupDictionary",IsDictionary);
#############################################################################
##
#C IsHash(<obj>)
##
## The category of hash tables for arbitrary objects (provided an `IntKey'
## function
## is defined).
##
DeclareCategory( "IsHash", IsLookupDictionary );
#1
## There are several ways how dictionaries are implemented: As lists, as
## sorted lists, as hash tables or via binary lists. A user however will
## just have to call `NewDictionary' and obtain a ``suitable'' dictionary
## for the kind of objects she wants to create. It is possible however to
## create hash tables (see~"General hash table definitions and operations")
## and dictionaries using binary lists (see~"DictionaryByPosition").
#############################################################################
##
#F NewDictionary(<obj>,<look>[,<objcoll>])
##
## creates a new dictionary for objects such as <obj>. If <objcoll> is
## given the dictionary will be for objects only from this collection,
## knowing this can improve the performance. If <objcoll> is given, <obj>
## may be replaced by `false', i.e. no sample object is needed.
##
## The function tries to find the right kind of dictionary for the basic
## dictionary functions to be quick.
## If <look> is `true', the dictionary will be a lookup dictionary,
## otherwise it is an ordinary dictionary.
DeclareGlobalFunction("NewDictionary");
#2
## The use of two objects, <obj> and <objcoll> to parametrize the objects a
## dictionary is able to store might look confusing. However there are
## situations where either of them might be needed:
##
## The first situation is that of objects, for which no formal ``collection
## object'' has been defined. A typical example here might be subspaces of
## a vector space. {\GAP} does not formally define a ``Grassmannian'' or
## anything else to represent the multitude of all subspaces. So it is only
## possible to give the dictionary a ``sample object''.
##
## The other situation is that of an object which might represent quite
## varied domains. The permutation $(1,10^6)$ might be the nontrivial
## element of a cyclic group of order 2, it might be a representative of
## $S_{10^6}$. In the first situation the best approach might be just to
## have two entries for the two possible objects, in the second situation a
## much more elaborate approach might be needed.
##
## An algorithm that creates a dictionary will usually know a priori, from what
## domain all the objects will be, giving this domain permits to use a more
## efficient dictionary.
##
## This is particularly true for vectors. From a single vector one cannot
## decide whether a calculation will take place over the smallest field
## containing all its entries or over a larger field.
#############################################################################
##
#F DictionaryByPosition(<list>,<lookup>)
##
## creates a new (lookup) dictionary which uses `PositionCanonical' in
## <list> for indexing. The dictionary will have an entry `<dict>!.blist'
## which is a bit list corresponding to <list> indicating the known
## If <look> is `true', the dictionary will be a lookup dictionary,
## otherwise it is an ordinary dictionary.
DeclareGlobalFunction("DictionaryByPosition");
#############################################################################
##
#V DictionariesFamily
##
## Is the family of all dictionaries.
BindGlobal("DictionariesFamily",NewFamily( "DictionariesFamily",IsDictionary));
#############################################################################
##
#O KnowsDictionary(<dict>,<key>)
##
## checks, whether <key> is known to the dictionary <dict>, and returns
## `true' or `false' accordingly. <key> *must* be an object of the kind for
## which the dictionary was specified, otherwise the results are
## unpredictable.
DeclareOperation("KnowsDictionary",[IsDictionary,IsObject]);
#############################################################################
##
#O AddDictionary(<dict>,<key>)
#O AddDictionary(<dict>,<key>,<val>)
##
## adds <key> to the dictionary <dict>, storing the associated value <val>
## in case <dict> is a lookup dictionary. (If another value had been stored
## already, it is overwritten.) <key> *must* be an object of the kind for
## which the dictionary was specified, otherwise the results are
## unpredictable.
DeclareOperation("AddDictionary",[IsDictionary,IsObject]);
#############################################################################
##
#O LookupDictionary(<dict>,<key>)
##
## looks up <key> in the lookup dictionary <dict> and returns the
## associated value. If <key> is not known to the dictionary, `fail' is
## returned.
DeclareOperation("LookupDictionary",[IsDictionary,IsObject]);
IsDictionaryDefaultRep:=NewRepresentation("IsDictionaryDefaultRep",
IsDictionary and IsComponentObjectRep,[]);
#############################################################################
##
#R IsListDictionary(<obj>)
#R IsListLookupDictionary(<obj>)
