File: ghom.gd

package info (click to toggle)
gap 4r4p10-2
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 29,224 kB
  • ctags: 7,084
  • sloc: ansic: 98,591; sh: 3,284; perl: 2,263; makefile: 467; awk: 6
file content (422 lines) | stat: -rw-r--r-- 16,700 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
#############################################################################
##
#W  ghom.gd                     GAP library                     Thomas Breuer
#W                                                           Alexander Hulpke
#W                                                             Heiko Thei"sen
##
#H  @(#)$Id: ghom.gd,v 4.55.4.1 2006/07/25 19:23:20 gap Exp $
##
#Y  Copyright (C)  1997,  Lehrstuhl D fuer Mathematik,  RWTH Aachen, Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St.  Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  1. Functions for creating group general mappings by images
##  2. Functions for creating natural homomorphisms
##  3. Functions for conjugation action
##  4. Functions for ...
##
Revision.ghom_gd :=
    "@(#)$Id: ghom.gd,v 4.55.4.1 2006/07/25 19:23:20 gap Exp $";


#############################################################################
##
##  1. Functions for creating group general mappings by images
##


#############################################################################
##
#O  GroupGeneralMappingByImages( <G>, <H>, <gensG>, <gensH> )
##
##  returns a generalized mapping defined by extending the mapping from
##  <gensG> to <gensH> homomorphically.
##  (`GroupHomomorphismByImages' creates a `GroupGeneralMappingByImages' and
##  tests whether it `IsMapping'.)
DeclareOperation( "GroupGeneralMappingByImages",
    [ IsGroup, IsGroup, IsList, IsList ] );


#############################################################################
##
#F  GroupHomomorphismByImages( <G>, <H>, <gens>, <imgs> )
##
##  `GroupHomomorphismByImages' returns the group homomorphism with
##  source <G> and range <H> that is defined by mapping the list <gens> of
##  generators of <G> to the list <imgs> of images in <H>.
##
##  If <gens> does not generate <G> or if the mapping of the generators does
##  not extend to a homomorphism
##  (i.e., if mapping the generators describes only a multi-valued mapping)
##  then `fail' is returned.
##
##  This test can be quite expensive. If one is certain that the mapping of
##  the generators extends to a homomorphism,
##  one can avoid the checks by calling `GroupHomomorphismByImagesNC'.
##  (There also is the possibility to
##  construct potentially multi-valued mappings with
##  `GroupGeneralMappingByImages' and to test with `IsMapping' that
##  they are indeed homomorphisms.)
##
DeclareGlobalFunction( "GroupHomomorphismByImages" );


#############################################################################
##
#O  GroupHomomorphismByImagesNC( <G>, <H>, <gensG>, <gensH> )
##
##  `GroupHomomorphismByImagesNC' creates a homomorphism as
##  `GroupHomomorphismByImages' does, however it does not test whether
##  <gens> generates <G> and that the mapping of
##  <gens> to <imgs> indeed defines a group homomorphism.
##  Because these tests can be expensive it can be substantially faster than
##  `GroupHomomorphismByImages'.
##  Results are unpredictable if the conditions do not hold.
##
##  (For creating a possibly multi-valued mapping from <G> to <H> that
##  respects multiplication and inverses,
##  `GroupGeneralMappingByImages' can be used.)
##
#T If we could guarantee that it does not matter whether we construct the
#T homomorphism directly or whether we construct first a general mapping
#T and ask it for  being a homomorphism,
#T then this operation would be obsolete,
#T and `GroupHomomorphismByImages' would be allowed to return the general
#T mapping itself after the checks.
#T (See also the declarations of `AlgebraHomomorphismByImagesNC',
#T `AlgebraWithOneHomomorphismByImagesNC',
#T `LeftModuleHomomorphismByImagesNC'.)
##
DeclareOperation( "GroupHomomorphismByImagesNC",
    [ IsGroup, IsGroup, IsList, IsList ] );


#############################################################################
##
#R  IsGroupGeneralMappingByImages(<map>)
##
##  Representation for mappings from one group to another that are defined
##  by extending a mapping of group generators homomorphically.
##  Instead of record components, the attribute `MappingGeneratorImages' is
##  used to store generators and their images.
DeclareRepresentation( "IsGroupGeneralMappingByImages",
      IsGroupGeneralMapping and IsSPGeneralMapping and IsAttributeStoringRep,
      [] );

