1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
|
#############################################################################
##
#W groebner.gd GAP Library Alexander Hulpke
##
#H @(#)$Id: groebner.gd,v 4.1.2.2 2006/03/28 16:34:44 gap Exp $
##
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the declarations for monomial orderings and Groebner
## bases.
Revision.groebner_gd :=
"@(#)$Id: groebner.gd,v 4.1.2.2 2006/03/28 16:34:44 gap Exp $";
#############################################################################
##
#P IsPolynomialRingIdeal(<I>)
##
## A polynomial ring ideal is a (two sided) ideal in a (commutative)
## polynomial ring.
DeclareSynonym("IsPolynomialRingIdeal",
IsRing and IsRationalFunctionCollection and HasLeftActingRingOfIdeal
and HasRightActingRingOfIdeal);
#############################################################################
##
#V InfoGroebner
##
## This info class gives information about Groebner basis calculations.
DeclareInfoClass("InfoGroebner");
#############################################################################
##
#C IsMonomialOrdering(<obj>)
##
## A monomial ordering is an object representing a monomial ordering. Its
## attributes `MonomialComparisonFunction' and
## `MonomialExtrepComparisonFun' are actual comparison functions.
DeclareCategory("IsMonomialOrdering",IsObject);
#############################################################################
##
#R IsMonomialOrderingDefaultRep
##
DeclareRepresentation("IsMonomialOrderingDefaultRep",
IsAttributeStoringRep and IsPositionalObjectRep and IsMonomialOrdering,[]);
BindGlobal("MonomialOrderingsFamily",
NewFamily("MonomialOrderingsFamily",IsMonomialOrdering,IsMonomialOrdering));
#############################################################################
##
#A MonomialComparisonFunction(<O>)
##
## If <O> is an object representing a monomial ordering, this attribute
## returns a *function* that can be used to compare or sort monomials (and
## polynomials which will be compared by their monomials in decreasing
## order) in this order.
DeclareAttribute("MonomialComparisonFunction",IsMonomialOrdering);
#############################################################################
##
#A MonomialExtrepComparisonFun(<O>)
##
## If <O> is an object representing a monomial ordering, this attribute
## returns a *function* that can be used to compare or sort monomials *in
## their external representation* (as lists). This comparison variant is
## used inside algorithms that manipulate the external representation.
DeclareAttribute("MonomialExtrepComparisonFun",IsObject);
#############################################################################
##
#A OccuringVariableIndices(<O>)
#A OccuringVariableIndices(<P>)
##
## If <O> is an object representing a monomial ordering, this attribute
## returns either a list of variable indices for which this ordering is
## defined, or `true' in case it is defined for all variables.
##
## If <P> is a polynomial, it returns the indices of all variables occuring
## in it.
DeclareAttribute("OccuringVariableIndices",IsMonomialOrdering);
#############################################################################
##
#F LeadingMonomialOfPolynomial(<pol>,<ord>)
##
## returns the leading monomial (with respect to the ordering <ord>)
## of the polynomial <pol>.
##
DeclareOperation("LeadingMonomialOfPolynomial",
[IsPolynomialFunction,IsMonomialOrdering]);
#############################################################################
##
#O LeadingCoefficientOfPolynomial( <pol>,<ord> )
##
## returns the leading coefficient (that is the coefficient of the leading
## monomial, see~"LeadingMonomialOfPolynomial") of the polynomial <pol>.
##
DeclareOperation("LeadingCoefficientOfPolynomial",
[IsPolynomialFunction,IsMonomialOrdering]);
#############################################################################
##
#F LeadingTermOfPolynomial(<pol>,<ord>)
##
## returns the leading term (with respect to the ordering <ord>)
## of the polynomial <pol>, i.e. the product of leading coefficient and
## leading monomial.
##
DeclareOperation("LeadingTermOfPolynomial",
[IsPolynomialFunction,IsMonomialOrdering]);
#############################################################################
##
#F MonomialLexOrdering()
#F MonomialLexOrdering(<vari>)
##
## This function creates a lexicographic ordering for monomials. Monomials
## are compared first by the exponents of the largest variable, then the
## exponents of the second largest variable and so on.
##
## The variables are ordered according to their (internal) index, i.e. $x_1$
## is larger than $x_2$ and so on.
## If <vari> is given, and is a list of variables or variable indices,
## instead this arrangement of variables (in descending order; i.e. the
## first variable is larger than the second) is
## used as the underlying order of variables.
DeclareGlobalFunction("MonomialLexOrdering");
#############################################################################
##
#F MonomialGrlexOrdering()
#F MonomialGrlexOrdering(<vari>)
