1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
|
#############################################################################
##
#W ghom.gd GAP library Thomas Breuer
#W Alexander Hulpke
#W Heiko Thei"sen
##
#H @(#)$Id: ghom.gd,v 4.55.4.1 2006/07/25 19:23:20 gap Exp $
##
#Y Copyright (C) 1997, Lehrstuhl D fuer Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St. Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## 1. Functions for creating group general mappings by images
## 2. Functions for creating natural homomorphisms
## 3. Functions for conjugation action
## 4. Functions for ...
##
Revision.ghom_gd :=
"@(#)$Id: ghom.gd,v 4.55.4.1 2006/07/25 19:23:20 gap Exp $";
#############################################################################
##
## 1. Functions for creating group general mappings by images
##
#############################################################################
##
#O GroupGeneralMappingByImages( <G>, <H>, <gensG>, <gensH> )
##
## returns a generalized mapping defined by extending the mapping from
## <gensG> to <gensH> homomorphically.
## (`GroupHomomorphismByImages' creates a `GroupGeneralMappingByImages' and
## tests whether it `IsMapping'.)
DeclareOperation( "GroupGeneralMappingByImages",
[ IsGroup, IsGroup, IsList, IsList ] );
#############################################################################
##
#F GroupHomomorphismByImages( <G>, <H>, <gens>, <imgs> )
##
## `GroupHomomorphismByImages' returns the group homomorphism with
## source <G> and range <H> that is defined by mapping the list <gens> of
## generators of <G> to the list <imgs> of images in <H>.
##
## If <gens> does not generate <G> or if the mapping of the generators does
## not extend to a homomorphism
## (i.e., if mapping the generators describes only a multi-valued mapping)
## then `fail' is returned.
##
## This test can be quite expensive. If one is certain that the mapping of
## the generators extends to a homomorphism,
## one can avoid the checks by calling `GroupHomomorphismByImagesNC'.
## (There also is the possibility to
## construct potentially multi-valued mappings with
## `GroupGeneralMappingByImages' and to test with `IsMapping' that
## they are indeed homomorphisms.)
##
DeclareGlobalFunction( "GroupHomomorphismByImages" );
#############################################################################
##
#O GroupHomomorphismByImagesNC( <G>, <H>, <gensG>, <gensH> )
##
## `GroupHomomorphismByImagesNC' creates a homomorphism as
## `GroupHomomorphismByImages' does, however it does not test whether
## <gens> generates <G> and that the mapping of
## <gens> to <imgs> indeed defines a group homomorphism.
## Because these tests can be expensive it can be substantially faster than
## `GroupHomomorphismByImages'.
## Results are unpredictable if the conditions do not hold.
##
## (For creating a possibly multi-valued mapping from <G> to <H> that
## respects multiplication and inverses,
## `GroupGeneralMappingByImages' can be used.)
##
#T If we could guarantee that it does not matter whether we construct the
#T homomorphism directly or whether we construct first a general mapping
#T and ask it for being a homomorphism,
#T then this operation would be obsolete,
#T and `GroupHomomorphismByImages' would be allowed to return the general
#T mapping itself after the checks.
#T (See also the declarations of `AlgebraHomomorphismByImagesNC',
#T `AlgebraWithOneHomomorphismByImagesNC',
#T `LeftModuleHomomorphismByImagesNC'.)
##
DeclareOperation( "GroupHomomorphismByImagesNC",
[ IsGroup, IsGroup, IsList, IsList ] );
#############################################################################
##
#R IsGroupGeneralMappingByImages(<map>)
##
## Representation for mappings from one group to another that are defined
## by extending a mapping of group generators homomorphically.
## Instead of record components, the attribute `MappingGeneratorImages' is
## used to store generators and their images.
DeclareRepresentation( "IsGroupGeneralMappingByImages",
IsGroupGeneralMapping and IsSPGeneralMapping and IsAttributeStoringRep,
[] );
#############################################################################
##
#R IsPreimagesByAsGroupGeneralMappingByImages(<map>)
