1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
|
#############################################################################
##
#W fldabnum.gd GAP library Thomas Breuer
##
#H @(#)$Id: fldabnum.gd,v 4.24.2.1 2005/08/10 16:38:44 gap Exp $
##
#Y Copyright (C) 1996, Lehrstuhl D fuer Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St. Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file declares operations for fields consisting of cyclotomics.
##
## Note that we must distinguish abelian number fields and fields
## that consist of cyclotomics.
## (The image of the natural embedding of the rational number field
## into a field of rational functions is of course an abelian number field
## but its elements are not cyclotomics since this would be a property given
## by their family.)
##
Revision.fldabnum_gd :=
"@(#)$Id: fldabnum.gd,v 4.24.2.1 2005/08/10 16:38:44 gap Exp $";
#T add rings of integers in abelian number fields!
#T (NumberRing, IsIntegralBasis, NormalBasis)
#############################################################################
##
## Abelian Number Fields
#1
## An *abelian number field* is a field in characteristic zero
## that is a finite dimensional normal extension of its prime field
## such that the Galois group is abelian.
## In {\GAP}, one implementation of abelian number fields is given by fields
## of cyclotomic numbers (see Chapter~"Cyclotomic Numbers").
## Note that abelian number fields can also be constructed with
## the more general `AlgebraicExtension' (see~"AlgebraicExtension"),
## a discussion of advantages and disadvantages can be found
## in~"Internally Represented Cyclotomics".
## The functions described in this chapter have been developed for fields
## whose elements are in the filter `IsCyclotomic' (see~"IsCyclotomic"),
## they may or may not work well for abelian number fields consisting of
## other kinds of elements.
##
## Throughout this chapter, $\Q_n$ will denote the cyclotomic field
## generated by the field $\Q$ of rationals together with $n$-th roots of
## unity.
##
## In~"Construction of Abelian Number Fields", constructors for abelian
## number fields are described,
## "Operations for Abelian Number Fields" introduces operations for abelian
## number fields,
## "Integral Bases of Abelian Number Fields" deals with the vector space
## structure of abelian number fields, and
## "Galois Groups of Abelian Number Fields" describes field automorphisms
## of abelian number fields,
## % section about Gaussians here?
##
#############################################################################
##
#P IsNumberField( <F> )
##
## \index{number field}
## returns `true' if the field <F> is a finite dimensional extension
## of a prime field in characteristic zero, and `false' otherwise.
##
DeclareProperty( "IsNumberField", IsField );
InstallSubsetMaintenance( IsNumberField,
IsField and IsNumberField, IsField );
InstallIsomorphismMaintenance( IsNumberField,
IsField and IsNumberField, IsField );
#############################################################################
##
#P IsAbelianNumberField( <F> )
##
## \index{abelian number field}
## returns `true' if the field <F> is a number field (see~"IsNumberField")
## that is a Galois extension of the prime field, with abelian Galois group
## (see~"GaloisGroup!of field").
##
DeclareProperty( "IsAbelianNumberField", IsField );
InstallTrueMethod( IsNumberField, IsAbelianNumberField );
InstallSubsetMaintenance( IsAbelianNumberField,
IsField and IsAbelianNumberField, IsField );
InstallIsomorphismMaintenance( IsAbelianNumberField,
IsField and IsAbelianNumberField, IsField );
#############################################################################
##
#m Conductor( <F> )
##
## The attribute is defined in `cyclotom.g'.
##
InstallIsomorphismMaintenance( Conductor,
IsField and IsAbelianNumberField, IsField );
#############################################################################
##
#M IsFieldControlledByGaloisGroup( <cycfield> )
##
## For finite fields and abelian number fields
## (independent of the representation of their elements),
## we know the Galois group and have a method for `Conjugates' that does
## not use `MinimalPolynomial'.
##
InstallTrueMethod( IsFieldControlledByGaloisGroup,
IsField and IsAbelianNumberField );
#############################################################################
##
#P IsCyclotomicField( <F> )
##
## returns `true' if the field <F> is a *cyclotomic field*, i.e.,
## an abelian number field (see~"IsAbelianNumberField")
## that can be generated by roots of unity.
##
DeclareProperty( "IsCyclotomicField", IsField );
InstallTrueMethod( IsAbelianNumberField, IsCyclotomicField );
InstallIsomorphismMaintenance( IsCyclotomicField,
IsField and IsCyclotomicField, IsField );
#############################################################################
##
#A GaloisStabilizer( <F> )
