File: field.gd

package info (click to toggle)
gap 4r4p10-2
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 29,224 kB
  • ctags: 7,084
  • sloc: ansic: 98,591; sh: 3,284; perl: 2,263; makefile: 467; awk: 6
file content (610 lines) | stat: -rw-r--r-- 22,781 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
#############################################################################
##
#W  field.gd                    GAP library                     Thomas Breuer
##
#H  @(#)$Id: field.gd,v 4.53 2002/08/23 15:01:47 gap Exp $
##
#Y  Copyright (C)  1997,  Lehrstuhl D fuer Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St.  Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file declares the operations for division rings.
##
Revision.field_gd :=
    "@(#)$Id: field.gd,v 4.53 2002/08/23 15:01:47 gap Exp $";


#############################################################################
#1
##  A *division ring* is a ring (see Chapter~"Rings") in which every non-zero
##  element has an inverse.
##  The most important class of division rings are the commutative ones,
##  which are called *fields*.
##
##  {\GAP} supports finite fields (see Chapter~"Finite Fields") and
##  abelian number fields (see Chapter~"Abelian Number Fields"),
##  in particular the field of rationals (see Chapter~"Rational Numbers").
##
##  This chapter describes the general {\GAP} functions for fields and
##  division rings.
##
##  If a field <F> is a subfield of a commutative ring <C>,
##  <C> can be considered as a vector space over the (left) acting domain
##  <F> (see Chapter~"Vector Spaces").
##  In this situation, we call <F> the *field of definition* of <C>.
##
##  Each field in {\GAP} is represented as a vector space over a subfield
##  (see~"IsField"), thus each field is in fact a field extension in a
##  natural way, which is used by functions such as `Norm' and `Trace'
##  (see~"Galois Action").

#T Note that the families of a division ring and of its left acting domain
#T may be different!!


#############################################################################
##
#P  IsField( <D> )
##
##  A *field* is a commutative division ring
##  (see~"IsDivisionRing" and~"IsCommutative").
##
DeclareSynonymAttr( "IsField", IsDivisionRing and IsCommutative );

InstallTrueMethod( IsCommutative, IsDivisionRing and IsFinite );


#############################################################################
##
#A  PrimeField( <D> )
##
##  The *prime field* of a division ring <D> is the smallest field which is
##  contained in <D>.
##  For example, the prime field of any field in characteristic zero
##  is isomorphic to the field of rational numbers.
##
DeclareAttribute( "PrimeField", IsDivisionRing );


#############################################################################
##
#P  IsPrimeField( <D> )
##
##  A division ring is a prime field if it is equal to its prime field
##  (see~"PrimeField").
##
DeclareProperty( "IsPrimeField", IsDivisionRing );

InstallIsomorphismMaintenance( IsPrimeField,
    IsField and IsPrimeField, IsField );


#############################################################################
##
#A  DefiningPolynomial( <F> )
##
##  is the defining polynomial of the field <F> as a field extension
##  over the left acting domain of <F>.
##  A root of the defining polynomial can be computed with
##  `RootOfDefiningPolynomial' (see~"RootOfDefiningPolynomial").
##
DeclareAttribute( "DefiningPolynomial", IsField );


#############################################################################
##
#A  DegreeOverPrimeField( <F> )
##
##  is the degree of the field <F> over its prime field (see~"PrimeField").
##
DeclareAttribute( "DegreeOverPrimeField", IsDivisionRing );

InstallIsomorphismMaintenance( DegreeOverPrimeField,
    IsDivisionRing, IsDivisionRing );


#############################################################################
##
#A  GeneratorsOfDivisionRing( <D> )
##
##  generators with respect to addition, multiplication, and taking inverses
##  (the identity cannot be omitted ...)
##
DeclareAttribute( "GeneratorsOfDivisionRing", IsDivisionRing );


#############################################################################
##
#A  GeneratorsOfField( <F> )
##
##  generators with respect to addition, multiplication, and taking
##  inverses. This attribute is the same as `GeneratorsOfDivisionRing'
##  (see~"GeneratorsOfDivisionRing").
##
DeclareSynonymAttr( "GeneratorsOfField", GeneratorsOfDivisionRing );


#############################################################################
##
#A  NormalBase( <F> )
#O  NormalBase( <F>, <elm> )
##
##  Let <F> be a field that is a Galois extension of its subfield
##  `LeftActingDomain( <F> )'.
##  Then `NormalBase' returns a list of elements in <F> that form a normal
##  basis of <F>, that is, a vector space basis that is closed under the
##  action of the Galois group (see~"GaloisGroup!of field") of <F>.
##
##  If a second argument <elm> is given,
##  it is used as a hint for the algorithm to find a normal basis with the
##  algorithm described in~\cite{Art68}.
##
DeclareAttribute( "NormalBase", IsField );
DeclareOperation( "NormalBase", [ IsField, IsScalar ] );