##
## Representation for mappings that delegate work for preimages to a
## GroupHomomorphismByImages.
DeclareRepresentation( "IsPreimagesByAsGroupGeneralMappingByImages",
IsGroupGeneralMapping and IsSPGeneralMapping and IsAttributeStoringRep,
[ ] );
#############################################################################
##
#R IsGroupGeneralMappingByAsGroupGeneralMappingByImages(<map>)
##
## Representation for mappings that delegate work on a
## `GroupHomomorphismByImages'.
DeclareRepresentation( "IsGroupGeneralMappingByAsGroupGeneralMappingByImages",
IsPreimagesByAsGroupGeneralMappingByImages, [ ] );
#############################################################################
##
#A AsGroupGeneralMappingByImages(<map>)
##
## If <map> is a mapping from one group to another this attribute returns
## a group general mapping that which implements the same abstract
## mapping. (Some operations can be performed more effective in this
## representation, see
## also~"IsGroupGeneralMappingByAsGroupGeneralMappingByImages".)
DeclareAttribute( "AsGroupGeneralMappingByImages", IsGroupGeneralMapping );
#############################################################################
##
#A MappingOfWhichItIsAsGGMBI(<map>)
##
## If <map> is `AsGroupGeneralMappingByImages(<map2>)' then
## <map2> is `MappingOfWhichItIsAsGGMBI(<map>)'. This attribute is used to
## transfer attribute values which were set later.
DeclareAttribute( "MappingOfWhichItIsAsGGMBI", IsGroupGeneralMapping );
InstallAttributeMethodByGroupGeneralMappingByImages :=
function( attr, value_filter )
InstallMethod( attr, "via `AsGroupGeneralMappingByImages'", true,
[ IsGroupGeneralMappingByAsGroupGeneralMappingByImages ], 0,
hom -> attr( AsGroupGeneralMappingByImages( hom ) ) );
InstallMethod( attr, "get delayed set attribute values", true,
[ HasMappingOfWhichItIsAsGGMBI ],
SUM_FLAGS-1, # we want to do this before doing any calculations
function(hom)
hom:=MappingOfWhichItIsAsGGMBI( hom );
if Tester(attr)(hom) then
return attr(hom);
else
TryNextMethod();
fi;
end);
end;
#############################################################################
##
## 2. Functions for creating natural homomorphisms
##
#############################################################################
##
#F NaturalHomomorphismByNormalSubgroup( <G>, <N> )
#F NaturalHomomorphismByNormalSubgroupNC( <G>, <N> )
##
## returns a homomorphism from <G> to another group whose kernel is <N>.
## {\GAP} will try to select the image group as to make computations in it
## as efficient as possible. As the factor group $<G>/<N>$ can be identified
## with the image of <G> this permits efficient computations in the factor
## group. The homomorphism returned is not necessarily surjective, so
## `ImagesSource' should be used instead of `Range' to get a group
## isomorphic to the factor group.
## The `NC' variant does not check whether <N> is normal in <G>.
##
InParentFOA( "NaturalHomomorphismByNormalSubgroupNC", IsGroup, IsGroup,
DeclareAttribute );
DeclareSynonym( "NaturalHomomorphismByNormalSubgroupInParent",
NaturalHomomorphismByNormalSubgroupNCInParent );
DeclareSynonym( "NaturalHomomorphismByNormalSubgroupOp",
NaturalHomomorphismByNormalSubgroupNCOp );
#T Get rid of this hack when the ``in parent'' approach is cleaned!
BindGlobal( "NaturalHomomorphismByNormalSubgroupNCOrig",
NaturalHomomorphismByNormalSubgroupNC );
#T Get rid of this hack when the ``in parent'' approach is cleaned!
MakeReadWriteGlobal( "NaturalHomomorphismByNormalSubgroupNC" );
UnbindGlobal( "NaturalHomomorphismByNormalSubgroupNC" );
BindGlobal( "NaturalHomomorphismByNormalSubgroupNC",
function( G, N )
local hom;
hom:= NaturalHomomorphismByNormalSubgroupNCOrig( G, N );
SetIsMapping( hom, true );
return hom;
end );
#T Get rid of this hack when the ``in parent'' approach is cleaned!