#############################################################################
##
#R  IsPreimagesByAsGroupGeneralMappingByImages(<map>)
##
##  Representation for mappings that delegate work for preimages to a
##  GroupHomomorphismByImages.
DeclareRepresentation( "IsPreimagesByAsGroupGeneralMappingByImages",
      IsGroupGeneralMapping and IsSPGeneralMapping and IsAttributeStoringRep,
      [  ] );

#############################################################################
##
#R  IsGroupGeneralMappingByAsGroupGeneralMappingByImages(<map>)
##
##  Representation for mappings that delegate work on a
##  `GroupHomomorphismByImages'.
DeclareRepresentation( "IsGroupGeneralMappingByAsGroupGeneralMappingByImages",
      IsPreimagesByAsGroupGeneralMappingByImages, [  ] );

#############################################################################
##
#A   AsGroupGeneralMappingByImages(<map>)
##
##   If <map> is a mapping from one group to another this attribute returns
##   a group general mapping that which implements the same abstract
##   mapping. (Some operations can be performed more effective in this
##   representation, see
##   also~"IsGroupGeneralMappingByAsGroupGeneralMappingByImages".)
DeclareAttribute( "AsGroupGeneralMappingByImages", IsGroupGeneralMapping );

#############################################################################
##
#A  MappingOfWhichItIsAsGGMBI(<map>)
##
##  If <map> is `AsGroupGeneralMappingByImages(<map2>)' then
##  <map2> is `MappingOfWhichItIsAsGGMBI(<map>)'. This attribute is used to
##  transfer attribute values which were set later.
DeclareAttribute( "MappingOfWhichItIsAsGGMBI", IsGroupGeneralMapping );

InstallAttributeMethodByGroupGeneralMappingByImages :=
  function( attr, value_filter )
    InstallMethod( attr, "via `AsGroupGeneralMappingByImages'", true,
            [ IsGroupGeneralMappingByAsGroupGeneralMappingByImages ], 0,
            hom -> attr( AsGroupGeneralMappingByImages( hom ) ) );
    InstallMethod( attr, "get delayed set attribute values", true,
            [ HasMappingOfWhichItIsAsGGMBI ],
	    SUM_FLAGS-1, # we want to do this before doing any calculations
	    function(hom)
              hom:=MappingOfWhichItIsAsGGMBI( hom );
	      if Tester(attr)(hom) then
	        return attr(hom);
	      else
	        TryNextMethod();
	      fi;
	    end);
end;


#############################################################################
##
##  2. Functions for creating natural homomorphisms
##


#############################################################################
##
#F  NaturalHomomorphismByNormalSubgroup( <G>, <N> )
#F  NaturalHomomorphismByNormalSubgroupNC( <G>, <N> )
##
##  returns a homomorphism from <G> to another group whose kernel is <N>.
##  {\GAP} will try to select the image group as to make computations in it
##  as efficient as possible. As the factor group $<G>/<N>$ can be identified
##  with the image of <G> this permits efficient computations in the factor
##  group. The homomorphism returned is not necessarily surjective, so
##  `ImagesSource' should be used instead of `Range' to get a group
##  isomorphic to the factor group.
##  The `NC' variant does not check whether <N> is normal in <G>.
##
InParentFOA( "NaturalHomomorphismByNormalSubgroupNC", IsGroup, IsGroup,
             DeclareAttribute );

DeclareSynonym( "NaturalHomomorphismByNormalSubgroupInParent",
    NaturalHomomorphismByNormalSubgroupNCInParent );
DeclareSynonym( "NaturalHomomorphismByNormalSubgroupOp",
    NaturalHomomorphismByNormalSubgroupNCOp );
#T Get rid of this hack when the ``in parent'' approach is cleaned!

BindGlobal( "NaturalHomomorphismByNormalSubgroupNCOrig",
    NaturalHomomorphismByNormalSubgroupNC );
#T Get rid of this hack when the ``in parent'' approach is cleaned!

MakeReadWriteGlobal( "NaturalHomomorphismByNormalSubgroupNC" );
UnbindGlobal( "NaturalHomomorphismByNormalSubgroupNC" );
BindGlobal( "NaturalHomomorphismByNormalSubgroupNC",
    function( G, N )
    local hom;
    hom:= NaturalHomomorphismByNormalSubgroupNCOrig( G, N );
    SetIsMapping( hom, true );
    return hom;
    end );
#T Get rid of this hack when the ``in parent'' approach is cleaned!