#############################################################################
##
#A  PrimitiveElement( <D> )
##
##  is an element of <D> that generates <D> as a division ring together with
##  the left acting domain.
##
DeclareAttribute( "PrimitiveElement", IsDivisionRing );


#############################################################################
##
#A  PrimitiveRoot( <F> )
##
##  A *primitive root* of a finite field is a generator of its multiplicative
##  group.
##  A primitive root is always a primitive element (see~"PrimitiveElement"),
##  the converse is in general not true.
##  % For example, `Z(9)^2' is a primitive element for `GF(9)' but not a
##  % primitive root.
##
DeclareAttribute( "PrimitiveRoot", IsField and IsFinite );


#############################################################################
##
#A  RootOfDefiningPolynomial( <F> )
##
##  is a root in the field <F> of its defining polynomial as a field
##  extension over the left acting domain of <F>.
##  The defining polynomial can be computed with
##  `DefiningPolynomial' (see~"DefiningPolynomial").
##
DeclareAttribute( "RootOfDefiningPolynomial", IsField );


#############################################################################
##
#O  AsDivisionRing( <C> )
#O  AsDivisionRing( <F>, <C> )
#O  AsField( <C> )
#O  AsField( <F>, <C> )
##
##  If the collection <C> can be regarded as a division ring then
##  `AsDivisionRing( <C> )' is the division ring that consists of the
##  elements of <C>, viewed as a vector space over its prime field;
##  otherwise `fail' is returned.
##
##  In the second form, if <F> is a division ring contained in <C> then
##  the returned division ring is viewed as a vector space over <F>.
##
##  `AsField' is just a synonym for `AsDivisionRing'.
##
DeclareOperation( "AsDivisionRing", [ IsCollection ] );
DeclareOperation( "AsDivisionRing", [ IsDivisionRing, IsCollection ] );

DeclareSynonym( "AsField", AsDivisionRing );


#############################################################################
##
#O  ClosureDivisionRing( <D>, <obj> )
##
##  `ClosureDivisionRing' returns the division ring generated by the elements
##  of the division ring <D> and <obj>,
##  which can be either an element or a collection of elements,
##  in particular another division ring.
##  The left acting domain of the result equals that of <D>.
##
DeclareOperation( "ClosureDivisionRing", [ IsDivisionRing, IsObject ] );

DeclareSynonym( "ClosureField", ClosureDivisionRing );


#############################################################################
##
#A  Subfields( <F> )
##
##  is the set of all subfields of the field <F>.
#T or shall we allow to ask, e.g., for subfields of quaternion algebras?
##
DeclareAttribute( "Subfields", IsField );


#############################################################################
##
#O  FieldExtension( <F>, <poly> )
##
##  is the field obtained on adjoining a root of the irreducible polynomial
##  <poly> to the field <F>.
##
DeclareOperation( "FieldExtension", [ IsField, IsUnivariatePolynomial ] );


#############################################################################
#2
##  Let $L > K$ be a field extension of finite degree.
##  Then to each element $\alpha \in L$, we can associate a $K$-linear
##  mapping $\varphi_{\alpha}$ on $L$, and for a fixed $K$-basis of $L$,
##  we can associate to $\alpha$ the matrix $M_{\alpha}$ (over $K$)
##  of this mapping.
##
##  The *norm* of $\alpha$ is defined as the determinant of $M_{\alpha}$,
##  the *trace* of $\alpha$ is defined as the trace of $M_{\alpha}$,
##  the *minimal polynomial* $\mu_{\alpha}$ and the
##  *trace polynomial* $\chi_{\alpha}$ of $\alpha$
##  are defined as the minimal polynomial (see~"MinimalPolynomial!over a field")
##  and the characteristic polynomial (see~"CharacteristicPolynomial" and
##  "TracePolynomial") of $M_{\alpha}$.
##  (Note that $\mu_{\alpha}$ depends only on $K$ whereas $\chi_{\alpha}$
##  depends on both $L$ and $K$.)
##
##  Thus norm and trace of $\alpha$ are elements of $K$,
##  and $\mu_{\alpha}$ and $\chi_{\alpha}$ are polynomials over $K$,
##  $\chi_{\alpha}$ being a power of $\mu_{\alpha}$,
##  and the degree of $\chi_{\alpha}$ equals the degree of the field
##  extension $L > K$.
##
##  The *conjugates* of $\alpha$ in $L$ are those roots of $\chi_{\alpha}$
##  (with multiplicity) that lie in $L$;
##  note that if only $L$ is given, there is in general no way to access
##  the roots outside $L$.
##
##  Analogously, the *Galois group* of the extension $L > K$ is defined as
##  the group of all those field automorphisms of $L$ that fix $K$
##  pointwise.
##
##  If $L > K$ is a Galois extension then the conjugates of $\alpha$ are
##  all roots of $\chi_{\alpha}$ (with multiplicity),
##  the set of conjugates equals the roots of $\mu_{\alpha}$,
##  the norm of $\alpha$ equals the product and the trace of $\alpha$
##  equals the sum of the conjugates of $\alpha$,
##  and the Galois group in the sense of the above definition equals
##  the usual Galois group,
##
##  Note that `MinimalPolynomial( <F>, <z> )' is a polynomial *over* <F>,
##  whereas `Norm( <F>, <z> )' is the norm of the element <z> *in* <F>
##  w.r.t.~the field extension $<F> > `LeftActingDomain( <F> )'$.
##