##
## Let <F> be an abelian number field (see~"IsAbelianNumberField")
## with conductor $n$, say.
## (This means that the $n$-th cyclotomic field is the smallest cyclotomic
## field containing <F>, see~"Conductor".)
## `GaloisStabilizer' returns the set of all those integers $k$ in the range
## from $1$ to $n$ such that the field automorphism induced by raising
## $n$-th roots of unity to the $k$-th power acts trivially on <F>.
##
DeclareAttribute( "GaloisStabilizer", IsAbelianNumberField );
InstallIsomorphismMaintenance( GaloisStabilizer,
IsField and IsAbelianNumberField, IsField );
#############################################################################
##
#V Rationals . . . . . . . . . . . . . . . . . . . . . . field of rationals
#P IsRationals( <obj> )
##
## `Rationals' is the field $\Q$ of rational integers,
## as a set of cyclotomic numbers,
## see Chapter~"Cyclotomic Numbers" for basic operations,
## Functions for the field `Rationals' can be found in the
## chapters~"Fields and Division Rings" and~"Abelian Number Fields".
##
## `IsRationals' returns `true' for a prime field that consists of
## cyclotomic numbers --for example the {\GAP} object `Rationals'--
## and `false' for all other {\GAP} objects.
##
DeclareGlobalVariable( "Rationals", "field of rationals" );
DeclareSynonym( "IsRationals",
IsCyclotomicCollection and IsField and IsPrimeField );
InstallTrueMethod( IsCyclotomicField, IsRationals );
#############################################################################
##
#V GaussianRationals . . . . . . . . . . . . . . field of Gaussian rationals
#C IsGaussianRationals( <obj> )
##
## `GaussianRationals' is the field $\Q_4 = \Q(\sqrt{-1})$
## of Gaussian rationals, as a set of cyclotomic numbers,
## see Chapter~"Cyclotomic Numbers" for basic operations.
## This field can also be obtained as `CF(4)' (see~"CyclotomicField").
##
## The filter `IsGaussianRationals' returns `true' for the {\GAP} object
## `GaussianRationals', and `false' for all other {\GAP} objects.
##
## (For details about the field of rationals, see Chapter~"Rationals".)
##
DeclareGlobalVariable( "GaussianRationals",
"field of Gaussian rationals (identical with CF(4))" );
DeclareCategory( "IsGaussianRationals", IsCyclotomicCollection and IsField );
#T better?
#############################################################################
##
#V CYCLOTOMIC_FIELDS
##
## At position <n>, the <n>-th cyclotomic field is stored.
##
DeclareGlobalVariable( "CYCLOTOMIC_FIELDS",
"list, CYCLOTOMIC_FIELDS[n] = CF(n) if bound" );
InstallFlushableValue( CYCLOTOMIC_FIELDS,
[ Rationals,,, GaussianRationals ] );
#############################################################################
##
#F CyclotomicField( <n> ) . . . . . . . create the <n>-th cyclotomic field
#F CyclotomicField( <gens> )
#F CyclotomicField( <subfield>, <n> )
#F CyclotomicField( <subfield>, <gens> )
##
## The first version creates the <n>-th cyclotomic field $\Q_n$.
## The second version creates the smallest cyclotomic field containing the
## elements in the list <gens>.
## In both cases the field can be generated as an extension of a designated
## subfield <subfield> (cf.~"Integral Bases of Abelian Number Fields").
##
## \indextt{CF}
## `CyclotomicField' can be abbreviated to `CF',
## this form is used also when {\GAP} prints cyclotomic fields.
##
## Fields constructed with the one argument version of `CF' are stored in
## the global list `CYCLOTOMIC_FIELDS',
## so repeated calls of `CF' just fetch these field objects after they have
## been created once.
#T The cache can be flushed by ...
##
DeclareGlobalFunction( "CyclotomicField" );
DeclareSynonym( "CF", CyclotomicField );
#############################################################################
##
#V ABELIAN_NUMBER_FIELDS
##
## At position <n>, those fields with conductor <n> are stored that are not
## cyclotomic fields.
## The list for cyclotomic fields is `CYCLOTOMIC_FIELDS'.
##
DeclareGlobalVariable( "ABELIAN_NUMBER_FIELDS",
"list of lists, at position [1][n] stabilizers, at [2][n] the fields" );
InstallFlushableValue( ABELIAN_NUMBER_FIELDS, [ [], [] ] );
#############################################################################
##
#F AbelianNumberField( <n>, <stab> ) . . . . create an abelian number field
##
## For a positive integer <n> and a list <stab> of prime residues modulo
## <n>, `AbelianNumberField' returns the fixed field of the group described
## by <stab> (cf.~"GaloisStabilizer"), in the <n>-th cyclotomic field.
## `AbelianNumberField' is mainly thought for internal use and for printing
## fields in a standard way;
## `Field' (see~"Field", cf.~also~"Operations for Abelian Number Fields")
## is probably more suitable if one knows generators of the field in
## question.
##
## \indextt{NF}
## `AbelianNumberField' can be abbreviated to `NF',
## this form is used also when {\GAP} prints abelian number fields.
##
## Fields constructed with `NF' are stored in the global list
## `ABELIAN_NUMBER_FIELDS',
## so repeated calls of `NF' just fetch these field objects after they have
## been created once.
#T The cache can be flushed by ...