##
## A list dictionary uses a simple (unsorted) list and searching internally.
IsListDictionary:=NewRepresentation("IsListDictionary",IsDictionaryDefaultRep,
["entries"] );
IsListLookupDictionary:=NewRepresentation("IsListLookupDictionary",
IsListDictionary and IsLookupDictionary,
["entries"] );
#############################################################################
##
#R IsSortDictionary(<obj>)
#R IsSortLookupDictionary(<obj>)
##
## A sort dictionary uses a sorted list internally.
IsSortDictionary:=NewRepresentation("IsSortDictionary",IsListDictionary,
["entries"] );
IsSortLookupDictionary:=NewRepresentation("IsSortLookupDictionary",
IsSortDictionary and IsListLookupDictionary and IsLookupDictionary,
["entries"] );
#############################################################################
##
#R IsPositionDictionary(<obj>)
#R IsPositionLookupDictionary(<obj>)
##
## A hash dictionary uses `PositionCanonical' in a list internally.
IsPositionDictionary:=NewRepresentation("IsPositionDictionary",
IsDictionaryDefaultRep,["domain","blist"] );
IsPositionLookupDictionary:=NewRepresentation("IsPositionDictionary",
IsPositionDictionary and IsLookupDictionary,
["domain","blist","vals"] );
#############################################################################
#############################################################################
##
## General hash table definitions and operations
##
#############################################################################
#############################################################################
#############################################################################
##
#O PrintHashWithNames( <hash>, <keyName>, <valueName> )
##
## Print a hash table with the given names for the keys and values.
##
DeclareOperation( "PrintHashWithNames", [ IsHash, IsString, IsString ] );
#############################################################################
##
#O GetHashEntry( <hash>, <key> )
##
## If the key is in hash, return the corresponding value. Otherwise
## return fail. Note that it is not a good idea to use fail as a value.
##
DeclareOperation( "GetHashEntry", [ IsHash, IsObject ] );
#############################################################################
##
#O AddHashEntry( <hash>, <key>, <value> )
##
## Add the key and value to the hash table.
##
DeclareOperation( "AddHashEntry", [ IsHash, IsObject, IsObject ] );
#############################################################################
##
#O RandomHashKey( <hash> )
##
## Return a random Key from the hash table (Random returns a random value).
##
DeclareOperation( "RandomHashKey", [ IsHash ] );
#############################################################################
##
#O HashKeyEnumerator( <hash> )
##
## Enumerates the keys of the hash table (Enumerator enumerates values).
##
DeclareOperation( "HashKeyEnumerator", [ IsHash ] );
#############################################################################
##
#P TableHasIntKeyFun(<hash>)
##
## If this filter is set, the hash table has an `IntKey' function in its
## component `<hash>!.intKeyFun'.
##
DeclareFilter( "TableHasIntKeyFun" );
#############################################################################
#############################################################################
##
## Dense hash tables
##
## Used for hashing dense sets without collisions, in particular integers.
## Stores keys as an unordered list and values as an
## array with holes. The position of a value is given by
## KeyIntDense of the key, and so KeyIntDense must be one-to-one.
##
#############################################################################
#############################################################################
#############################################################################
##
#R IsDenseHashRep
##
## The dense representation for hash tables.
##
DeclareRepresentation( "IsDenseHashRep",
# as we will call `Enumerator' to get the *current* value list, a hash
# table may not be attribute storing.
IsComponentObjectRep and IsHash,
["KeyArray", "ValueArray"] );
#############################################################################
##
#F DenseHashTable( )
##
## Construct an empty dense hash table. This is the only correct way to
## construct such a table.
##
DeclareGlobalFunction( "DenseHashTable", [] );