#############################################################################
#3
##  The default methods for field elements are as follows.
##  `MinimalPolynomial' solves a system of linear equations,
##  `TracePolynomial' computes the appropriate power of the minimal
##  polynomial,
##  `Norm' and `Trace' values are obtained as coefficients of the
##  characteristic polynomial,
##  and `Conjugates' uses the factorization of the characteristic polynomial.
##
##  For elements in finite fields and cyclotomic fields, one wants to do the
##  computations in a different way since the field extensions in question
##  are Galois extensions, and the Galois groups are well-known in these
##  cases.
##  More general,
##  if a field is in the category `IsFieldControlledByGaloisGroup' then
##  the default methods are the following.
##  `Conjugates' returns the sorted list of images (with multiplicity) of the
##  element under the Galois group,
##  `Norm' computes the product of the conjugates,
##  `Trace' computes the sum of the conjugates,
##  `TracePolynomial' and `MinimalPolynomial' compute the product of
##  linear factors $x - c$ with $c$ ranging over the conjugates and the set
##  of conjugates, respectively.
##


#############################################################################
##
#C  IsFieldControlledByGaloisGroup( <obj> )
##
##  (The meaning is explained above.)
##
DeclareCategory( "IsFieldControlledByGaloisGroup", IsField );


#############################################################################
##
#M  IsFieldControlledByGaloisGroup( <finfield> )
##
##  For finite fields and abelian number fields
##  (independent of the representation of their elements),
##  we know the Galois group and have a method for `Conjugates' that does
##  not use `MinimalPolynomial'.
##
InstallTrueMethod( IsFieldControlledByGaloisGroup, IsField and IsFinite );


#############################################################################
##
#A  Conjugates( <z> ) . . . . . . . . . . . . . conjugates of a field element
#O  Conjugates( <L>, <z> )
#O  Conjugates( <L>, <K>, <z> )
##
##  `Conjugates' returns the list of *conjugates* of the field element <z>.
##  If two fields <L> and <K> are given then the conjugates are computed
##  w.r.t.~the field extension $<L> > <K>$,
##  if only one field <L> is given then `LeftActingDomain( <L> )' is taken as
##  default for the subfield <K>,
##  and if no field is given then `DefaultField( <z> )' is taken as default
##  for <L>.
##
##  The result list will contain duplicates if <z> lies in a proper subfield
##  of <L>, respectively of the default field of <z>.
##  The result list need not be sorted.
#T Do we want to guarantee sorted lists?
#T In GAP 3, the lists were not nec. sorted.
##
DeclareAttribute( "Conjugates", IsScalar );
DeclareOperation( "Conjugates", [ IsField, IsField, IsScalar ] );
DeclareOperation( "Conjugates", [ IsField, IsScalar ] );


#############################################################################
##
#A  Norm( <z> )  . . . . . . . . . . . . . . . . . .  norm of a field element
#O  Norm( <L>, <z> ) . . . . . . . . . . . . . . . .  norm of a field element
#O  Norm( <L>, <K>, <z> )  . . . . . . . . . . . . .  norm of a field element
##
##  `Norm' returns the norm of the field element <z>.
##  If two fields <L> and <K> are given then the norm is computed
##  w.r.t.~the field extension $<L> > <K>$,
##  if only one field <L> is given then `LeftActingDomain( <L> )' is taken as
##  default for the subfield <K>,
##  and if no field is given then `DefaultField( <z> )' is taken as default
##  for <L>.
##
DeclareAttribute( "Norm", IsScalar );
DeclareOperation( "Norm", [ IsField, IsScalar ] );
DeclareOperation( "Norm", [ IsField, IsField, IsScalar ] );


