1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
|
#############################################################################
##
#W fpmon.gd GAP library Isabel Araujo
##
#H @(#)$Id: fpmon.gd,v 4.5 2002/04/15 10:04:40 sal Exp $
##
#Y Copyright (C) 1997, Lehrstuhl D fuer Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St. Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the declarations for finitely presented monoids.
##
Revision.fpmon_gd :=
"@(#)$Id: fpmon.gd,v 4.5 2002/04/15 10:04:40 sal Exp $";
#############################################################################
##
#C IsElementOfFpMonoid(<elm>)
##
## returns true if <elm> is an element of a finitely presented monoid.
##
DeclareCategory( "IsElementOfFpMonoid",
IsMultiplicativeElementWithOne and IsAssociativeElement);
#############################################################################
##
#C IsElementOfFpMonoidCollection(<e>)
##
## Created now so that lists of things in the category IsElementOfFpMonoid
## are given the category CategoryCollections(IsElementOfFpMonoid)
## Otherwise these lists (and other collections) won't create the
## collections category. See CollectionsCategory in the manual.
##
DeclareCategoryCollections("IsElementOfFpMonoid");
#############################################################################
##
#A IsSubmonoidFpMonoid( <t> )
##
## true if <t> is a finitely presented monoid or a
## submonoid of a finitely presented monoid
## (generally speaking, such a semigroup can be constructed
## with `Monoid(<gens>)', where <gens> is a list of elements
## of a finitely presented monoid).
##
## A submonoid of a monoid has the same identity as the monoid.
##
DeclareSynonymAttr( "IsSubmonoidFpMonoid",
IsMonoid and IsElementOfFpMonoidCollection );
#############################################################################
##
#C IsElementOfFpMonoidFamily
##
DeclareCategoryFamily( "IsElementOfFpMonoid" );
#############################################################################
##
#F FactorFreeMonoidByRelations( <f>, <rels> )
##
## <f> is a free monoid and <rels> is a list of
## pairs of elements of <f>. Returns the fp monoid which
## is the quotient of <f> by the least congruence on <f> generated by
## the pairs in <rels>.
##
DeclareGlobalFunction("FactorFreeMonoidByRelations");
#############################################################################
##
#O ElementOfFpMonoid( <fam>, <word> )
##
## If <fam> is the elements family of a finitely presented monoid and <word>
## is a word in the free generators underlying this finitely presented
## monoid, this operation creates the element with the representative <word>
## in the free monoid.
##
DeclareOperation( "ElementOfFpMonoid",
[ IsElementOfFpMonoidFamily, IsAssocWordWithOne ] );
#############################################################################
##
#O FpMonoidOfElementOfFpMonoid( <elm> )
##
## returns the fp monoid to which <elm> belongs to
##
DeclareOperation( "FpMonoidOfElementOfFpMonoid",[IsElementOfFpMonoid]);
#############################################################################
##
#P IsFpMonoid(<m>)
##
## is a synonym for `IsSubmonoidFpMonoid(<m>)' and
## `IsWholeFamily(<m>)' (this is because a submonoid
## of a finitely presented monoid is not necessarily finitely presented).
##
DeclareSynonym( "IsFpMonoid",IsSubmonoidFpMonoid and IsWholeFamily);
#############################################################################
##
#A FreeGeneratorsOfFpMonoid( <m> )
##
## returns the underlying free generators corresponding to the
## generators of the finitely presented monoid <m>.
##
DeclareAttribute("FreeGeneratorsOfFpMonoid", IsFpMonoid);
#############################################################################
##
#A FreeMonoidOfFpMonoid( <m> )
##
## returns the underlying free monoid for the finitely presented
## monoid <m>, ie, the free monoid over which <m> is defined
## as a quotient
## (this is the free monoid generated by the free generators provided
## by `FreeGeneratorsOfFpMonoid(<m>)').
##
DeclareAttribute("FreeMonoidOfFpMonoid", IsFpMonoid);
############################################################################
##
#A RelationsOfFpMonoid(<m>)
##
## returns the relations of the finitely presented monoid <m> as
## pairs of words in the free generators provided by
## `FreeGeneratorsOfFpMonoid(<m>)'.
##
DeclareAttribute("RelationsOfFpMonoid",IsFpMonoid);
############################################################################
##
#A IsomorphismFpMonoid(<m>)
##
## for a monoid <m> returns an isomorphism from <m> to an fp monoid.
##
DeclareAttribute("IsomorphismFpMonoid",IsMonoid);
#############################################################################
##
#E
|