DeclareGlobalFunction( "NaturalHomomorphismByNormalSubgroup" );
#############################################################################
##
## 3. Functions for conjugation action
##
#############################################################################
##
#O ConjugatorIsomorphism( <G>, <g> )
##
## Let <G> be a group, and <g> an element in the same family as the elements
## of <G>.
## `ConjugatorIsomorphism' returns the isomorphism from <G> to `<G>^<g>'
## defined by $<h> \mapsto <h>^{<g>}$ for all $<h> \in <G>$.
##
## If <g> normalizes <G> then `ConjugatorIsomorphism' does the same as
## `ConjugatorAutomorphismNC' (see~"ConjugatorAutomorphism").
##
DeclareOperation( "ConjugatorIsomorphism",
[ IsGroup, IsMultiplicativeElementWithInverse ] );
#############################################################################
##
#F ConjugatorAutomorphism( <G>, <g> )
#O ConjugatorAutomorphismNC( <G>, <g> )
##
## Let <G> be a group, and <g> an element in the same family as the elements
## of <G> such that <g> normalizes <G>.
## `ConjugatorAutomorphism' returns the automorphism of <G>
## defined by $<h> \mapsto <h>^{<g>}$ for all $<h> \in <G>$.
##
## If conjugation by <g> does *not* leave <G> invariant,
## `ConjugatorAutomorphism' returns `fail';
## in this case,
## the isomorphism from <G> to `<G>^<g>' induced by conjugation with <g>
## can be constructed
## with `ConjugatorIsomorphism' (see~"ConjugatorIsomorphism").
##
## `ConjugatorAutomorphismNC' does the same as `ConjugatorAutomorphism',
## except that the check is omitted whether <g> normalizes <G> and it is
## assumed that <g> is chosen to be in <G> if possible.
##
DeclareGlobalFunction( "ConjugatorAutomorphism" );
DeclareOperation( "ConjugatorAutomorphismNC",
[ IsGroup, IsMultiplicativeElementWithInverse ] );
#############################################################################
##
#F InnerAutomorphism( <G>, <g> )
#O InnerAutomorphismNC( <G>, <g> )
##
## Let <G> be a group, and $<g> \in <G>$.
## `InnerAutomorphism' returns the automorphism of <G>
## defined by $<h> \mapsto <h>^{<g>}$ for all $<h> \in <G>$.
##
## If <g> is *not* an element of <G>,
## `InnerAutomorphism' returns `fail';
## in this case,
## the isomorphism from <G> to `<G>^<g>' induced by conjugation with <g>
## can be constructed
## with `ConjugatorIsomorphism' (see~"ConjugatorIsomorphism")
## or with `ConjugatorAutomorphism' (see~"ConjugatorAutomorphism").
##
## `InnerAutomorphismNC' does the same as `InnerAutomorphism',
## except that the check is omitted whether $<g> \in <G>$.
##
DeclareGlobalFunction( "InnerAutomorphism" );
DeclareOperation( "InnerAutomorphismNC",
[ IsGroup, IsMultiplicativeElementWithInverse ] );
#############################################################################
##
#P IsConjugatorIsomorphism( <hom> )
#P IsConjugatorAutomorphism( <hom> )
#P IsInnerAutomorphism( <hom> )
