File: gprd.gd

package info (click to toggle)
gap 4r4p10-2
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 29,224 kB
  • ctags: 7,084
  • sloc: ansic: 98,591; sh: 3,284; perl: 2,263; makefile: 467; awk: 6
file content (219 lines) | stat: -rw-r--r-- 8,544 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
#############################################################################
##
#W  gprd.gd                     GAP library                    Heiko Thei"sen
##
#H  @(#)$Id: gprd.gd,v 4.29.2.4 2005/12/23 14:28:01 gap Exp $
##
#Y  Copyright (C)  1997,  Lehrstuhl D fuer Mathematik,  RWTH Aachen, Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St.  Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
Revision.gprd_gd :=
    "@(#)$Id: gprd.gd,v 4.29.2.4 2005/12/23 14:28:01 gap Exp $";


#############################################################################
##
#F  DirectProduct( <G>{, <H>} )
#O  DirectProductOp( <list>, <expl> )
##
##  These functions construct the direct product of the groups given as
##  arguments.
##  `DirectProduct' takes an arbitrary positive number of arguments
##  and calls the operation `DirectProductOp', which takes exactly two
##  arguments, namely a nonempty list of groups and one of these groups.
##  (This somewhat strange syntax allows the method selection to choose
##  a reasonable method for special cases, e.g., if all groups are
##  permutation groups or pc groups.)
##
DeclareGlobalFunction( "DirectProduct" );
DeclareOperation( "DirectProductOp", [ IsList, IsGroup ] );

#############################################################################
##
#F  PcgsDirectProduct( ( <D>, <pcgsop>, <indsop>, <filter> )
##
##  constructs a new pcgs from pcgses of the components of D, setting 
##  the necessary indices for the new pcgs and sets the property
##  specified by filter.
##
DeclareGlobalFunction( "PcgsDirectProduct" );

#############################################################################
##
#O  SubdirectProduct(<G> ,<H>, <Ghom>, <Hhom> )
##
##  constructs the subdirect product of <G> and <H> with respect to the
##  epimorphisms <Ghom> from <G> onto a group <A> and <Hhom> from <H> onto
##  the same group <A>.
DeclareGlobalFunction("SubdirectProduct");
DeclareOperation( "SubdirectProductOp",
    [ IsGroup, IsGroup, IsGroupHomomorphism, IsGroupHomomorphism ] );

#############################################################################
##
#F  SubdirectDiagonalPerms(<l>,<m>)
##
##  Let <l> and <m> be lists of permutations that are the images of the same
##  generating set <gens>. This function returns permutations for the images
##  of <gens> under the subdirect product of the homomorphisms.
DeclareGlobalFunction("SubdirectDiagonalPerms");

#############################################################################
##
#O  SemidirectProduct(<G>, <alpha>, <N> )
#O  SemidirectProduct(<autgp>, <N> )
##
##  constructs the semidirect product of <N> with <G> acting via <alpha>.
##  <alpha> must be a homomorphism from <G> into a group of automorphisms of
##  <N>.
##
##  If <N> is a group, <alpha> must be a homomorphism from <G> into a group
##  of automorphisms of <N>.
##
##  If <N> is a full row space over a field <F>, <alpha> must be a
##  homomorphism from <G> into a matrix group of the right dimension over a
##  subfield of <F>, or into a permutation group (in this case permutation
##  matrices are taken).
##
##  In the second variant, <autgp> must be a group of automorphism of <N>,
##  it is a shorthand for
##  `SemidirectProduct(<autgp>,IdentityMapping(<autgp>),<N>)'. Note that
##  (unless <autgrp> has been obtained by the operation `AutomorphismGroup')
##  you have to test `IsGroupOfAutomorphisms(<autgrp>)' to ensure that {\GAP}
##  knows that <autgrp> consists of group automorphisms.
DeclareOperation( "SemidirectProduct",
    [ IsGroup, IsGroupHomomorphism, IsObject ] );