DeclareGlobalFunction( "NaturalHomomorphismByNormalSubgroup" );


#############################################################################
##
##  3. Functions for conjugation action
##


#############################################################################
##
#O  ConjugatorIsomorphism( <G>, <g> )
##
##  Let <G> be a group, and <g> an element in the same family as the elements
##  of <G>.
##  `ConjugatorIsomorphism' returns the isomorphism from <G> to `<G>^<g>'
##  defined by $<h> \mapsto <h>^{<g>}$ for all $<h> \in <G>$.
##
##  If <g> normalizes <G> then `ConjugatorIsomorphism' does the same as
##  `ConjugatorAutomorphismNC' (see~"ConjugatorAutomorphism").
##
DeclareOperation( "ConjugatorIsomorphism",
    [ IsGroup, IsMultiplicativeElementWithInverse ] );


#############################################################################
##
#F  ConjugatorAutomorphism( <G>, <g> )
#O  ConjugatorAutomorphismNC( <G>, <g> )
##
##  Let <G> be a group, and <g> an element in the same family as the elements
##  of <G> such that <g> normalizes <G>.
##  `ConjugatorAutomorphism' returns the automorphism of <G>
##  defined by $<h> \mapsto <h>^{<g>}$ for all $<h> \in <G>$.
##
##  If conjugation by <g> does *not* leave <G> invariant,
##  `ConjugatorAutomorphism' returns `fail';
##  in this case,
##  the isomorphism from <G> to `<G>^<g>' induced by conjugation with <g>
##  can be constructed
##  with `ConjugatorIsomorphism' (see~"ConjugatorIsomorphism").
##
##  `ConjugatorAutomorphismNC' does the same as `ConjugatorAutomorphism',
##  except that the check is omitted whether <g> normalizes <G> and it is
##  assumed that <g> is chosen to be in <G> if possible.
##
DeclareGlobalFunction( "ConjugatorAutomorphism" );

DeclareOperation( "ConjugatorAutomorphismNC",
    [ IsGroup, IsMultiplicativeElementWithInverse ] );


#############################################################################
##
#F  InnerAutomorphism( <G>, <g> )
#O  InnerAutomorphismNC( <G>, <g> )
##
##  Let <G> be a group, and $<g> \in <G>$.
##  `InnerAutomorphism' returns the automorphism of <G>
##  defined by $<h> \mapsto <h>^{<g>}$ for all $<h> \in <G>$.
##
##  If <g> is *not* an element of <G>,
##  `InnerAutomorphism' returns `fail';
##  in this case,
##  the isomorphism from <G> to `<G>^<g>' induced by conjugation with <g>
##  can be constructed
##  with `ConjugatorIsomorphism' (see~"ConjugatorIsomorphism")
##  or with `ConjugatorAutomorphism' (see~"ConjugatorAutomorphism").
##
##  `InnerAutomorphismNC' does the same as `InnerAutomorphism',
##  except that the check is omitted whether $<g> \in <G>$.
##
DeclareGlobalFunction( "InnerAutomorphism" );

DeclareOperation( "InnerAutomorphismNC",
    [ IsGroup, IsMultiplicativeElementWithInverse ] );


#############################################################################
##
#P  IsConjugatorIsomorphism( <hom> )
#P  IsConjugatorAutomorphism( <hom> )
#P  IsInnerAutomorphism( <hom> )
##
##  Let <hom> be a group general mapping (see~"IsGroupGeneralMapping")
##  with source $G$, say.
##  `IsConjugatorIsomorphism' returns `true' if <hom> is induced by
##  conjugation of $G$ by an element $g$ that lies in $G$ or in a group into
##  which $G$ is naturally embedded in the sense described below,
##  and `false' otherwise.
##  Natural embeddings are dealt with in the case that $G$ is
##  a permutation group (see Chapter~"Permutation Groups"),
##  a matrix group (see Chapter~"Matrix Groups"),
##  a finitely presented group (see Chapter~"Finitely Presented Groups"), or
##  a group given w.r.t.~a polycyclic presentation (see Chapter~"Pc Groups").
##  In all other cases, `IsConjugatorIsomorphism' may return `false'
##  if <hom> is induced by conjugation but is not an inner automorphism.
##
##  If `IsConjugatorIsomorphism' returns `true' for <hom> then
##  an element $g$ that induces <hom> can be accessed as value of
##  the attribute `ConjugatorOfConjugatorIsomorphism'
##  (see~"ConjugatorOfConjugatorIsomorphism").
##
##  `IsConjugatorAutomorphism' returns `true' if <hom> is an automorphism
##  (see~"IsEndoGeneralMapping") that is regarded as a conjugator isomorphism
##  by `IsConjugatorIsomorphism', and `false' otherwise.
##
##  `IsInnerAutomorphism' returns `true' if <hom> is a conjugator
##  automorphism such that an element $g$ inducing <hom> can be chosen in
##  $G$, and `false' otherwise.
##
DeclareProperty( "IsConjugatorIsomorphism", IsGroupGeneralMapping );