#############################################################################
##
#A  Trace( <z> )  . . . . . . . . . . . . . . . . .  trace of a field element
#A  Trace( <mat> )  . . . . . . . . . . . . . . . . . . . . trace of a matrix
#O  Trace( <L>, <z> ) . . . . . . . . . . . . . . .  trace of a field element
#O  Trace( <L>, <K>, <z> )  . . . . . . . . . . . .  trace of a field element
##
##  `Trace' returns the trace of the field element <z>.
##  If two fields <L> and <K> are given then the trace is computed
##  w.r.t.~the field extension $<L> > <K>$,
##  if only one field <L> is given then `LeftActingDomain( <L> )' is taken as
##  default for the subfield <K>,
##  and if no field is given then `DefaultField( <z> )' is taken as default
##  for <L>.
##
##  The *trace of a matrix* is the sum of its diagonal entries.
##  Note that this is *not* compatible with the definition of `Trace' for
##  field elements,
##  so the one-argument version is not suitable when matrices shall be
##  regarded as field elements.
#T forbid `Trace' as short form for `TraceMat'?
#T crossref. to `TraceMat'?
##
DeclareAttribute( "Trace", IsScalar );
DeclareAttribute( "Trace", IsMatrix );
DeclareOperation( "Trace", [ IsField, IsScalar ] );
DeclareOperation( "Trace", [ IsField, IsField, IsScalar ] );


#############################################################################
##
#O  TracePolynomial( <L>, <K>, <z>[, <inum>] )
##
##  returns the polynomial that is the product of $(X - c)$ where $c$ runs
##  over the conjugates of <z> in the field extension <L> over <K>.
##  The polynomial is returned as a univariate polynomial over <K> in the
##  indeterminate number <inum> (defaulting to 1).
##
##  This polynomial is sometimes also called the *characteristic polynomial*
##  of <z> w.r.t.~the field extension $<L> > <K>$.
##  Therefore methods are installed for `CharacteristicPolynomial'
##  (see~"CharacteristicPolynomial")
##  that call `TracePolynomial' in the case of field extensions.
##
DeclareOperation( "TracePolynomial", [ IsField, IsField, IsScalar ] );
DeclareOperation( "TracePolynomial",
    [ IsField, IsField, IsScalar, IsPosInt ] );


#############################################################################
##
#A  GaloisGroup( <F> )
##
##  The *Galois group* of a field <F> is the group of all field automorphisms
##  of <F> that fix the subfield $K = `LeftActingDomain( <F> )'$ pointwise.
##
##  Note that the field extension $<F> > K$ need *not* be a Galois extension.
##
DeclareAttribute( "GaloisGroup", IsField );


#############################################################################
##
#A  ComplexConjugate( <z> )
##
##  For a cyclotomic number <z>, `ComplexConjugate' returns
##  `GaloisCyc( <z>, -1 )'.
##  For a quaternion $<z> = c_1 e + c_2 i + c_3 j + c_4 k$,
##  `ComplexConjugate' returns $c_1 e - c_2 i - c_3 j - c_4 k$.
##
DeclareAttribute( "ComplexConjugate", IsScalar );


#############################################################################
##
#O  DivisionRingByGenerators( [ <z>, ... ] )  . . . . div. ring by generators
#O  DivisionRingByGenerators( <F>, [ <z>, ... ] ) . . div. ring by generators
##
##  The first version returns a division ring as vector space over
##  `FieldOverItselfByGenerators( <gens> )'.
##
DeclareOperation( "DivisionRingByGenerators",
        [ IsDivisionRing, IsCollection ] );

DeclareSynonym( "FieldByGenerators", DivisionRingByGenerators );


#############################################################################
##
#O  FieldOverItselfByGenerators( [ <z>, ... ] )
##
##  This  operation is  needed for  the  call of `Field' or
##  `FieldByGenerators'
##  without  explicitly given subfield, in  order to construct  a left acting
##  domain for such a field.
##
DeclareOperation( "FieldOverItselfByGenerators", [ IsCollection ] );


#############################################################################
##
#O  DefaultFieldByGenerators( [ <z>, ... ] )  . . default field by generators
##
##  returns the default field containing the elements <z>,$\ldots$.
##  This field may be bigger than the smallest field containing these
##  elements.
##
DeclareOperation( "DefaultFieldByGenerators", [ IsCollection ] );


#############################################################################
##
#F  Field( <z>, ... ) . . . . . . . . . field generated by a list of elements
#F  Field( <list> )
#F  Field( <F>, <list> )
##
##  `Field' returns the smallest field $K$ that contains all the elements
##  $<z>, \ldots$,
##  or the smallest field $K$ that contains all elements in the list <list>.
##  If no subfield <F> is given, $K$ is constructed as a field over itself,
##  i.e. the left acting domain of $K$ is $K$.
##  In the third form, `Field' constructs the field generated by the
##  field <F> and the elements in the list <list>,
##  as a vector space over <F>.
##
DeclareGlobalFunction( "Field" );
#T why not `DivisionRing', and `Field' as a (more or less) synonym?