##
DeclareGlobalFunction( "AbelianNumberField" );
DeclareSynonym( "NF", AbelianNumberField );
DeclareSynonym( "NumberField", AbelianNumberField );
#############################################################################
#2
## Each abelian number field is naturally a vector space over $\Q$.
## Moreover, if the abelian number field $F$ contains the $n$-th cyclotomic
## field $\Q_n$ then $F$ is a vector space over $\Q_n$.
## In {\GAP}, each field object represents a vector space object over a
## certain subfield $S$, which depends on the way $F$ was constructed.
## The subfield $S$ can be accessed as the value of the attribute
## `LeftActingDomain' (see~"LeftActingDomain").
##
## The return values of `NF' (see~"AbelianNumberField") and of the one
## argument versions of `CF' (see~"CyclotomicField") represent vector spaces
## over $\Q$,
## and the return values of the two argument version of `CF' represent
## vector spaces over the field that is given as the first argument.
## For an abelian number field <F> and a subfield <S> of <F>,
## a {\GAP} object representing <F> as a vector space over <S> can be
## constructed using `AsField' (see~"AsField").
##
## \index{cyclotomic fields!CanonicalBasis}
## Let <F> be the cyclotomic field $\Q_n$, represented as a vector space
## over the subfield <S>.
## If <S> is the cyclotomic field $\Q_m$, with $m$ a divisor of $n$,
## then `CanonicalBasis( <F> )' returns the Zumbroich basis of <F> relative
## to <S>, which consists of the roots of unity $`E(<n>)'^i$ where <i> is
## an element of the list `ZumbroichBase( <n>, <m> )' (see~"ZumbroichBase").
## If <S> is an abelian number field that is not a cyclotomic field
## then `CanonicalBasis( <F> )' returns a normal <S>-basis of <F>, i.e.,
## a basis that is closed under the field automorphisms of <F>.
##
## \index{abelian number fields!CanonicalBasis}
## Let <F> be the abelian number field `NF( <n>, <stab> )', with conductor
## <n>, that is itself not a cyclotomic field,
## represented as a vector space over the subfield <S>.
## If <S> is the cyclotomic field $\Q_m$, with $m$ a divisor of $n$,
## then `CanonicalBasis( <F> )' returns the Lenstra basis of <F> relative
## to <S> that consists of the sums of roots of unity described by
## `LenstraBase( <n>, <stab>, <stab>, <m> )' (see~"LenstraBase").
## If <S> is an abelian number field that is not a cyclotomic field
## then `CanonicalBasis( <F> )' returns a normal <S>-basis of <F>.
##
#############################################################################
##
#F ZumbroichBase( <n>, <m> )