#############################################################################
#############################################################################
##
## Sparse hash tables
##
## Used for hashing sparse sets. Stores keys as an array with fail
## denoting an empty position, stores values as an array with holes.
## Uses HashFunct applied to KeyInt of the key. DefaultHashLength
## is the default starting hash table length; the table is doubled
## when it becomes half full.
##
#############################################################################
#############################################################################
#############################################################################
##
#R IsSparseHashRep
##
## The sparse representation for hash tables.
##
DeclareRepresentation( "IsSparseHashRep",
# as we will call `Enumerator' to get the *current* value list, a hash
# table may not be attribute storing.
IsComponentObjectRep and IsHash,
["KeyArray", "ValueArray", "HashFunct", "LengthArray",
"LengthArrayHalf", # so we dont need to *2 to see overflow
"NumberKeys"] );
BindGlobal("DefaultSparseHashRepType",
NewType( DictionariesFamily, IsSparseHashRep ));
BindGlobal("DefaultSparseHashWithIKRepType",
NewType( DictionariesFamily, IsSparseHashRep and TableHasIntKeyFun));
#############################################################################
##
#F SparseHashTable([<intkeyfun>])
##
## Construct an empty sparse hash table. This is the only correct way to
## construct such a table.
## If the argument <intkeyfun> is given, this function will be used to
## obtain numbers for the keys passed to it.
##
DeclareGlobalFunction( "SparseHashTable", [] );
#############################################################################
##
#F GetHashEntryIndex( <hash>, <key> )
##
## If the key is in hash, return its index in the hash array.
##
DeclareGlobalFunction( "GetHashEntryIndex", [ IsSparseHashRep, IsObject ] );
#############################################################################
##
#F DoubleHashArraySize( <hash> )
##
## Double the size of the hash array and rehash all the entries.
## This will also happen automatically when the hash array is half full.
##
DeclareGlobalFunction( "DoubleHashArraySize", [ IsSparseHashRep ] );
# almost duplicate without any extras - thus faster
DeclareGlobalFunction( "DoubleHashDictSize");
#############################################################################
#############################################################################
##
## Hash functions
##
#############################################################################
#############################################################################
#############################################################################
##
#F HashFunct( <key>, <i>, <size> )
##
## This will be a good double hashing function for any reasonable KeyInt
## (see Cormen, Leiserson and Rivest, Introduction to Algorithms,
## 1e, p. 235).
##
DeclareGlobalFunction( "HashFunct", [ IsInt, IsInt, IsInt ] );
#############################################################################
##
#O DenseIntKey(<objcoll>,<obj>)
##
## returns a function that can be used as hash key function for objects
## such as <obj> in the collection <objcoll>. <objcoll> typically will be a
## large domain. If the domain is not available, it can be given as
## `false' in which case the hash key function will be determined only
## based on <obj>. (For a further discussion of these two arguments
## see~`NewDictionary', section~"NewDictionary").
##
## The function returned by `DenseIntKey' is guaranteed to give different
## values for different objects.
## If no suitable hash key function has been predefined, `fail' is returned.
DeclareOperation("DenseIntKey",[IsObject,IsObject]);
#############################################################################
##
#O SparseIntKey(<objcoll>,<obj>)
##
## returns a function that can be used as hash key function for objects
## such as <obj> in the collection <objcoll>. In contrast to `DenseIntKey',
## the function returned may return the same key value for different
## objects.
## If no suitable hash key function has been predefined, `fail' is returned.
DeclareOperation("SparseIntKey",[IsObject,IsObject]);
#############################################################################
#############################################################################
##
## Fast access to last hash index
##
## Index of last hash access or modification.
## Note that this is global across all hash tables. If you want to
## have two hash tables with identical layouts, the following works:
## GetHashEntry( hashTable1, object ); GetHashEntryAtLastIndex( hashTable2 );
## These functions should be used with extreme care, as they bypass most
## of the inbuilt error checking for hash tables.
##
#############################################################################
#############################################################################
#############################################################################
##
#O GetHashEntryAtLastIndex( <hash> )
##
## Returns the value of the last hash entry accessed.
##
DeclareOperation( "GetHashEntryAtLastIndex", [ IsHash ] );
#############################################################################
##
#O SetHashEntryAtLastIndex( <hash>, <newValue> )
##
## Resets the value of the last hash entry accessed.
##
DeclareOperation( "SetHashEntryAtLastIndex", [ IsHash, IsObject ] );
#############################################################################
##
#O SetHashEntry( <hash>, <key>, <value> )
##
## Resets the value corresponding to <key>.
##
DeclareOperation( "SetHashEntry", [ IsHash, IsObject, IsObject ] );
#############################################################################
##
## AddHashEntryAtLastIndex( <hash>, <value> )
##
## Check first if the last index has been set, and don't reset it if it has.
## This operation has not yet been implemented
##
##DeclareOperation( "AddHashEntryAtLastIndex", [ IsHash, IsObject ] );
#E
|