File: fpsemi.gd

package info (click to toggle)
gap 4r4p10-2
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 29,224 kB
  • ctags: 7,084
  • sloc: ansic: 98,591; sh: 3,284; perl: 2,263; makefile: 467; awk: 6
file content (153 lines) | stat: -rw-r--r-- 5,419 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#############################################################################
##
#W  fpsemi.gd           GAP library          Andrew Solomon and Isabel Araujo
##
#H  @(#)$Id: fpsemi.gd,v 4.13 2002/04/15 10:04:40 sal Exp $
##
#Y  Copyright (C)  1997,  Lehrstuhl D fuer Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St.  Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the declarations for finitely 
##  presented semigroups. 
##
Revision.fpsemi_gd :=
    "@(#)$Id: fpsemi.gd,v 4.13 2002/04/15 10:04:40 sal Exp $";


#############################################################################
##
#C  IsElementOfFpSemigroup(<elm>)
##
##	returns true if <elm> is an element of a finitely presented semigroup. 
##
DeclareCategory( "IsElementOfFpSemigroup",
    IsMultiplicativeElement and IsAssociativeElement );

#############################################################################
##
#O  FpSemigroupOfElementOfFpSemigroup( <elm> )
##
##  returns the finitely presented semigroup to which <elm> belongs to
##
DeclareOperation( "FpSemigroupOfElementOfFpSemigroup",
[IsElementOfFpSemigroup]);

#############################################################################
##
#C  IsElementOfFpSemigroupCollection(<e>)
##
##  Created now so that lists of things in the category IsElementOfFpSemigroup
##  are given the category CategoryCollections(IsElementOfFpSemigroup)
##  Otherwise these lists (and other collections) won't create the 
##  collections category. See CollectionsCategory in the manual.
##   
DeclareCategoryCollections("IsElementOfFpSemigroup");

#############################################################################
##
#A  IsSubsemigroupFpSemigroup( <t> )
##  
##	true if <t> is a finitely presented semigroup or a 
##	subsemigroup of a finitely presented semigroup
##	(generally speaking, such a subsemigroup can be constructed
##	with `Semigroup(<gens>)', where <gens> is a list of elements
##	of a finitely presented semigroup).
##
DeclareSynonymAttr( "IsSubsemigroupFpSemigroup", 
	IsSemigroup and IsElementOfFpSemigroupCollection );

#############################################################################
##  
#C  IsElementOfFpSemigroupFamily
##
DeclareCategoryFamily( "IsElementOfFpSemigroup" );

#############################################################################
##
#F  FactorFreeSemigroupByRelations( <f>, <rels> )
##
##  for a free semigroup <f> and <rels> is a list of
##  pairs of elements of <f>. Returns the finitely presented semigroup 
##  which is the quotient of <f> by the least congruence on <f> generated by
##  the pairs in <rels>.
##
DeclareGlobalFunction("FactorFreeSemigroupByRelations");

#############################################################################
##  
#O  ElementOfFpSemigroup( <fam>, <w> )
##  
##  for a family <fam> of elements of a finitely presented semigroup and 
##  a word <w> in the free generators underlying this finitely presented
##  semigroup, this operation creates the element of the finitely 
##  presented semigroup with the representative <w> in the free semigroup.
##
DeclareOperation( "ElementOfFpSemigroup",
    [ IsElementOfFpSemigroupFamily, IsAssocWord ] );

#############################################################################
##
#P  IsFpSemigroup(<s>)
##
##  is a synonym for `IsSubsemigroupFpSemigroup(<s>)' and 
##  `IsWholeFamily(<s>)' (this is because a subsemigroup
##  of a finitely presented semigroup is not necessarily finitely presented).
##
DeclareSynonym( "IsFpSemigroup",IsSubsemigroupFpSemigroup and IsWholeFamily);

#############################################################################
## 
#A  FreeGeneratorsOfFpSemigroup( <s> )
## 
##  returns the underlying free generators corresponding to the 
##	generators of the finitely presented semigroup <s>.  
## 
DeclareAttribute("FreeGeneratorsOfFpSemigroup",  IsFpSemigroup );

#############################################################################
## 
#A  FreeSemigroupOfFpSemigroup( <s> )
## 
##	returns the underlying free semigroup for the finitely presented 
##	semigroup <s>, ie, the free semigroup over which <s> is defined 
##	as a quotient
##	(this is the free semigroup generated by the free generators provided 
##	by `FreeGeneratorsOfFpSemigroup(<s>)').
##
DeclareAttribute("FreeSemigroupOfFpSemigroup", IsFpSemigroup);

############################################################################
##
#A  RelationsOfFpSemigroup(<s>)
##
##  returns the relations of the finitely presented semigroup <s> as
##  pairs of words in the free generators provided by
##  `FreeGeneratorsOfFpSemigroup(<s>)'.
##
##
DeclareAttribute("RelationsOfFpSemigroup",IsFpSemigroup);

############################################################################
##
#A  IsomorphismFpSemigroup( <s> )
##
##  for a semigroup <s> returns an isomorphism from <s> to a 
##  finitely presented semigroup 
##
DeclareAttribute("IsomorphismFpSemigroup",IsSemigroup);

############################################################################
##
#O  FpGrpMonSmgOfFpGrpMonSmgElement( <elm> )
##
##	returns the finitely presented group, monoid or semigroup to which 
##	<elm> belongs
##
DeclareOperation("FpGrpMonSmgOfFpGrpMonSmgElement",[IsMultiplicativeElement]);


#############################################################################
##
#E