#############################################################################
##
#O  WreathProduct(<G>, <P> )
#O  WreathProduct(<G>, <H> [,<hom>] )
##
##  constructs the wreath product of the group <G> with the permutation
##  group <P> (acting on its `MovedPoints').
##
##  The second usage constructs the
##  wreath product of the group <G> with the image of the group <H> under
##  <hom> where <hom> must be a homomorphism from <H> into a permutation
##  group. (If <hom> is not given, and <P> is not a permutation group the
##  result of `IsomorphismPermGroup(P)'  -- whose degree may be dependent on
##  the method and thus is not well-defined! -- is taken for <hom>).
DeclareOperation( "WreathProduct", [ IsObject, IsObject ] );

#############################################################################
##
#F  WreathProductImprimitiveAction(<G>, <H> )
##
##  for two permutation groups <G> and <H> this function constructs the
##  wreath product of <G> and <H> in the imprimitive action. If <G> acts on
##  $l$ points and <H> on $m$ points this action will be on $l\cdot m$
##  points, it will be imprimitive with $m$ blocks of size $l$ each.
##
##  The operations `Embedding' and `Projection' operate on this product as
##  described for general wreath products.
DeclareGlobalFunction( "WreathProductImprimitiveAction" );

#############################################################################
##
#F  WreathProductProductAction(<G>, <H> )
##
##  for two permutation groups <G> and <H> this function constructs the
##  wreath product in product action.  If <G> acts on $l$ points and <H> on
##  $m$ points this action will be on $l^m$ points.
##
##  The operations `Embedding' and `Projection' operate on this product as
##  described for general wreath products.
DeclareGlobalFunction( "WreathProductProductAction" );

#############################################################################
##
#F  SubdirectProducts( <G>, <H> )
##
##  this function computes all subdirect products of <G> and <H> up to 
##  conjugacy in Parent(<G>) x Parent(<H>). The subdirect products are
##  returned as subgroups of this direct product.
DeclareGlobalFunction( "InnerSubdirectProducts" );
DeclareGlobalFunction( "InnerSubdirectProducts2" );
DeclareGlobalFunction( "SubdirectProducts" );

#############################################################################
##
#F  FreeProduct( <G> \{, <H>\} )
#F  FreeProduct( list )
##
##  constructs a finitely presented group which is the free product of 
##  the groups given as arguments. If the group arguments are not finitely
##  presented groups, then `IsomorphismFpGroup' must be defined for them.
##  
##  The operation `Embedding' operates on this product.
##
DeclareGlobalFunction("FreeProduct");
DeclareOperation( "FreeProductOp", [ IsList, IsGroup ] );

#############################################################################
##
#A  DirectProductInfo( <G> )
##
DeclareAttribute( "DirectProductInfo", IsGroup, "mutable" );

#############################################################################
##
#A  SubdirectProductInfo( <G> )
##
DeclareAttribute( "SubdirectProductInfo", IsGroup, "mutable" );

#############################################################################
##
#A  SemidirectProductInfo( <G> )
##
DeclareAttribute( "SemidirectProductInfo", IsGroup, "mutable" );

#############################################################################
##
#A  WreathProductInfo( <G> )
##
DeclareAttribute( "WreathProductInfo", IsGroup, "mutable" );

#############################################################################
##
#A  FreeProductInfo( <G> )
##
DeclareAttribute( "FreeProductInfo", IsGroup, "mutable" );

#############################################################################
##
#F  SubdirProdPcGroups( <G>,<gi>,<H>,<hi> )
##
##  Let <G> and <H> be two pc groups which are both projections of a
##  subdirect product with generator images <gi> and <hi>. the function
##  returns a list <l> with <l>[1] a new pc group and <l>[2] a corresponding
##  generator images list.
##
##  No parameter checking is done.
##  (This function is used in a variant of the SQ.)
DeclareGlobalFunction( "SubdirProdPcGroups" );

#############################################################################
##
#C  IsWreathProductElement
#C  IsWreathProductElementCollection
##
##  categories for elements of generic wreath products: elements are stored
##  as list of base components and permutation.
DeclareCategory("IsWreathProductElement",
  IsMultiplicativeElementWithInverse and IsAssociativeElement);
DeclareCategoryCollections("IsWreathProductElement");

InstallTrueMethod(IsGeneratorsOfMagmaWithInverses,
  IsWreathProductElementCollection);

DeclareRepresentation("IsWreathProductElementDefaultRep",
  IsWreathProductElement and IsPositionalObjectRep,[]);


#############################################################################
##
#E