##
## This function creates a degree/lexicographic ordering. In this oredring
## monomials are compared first by their total degree, then lexicographically
## (see `MonomialLexOrdering').
##
## The variables are ordered according to their (internal) index, i.e. $x_1$
## is larger than $x_2$ and so on.
## If <vari> is given, and is a list of variables or variable indices,
## instead this arrangement of variables (in descending order; i.e. the
## first variable is larger than the second) is
## used as the underlying order of variables.
DeclareGlobalFunction("MonomialGrlexOrdering");
#############################################################################
##
#F MonomialGrevlexOrdering()
#F MonomialGrevlexOrdering(<vari>)
##
## This function creates a ``grevlex'' ordering. In this ordering monomials
## are compared first by total degree and then backwards lexicographically.
## (This is different than ``grlex'' ordering with variables reversed.)
##
## The variables are ordered according to their (internal) index, i.e. $x_1$
## is larger than $x_2$ and so on.
## If <vari> is given, and is a list of variables or variable indices,
## instead this arrangement of variables (in descending order; i.e. the
## first variable is larger than the second) is
## used as the underlying order of variables.
DeclareGlobalFunction("MonomialGrevlexOrdering");
#############################################################################
##
#F EliminationOrdering(<elim>)
#F EliminationOrdering(<elim>,<rest>)
##
## This function creates an elimination ordering for eliminating the
## variables in <elim>. Two monomials are compared first by the exponent
## vectors for the variables listed in <elim> (a lexicographic comparison
## with respect to the ordering indicated in <elim>).
## If these submonomial are equal, the submonomials given by the other
## variables are compared by a graded lexicographic ordering (with respect
## to the variable order given in <rest>, if called with two parameters).
##
## Both <elim> and <rest> may be a list of variables of a list of variable
## indices.
DeclareGlobalFunction("EliminationOrdering");
#############################################################################
##
#F PolynomialDivisionAlgorithm(<poly>,<gens>,<order>)
##
## This function implements the division algorithm for multivariate
## polynomials as given in theorem~3 in chapter~2 of \cite{coxlittleoshea}.
## (It might be slower than `PolynomialReduction' but the remainders are
## guaranteed to agree with the textbook.)
##
## The operation returns a list of length two, the first entry is the
## remainder after the reduction. The second entry is a list of quotients
## corresponding to <gens>.
DeclareGlobalFunction("PolynomialDivisionAlgorithm");
#############################################################################
##
#F PolynomialReduction(<poly>,<gens>,<order>)
##
## reduces the polynomial <poly> by the ideal generated by the polynomials
## in <gens>, using the order <order> of monomials. Unless <gens> is a
## Gr{\accent127 o}bner basis the result is not guaranteed to be unique.
##
## The operation returns a list of length two, the first entry is the
## remainder after the reduction. The second entry is a list of quotients
## corresponding to <gens>.
##
## Note that the strategy used by `PolynomialReduction' differs from the
## standard textbook reduction algorithm, which is provided by
## `PolynomialDivisionAlgorithm'.
DeclareGlobalFunction("PolynomialReduction");
#############################################################################
##
#F PolynomialReducedRemainder(<poly>,<gens>,<order>)
##
## thios operation does the same way as `PolynomialReduction'
## (see~"PolynomialReduction") but does not keep track of the actual quotients
## and returns only the remainder (it is therfore slightly faster).
DeclareGlobalFunction("PolynomialReducedRemainder");
#############################################################################
##
#O GroebnerBasis(<L>,<O>)
#O GroebnerBasis(<I>,<O>)
#O GroebnerBasisNC(<L>,<O>)
##
## Let <O> be a monomial ordering and <L> be a list of polynomials that
## generate an ideal <I>. This operation returns a Groebner basis of
## <I> with respect to the ordering <O>.\\
##
## `GroebnerBasisNC' works like `GroebnerBasis' with the only distinction
## that the first argument has to be a list of polynomials and that no test is
## performed to check whether the ordering is defined for all occuring
## variables.
##
## Note that {\GAP} at the moment only includes
## a na{\"\i}ve implementation of Buchberger's algorithm (which is mainly
## intended as a teaching tool). It might not be
## sufficient for serious problems.
DeclareOperation("GroebnerBasis",
[IsHomogeneousList and IsRationalFunctionCollection,IsMonomialOrdering]);
DeclareOperation("GroebnerBasis",[IsPolynomialRingIdeal,IsMonomialOrdering]);
DeclareGlobalFunction("GroebnerBasisNC");
#############################################################################
##
#O ReducedGroebnerBasis(<L>,<O>)
#O ReducedGroebnerBasis(<I>,<O>)
##
## a Groebner basis <B> (see~"GroebnerBasis") is *reduced* if no monomial
## in a polynomial in <B> is divisible by the leading monomial of another
## polynomial in <B>. This operation computes a Groebner basis with respect
## to <O> and then reduces it.
DeclareOperation("ReducedGroebnerBasis",
[IsHomogeneousList and IsRationalFunctionCollection,IsMonomialOrdering]);
DeclareOperation("ReducedGroebnerBasis",
[IsPolynomialRingIdeal,IsMonomialOrdering]);
#############################################################################
##
#A StoredGroebnerBasis(<I>)
##
## For an ideal <I> in a polynomial ring, this attribute holds a list
## [<B>,<O>] where <B> is a Groebner basis for the monomial ordering <O>.
## this can be used to test membership or canonical coset representatives.
DeclareAttribute("StoredGroebnerBasis",IsPolynomialRingIdeal);
|