##
## Let <hom> be a group general mapping (see~"IsGroupGeneralMapping")
## with source $G$, say.
## `IsConjugatorIsomorphism' returns `true' if <hom> is induced by
## conjugation of $G$ by an element $g$ that lies in $G$ or in a group into
## which $G$ is naturally embedded in the sense described below,
## and `false' otherwise.
## Natural embeddings are dealt with in the case that $G$ is
## a permutation group (see Chapter~"Permutation Groups"),
## a matrix group (see Chapter~"Matrix Groups"),
## a finitely presented group (see Chapter~"Finitely Presented Groups"), or
## a group given w.r.t.~a polycyclic presentation (see Chapter~"Pc Groups").
## In all other cases, `IsConjugatorIsomorphism' may return `false'
## if <hom> is induced by conjugation but is not an inner automorphism.
##
## If `IsConjugatorIsomorphism' returns `true' for <hom> then
## an element $g$ that induces <hom> can be accessed as value of
## the attribute `ConjugatorOfConjugatorIsomorphism'
## (see~"ConjugatorOfConjugatorIsomorphism").
##
## `IsConjugatorAutomorphism' returns `true' if <hom> is an automorphism
## (see~"IsEndoGeneralMapping") that is regarded as a conjugator isomorphism
## by `IsConjugatorIsomorphism', and `false' otherwise.
##
## `IsInnerAutomorphism' returns `true' if <hom> is a conjugator
## automorphism such that an element $g$ inducing <hom> can be chosen in
## $G$, and `false' otherwise.
##
DeclareProperty( "IsConjugatorIsomorphism", IsGroupGeneralMapping );
DeclareSynonymAttr( "IsConjugatorAutomorphism",
IsEndoGeneralMapping and IsConjugatorIsomorphism );
DeclareProperty( "IsInnerAutomorphism", IsGroupGeneralMapping );
InstallTrueMethod( IsBijective, IsConjugatorIsomorphism );
InstallTrueMethod( IsGroupHomomorphism, IsConjugatorIsomorphism );
InstallTrueMethod( IsConjugatorAutomorphism, IsInnerAutomorphism );
#############################################################################
##
#A ConjugatorOfConjugatorIsomorphism( <hom> )
##
## For a conjugator isomorphism <hom> (see~"ConjugatorIsomorphism"),
## `ConjugatorOfConjugatorIsomorphism' returns an element $g$ such that
## mapping under <hom> is induced by conjugation with $g$.
##
## To avoid problems with `IsInnerAutomorphism',
## it is guaranteed that the conjugator is taken from the source of <hom>
## if possible.
##
DeclareAttribute( "ConjugatorOfConjugatorIsomorphism",
IsConjugatorIsomorphism );
## just for compatibility with {\GAP}~4.1 ...
DeclareSynonymAttr( "ConjugatorInnerAutomorphism",
ConjugatorOfConjugatorIsomorphism );
#############################################################################
##
## 4. Functions for ...
##
DeclareGlobalFunction( "MakeMapping" );
#############################################################################
##
#F GroupHomomorphismByFunction( <S>, <R>, <fun> )
#F GroupHomomorphismByFunction( <S>, <R>, <fun>, <invfun> )
#F GroupHomomorphismByFunction( <S>, <R>, <fun>, `false', <prefun> )
##
## `GroupHomomorphismByFunction' returns a group homomorphism <hom> with
## source <S> and range <R>, such that each element <s> of <S> is mapped to
## the element `<fun>( <s> )', where <fun> is a {\GAP} function.
##
## If the argument <invfun> is bound then <hom> is a bijection between <S>
## and <R>, and the preimage of each element <r> of <R> is given by
## `<invfun>( <r> )', where <invfun> is a {\GAP} function.
##
## In the third variant, a function <prefun> is given that can be used to
## compute a single preimage. In this case, the third entry must be
## `false'.
##
## No test is performed on whether the functions actually give an
## homomorphism between both groups because this would require testing the
## full multiplication table.
##
## `GroupHomomorphismByFunction' creates a mapping which
## `IsSPGeneralMapping'.
##
DeclareGlobalFunction("GroupHomomorphismByFunction");
#############################################################################
##
#F ImagesRepresentativeGMBIByElementsList( <hom>, <elm> )
##
## This is the method for `ImagesRepresentative' which calls `MakeMapping'
## and uses element lists to evaluate the image. It is used by
## `Factorization'.
DeclareGlobalFunction("ImagesRepresentativeGMBIByElementsList");
#############################################################################
##
#A ImagesSmallestGenerators(<map>)
##
## returns the list of images of `GeneratorsSmallest(Source(<map>))'. This
## list can be used to compare group homomorphisms. (The standard
## comparison is to compare the image lists on the set of elements of the
## source. If however x and y have the same images under a and b,
## certainly all their products have. Therefore it is sufficient to test
## this on the images of the smallest generators.)
DeclareAttribute( "ImagesSmallestGenerators",
IsGroupGeneralMapping );
#############################################################################
##
#A RegularActionHomomorphism( <G> )
##
## returns an isomorphism from <G> onto the regular permutation
## representation of <G>.
DeclareAttribute( "RegularActionHomomorphism", IsGroup );
#############################################################################
##
#E
|