#############################################################################
##
#F  DefaultField( <z>, ... )  . . . . . default field containing a collection
#F  DefaultField( <list> )
##
##  `DefaultField' returns a field $K$ that contains all the elements
##  $<z>, \ldots$,
##  or a field $K$ that contains all elements in the list <list>.
##
##  This field need not be the smallest field in which the elements lie,
##  cf.~`Field' (see~"Field").
##  For example, for elements from cyclotomic fields `DefaultField' returns
##  the smallest cyclotomic field in which the elements lie,
##  but the elements may lie in a smaller number field
##  which is not a cyclotomic field.
##
DeclareGlobalFunction( "DefaultField" );


#############################################################################
##
#F  Subfield( <F>, <gens> ) . . . . . . . subfield of <F> generated by <gens>
#F  SubfieldNC( <F>, <gens> )
##
##  Constructs the subfield of <F> generated by <gens>.
##
DeclareGlobalFunction( "Subfield" );
DeclareGlobalFunction( "SubfieldNC" );


#############################################################################
##
#A  FrobeniusAutomorphism( <F> )  .  Frobenius automorphism of a finite field
##
##  returns the Frobenius automorphism of the finite
##  field <F> as a field homomorphism (see~"Ring Homomorphisms").
##
##  \atindex{Frobenius automorphism}{@Frobenius automorphism}
##  The *Frobenius automorphism* $f$ of a finite field $F$ of characteristic
##  $p$ is the function that takes each element $z$ of $F$ to its $p$-th
##  power.
##  Each automorphism of $F$ is a power of $f$.
##  Thus $f$ is a generator for the Galois group of $F$ relative to the prime
##  field of $F$,
##  and an appropriate power of $f$ is a generator of the Galois group of $F$
##  over a subfield (see~"GaloisGroup!of field").
##
##  \beginexample
##  gap> f := GF(16);
##  GF(2^4)
##  gap> x := FrobeniusAutomorphism( f );
##  FrobeniusAutomorphism( GF(2^4) )
##  gap> Z(16) ^ x;
##  Z(2^4)^2
##  gap> x^2;
##  FrobeniusAutomorphism( GF(2^4) )^2
##  \endexample
##
##  The image of an element $z$ under the $i$-th power of $f$ is computed
##  as the $p^i$-th power of $z$.
##  The product of the $i$-th power and the $j$-th power of $f$ is the $k$-th
##  power of $f$, where $k$ is $i j \pmod{`Size(<F>)'-1}$.
##  The zeroth power of $f$ is `IdentityMapping( <F> )'.
##
DeclareAttribute( "FrobeniusAutomorphism", IsField );


#############################################################################
##
#F  IsFieldElementsSpace( <V> )
##
##  If an $F$-vector space <V> is in the filter `IsFieldElementsSpace' then
##  this expresses that <V> consists of elements in a field, and that <V> is
##  handled via the mechanism of nice bases (see~"...") in the following way.
##  Let $K$ be the default field generated by the vector space generators of
##  <V>.
##  Then the `NiceFreeLeftModuleInfo' value of <V> is an $F$-basis $B$ of $K$,
##  and the `NiceVector' value of $v \in <V>$ is defined as
##  $`Coefficients'( B, v )$.
##
##  So it is assumed that methods for computing a basis for the
##  $F$-vector space $K$ are known;
##  for example, one can compute a Lenstra basis (see~"...") if $K$ is an
##  abelian number field,
##  and take successive powers of a primitive root if $K$ is a finite field
##  (see~"...").
##
DeclareHandlingByNiceBasis( "IsFieldElementsSpace",
    "for free left modules of field elements" );

#############################################################################
##
#O  NthRoot( <F>, <a>, <n> )
##
##  returns one <n>th root of <a> if such a root exists in <F> and returns
##  `fail' otherwise.
DeclareOperation( "NthRoot", [ IsField, IsScalar, IsPosInt ] );


#############################################################################
##
#E