##
## Let <n> and <m> be positive integers, such that <m> divides <n>.
## `ZumbroichBase' returns the set of exponents <i> for which `E(<n>)^<i>'
## belongs to the (generalized) Zumbroich basis of the cyclotomic field
## $\Q_n$, viewed as a vector space over $\Q_m$.
##
## This basis is defined as follows.
## Let $P$ denote the set of prime divisors of <n>,
## $<n> = \prod_{p\in P} p^{\nu_p}$, and
## $<m> = \prod_{p\in P} p^{\mu_p}$ with $\mu_p \leq \nu_p$.
## Let $e_n = `E(<n>)'$,
## and $\{ e_{n_1}^j\}_{j\in J} \otimes \{ e_{n_2}^k\}_{k\in K} =
## \{ e_{n_1}^j \cdot e_{n_2}^k\}_{j\in J, k\in K}$.
##
## Then the basis is
## $$
## B_{n,m} = \bigotimes_{p\in P}
## \bigotimes_{k=\mu_p}^{\nu_p-1} \{ e_{p^{k+1}}^j\}_{j\in J_{k,p}}
## {\rm\ \ where\ \ }
## J_{k,p} = \left\{
## \matrix{ \{ 0 \} & ; & k=0, p=2 \cr
## \{ 0, 1 \} & ; & k > 0, p=2 \cr
## \{ 1, \ldots, p-1 \} & ; & k = 0, p\not= 2 \cr
## \{ -\frac{p-1}{2}, \ldots, \frac{p-1}{2} \} & ; &
## k > 0, p\not= 2 \cr
## }
## \right.
## $$
##
## $B_{n,1}$ is equal to the basis of $\Q_n$ over the rationals which is
## introduced in~\cite{Zum89}.
## Also the conversion of arbitrary sums of roots of unity into its
## basis representation, and the reduction to the minimal cyclotomic field
## are described in this thesis.
## (Note that the notation here is slightly different from that there.)
##
## $B_{n,m}$ consists of roots of unity, it is an integral basis
## (that is, exactly the integral elements in $\Q_n$ have integral
## coefficients w.r.t.~$B_{n,m}$, cf.~"IsIntegralCyclotomic"),
## it is a normal basis for squarefree $n$
## and closed under complex conjugation for odd $n$.
##
## *Note:*
## For $<n> \equiv 2 \pmod 4$, we have
## `ZumbroichBase(<n>, 1) = 2 * ZumbroichBase(<n>/2, 1)' and
## `List( ZumbroichBase(<n>, 1), x -> E(<n>)^x ) =
## List( ZumbroichBase(<n>/2, 1), x -> E(<n>/2)^x )'.
##
DeclareGlobalFunction( "ZumbroichBase" );
#############################################################################
##
#F LenstraBase( <n>, <stabilizer>, <super>, <m> )
##
## Let <n> and <m> be positive integers, such that <m> divides <n>,
## <stabilizer> be a list of prime residues modulo <n>, which describes
## a subfield of the <n>-th cyclotomic field (see~"GaloisStabilizer"),
## and <super> be a list representing a supergroup of the group given by
## <stabilizer>.
##
## `LenstraBase' returns a list $[ b_1, b_2, \ldots, b_k ]$ of lists,
## each $b_i$ consisting of integers such that the elements
## $\sum_{j\in b_i} `E(n)'^j$ form a basis of the abelian number field
## `NF( <n>, <stabilizer> )', as a vector space over the <m>-th
## cyclotomic field (see~"AbelianNumberField").
##
## This basis is an integral basis,
## that is, exactly the integral elements in `NF( <n>, <stabilizer> )'
## have integral coefficients.
## (For details about this basis, see~\cite{Bre97}.)
##
## If possible then the result is chosen such that the group described by
## <super> acts on it, consistently with the action of <stabilizer>,
## i.e., each orbit of <super> is a union of orbits of <stabilizer>.
## (A usual case is `<super> = <stabilizer>', so there is no additional
## condition.
##
## *Note:*
## The $b_i$ are in general not sets, since for `<stabilizer> = <super>',
## the first entry is always an element of `ZumbroichBase( <n>, <m> )';
## this property is used by `NF' (see~"AbelianNumberField")
## and `Coefficients' (see~"Integral Bases of Abelian Number Fields").
##
## <stabilizer> must not contain the stabilizer of a proper
## cyclotomic subfield of the <n>-th cyclotomic field,
## i.e., the result must describe a basis for a field with conductor <n>.
##
DeclareGlobalFunction( "LenstraBase" );
#############################################################################
##
#V Cyclotomics . . . . . . . . . . . . . . . . . . domain of all cyclotomics
##
## is the domain of all cyclotomics.
##
DeclareGlobalVariable( "Cyclotomics", "domain of all cyclotomics" );
#############################################################################
##
#F ANFAutomorphism( <F>, <k> ) . . automorphism of an abelian number field
##
## Let <F> be an abelian number field and <k> an integer that is coprime to
## the conductor (see~"Conductor") of <F>.
## Then `ANFAutomorphism' returns the automorphism of <F> that is defined as
## the linear extension of the map that raises each root of unity in <F>
## to its <k>-th power.
##
DeclareGlobalFunction( "ANFAutomorphism" );
#############################################################################
##
#A ExponentOfPowering( <map> )
##
## For a mapping <map> that raises each element of its preimage to the same
## positive power, `ExponentOfPowering' returns the smallest positive number
## $n$ with this property.
##
## Examples of such mappings are Frobenius automorphisms
## (see~"FrobeniusAutomorphism").
##
## The action of a Galois automorphism of an abelian number field is given
## by the $\Q$-linear extension of raising each root of unity to the same
## power $n$, see~"ANFAutomorphism".
## For such a field automorphism, `ExponentOfPowering' returns $n$.
##
DeclareAttribute( "ExponentOfPowering", IsMapping );
#############################################################################
##
#E
|