DeclareSynonymAttr( "IsConjugatorAutomorphism",
    IsEndoGeneralMapping and IsConjugatorIsomorphism );

DeclareProperty( "IsInnerAutomorphism", IsGroupGeneralMapping );

InstallTrueMethod( IsBijective, IsConjugatorIsomorphism );
InstallTrueMethod( IsGroupHomomorphism, IsConjugatorIsomorphism );
InstallTrueMethod( IsConjugatorAutomorphism, IsInnerAutomorphism );


#############################################################################
##
#A  ConjugatorOfConjugatorIsomorphism( <hom> )
##
##  For a conjugator isomorphism <hom> (see~"ConjugatorIsomorphism"),
##  `ConjugatorOfConjugatorIsomorphism' returns an element $g$ such that
##  mapping under <hom> is induced by conjugation with $g$.
##
##  To avoid problems with `IsInnerAutomorphism',
##  it is guaranteed that the conjugator is taken from the source of <hom>
##  if possible.
##
DeclareAttribute( "ConjugatorOfConjugatorIsomorphism",
    IsConjugatorIsomorphism );

##  just for compatibility with {\GAP}~4.1 ...
DeclareSynonymAttr( "ConjugatorInnerAutomorphism",
    ConjugatorOfConjugatorIsomorphism );


#############################################################################
##
##  4. Functions for ...
##


DeclareGlobalFunction( "MakeMapping" );


#############################################################################
##
#F  GroupHomomorphismByFunction( <S>, <R>, <fun> )
#F  GroupHomomorphismByFunction( <S>, <R>, <fun>, <invfun> )
#F  GroupHomomorphismByFunction( <S>, <R>, <fun>, `false', <prefun> )
##
##  `GroupHomomorphismByFunction' returns a group homomorphism <hom> with
##  source <S> and range <R>, such that each element <s> of <S> is mapped to
##  the element `<fun>( <s> )', where <fun> is a {\GAP} function.
##
##  If the argument <invfun> is bound then <hom> is a bijection between <S>
##  and <R>, and the preimage of each element <r> of <R> is given by
##  `<invfun>( <r> )', where <invfun> is a {\GAP}  function.
##
##  In the third variant, a function <prefun> is given that can be used to
##  compute a single preimage. In this case, the third entry must be
##  `false'.
##
##  No test is performed on whether the functions actually give an
##  homomorphism between both groups because this would require testing the
##  full multiplication table.
##
##  `GroupHomomorphismByFunction' creates a mapping which
##  `IsSPGeneralMapping'.
##
DeclareGlobalFunction("GroupHomomorphismByFunction");

#############################################################################
##
#F  ImagesRepresentativeGMBIByElementsList( <hom>, <elm> )
##
##  This is the method for `ImagesRepresentative' which calls `MakeMapping'
##  and uses element lists to evaluate the image. It is used by
##  `Factorization'.
DeclareGlobalFunction("ImagesRepresentativeGMBIByElementsList");

#############################################################################
##
#A   ImagesSmallestGenerators(<map>)
##
##   returns the list of images of `GeneratorsSmallest(Source(<map>))'. This
##   list can be used to compare group homomorphisms.  (The standard
##   comparison is to compare the image lists on the set of elements of the
##   source. If however x and y have the same images under a and b,
##   certainly all their products have. Therefore it is sufficient to test
##   this on the images of the smallest generators.)
DeclareAttribute( "ImagesSmallestGenerators",
    IsGroupGeneralMapping );


#############################################################################
##
#A  RegularActionHomomorphism( <G> )
##
##  returns an isomorphism from <G> onto the regular permutation
##  representation of <G>.
DeclareAttribute( "RegularActionHomomorphism", IsGroup );


#############################################################################
##
#E