File: grpffmat.gd

package info (click to toggle)
gap 4r4p10-2
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 29,224 kB
  • ctags: 7,084
  • sloc: ansic: 98,591; sh: 3,284; perl: 2,263; makefile: 467; awk: 6
file content (123 lines) | stat: -rw-r--r-- 4,985 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
#############################################################################
##
#W  grpffmat.gd                 GAP Library                      Frank Celler
##
#H  @(#)$Id: grpffmat.gd,v 4.18 2002/04/15 10:04:44 sal Exp $
##
#Y  Copyright (C)  1996,  Lehrstuhl D fuer Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St.  Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the operations for matrix groups over finite fields.
##
Revision.grpffmat_gd :=
    "@(#)$Id: grpffmat.gd,v 4.18 2002/04/15 10:04:44 sal Exp $";


#############################################################################
##
#C  IsFFEMatrixGroup
##
DeclareSynonym( "IsFFEMatrixGroup", IsFFECollCollColl and IsMatrixGroup );


#############################################################################
##
#M  IsFinite( <ffe-mat-grp> )
##
##  *Note:*  The following implication only holds  if  there are no  infinite
##  dimensional matrices.
##
InstallTrueMethod( IsFinite,
    IsFFEMatrixGroup and IsFinitelyGeneratedGroup );


#############################################################################
##
#F  NicomorphismOfFFEMatrixGroup
##
DeclareGlobalFunction( "NicomorphismOfFFEMatrixGroup" );


#############################################################################
##
#F  ProjectiveActionOnFullSpace( <G>, <F>, <n> )
##
##  Let <G> be a group of <n> by <n> matrices over a field contained in the
##  finite field <F>.
#T why is <n> an argument?
#T (it should be read off from the group!)
##  `ProjectiveActionOnFullSpace' returns the image of the projective action
##  of <G> on the full row space $<F>^<n>$.
##
DeclareGlobalFunction( "ProjectiveActionOnFullSpace" );


#############################################################################
##
#F  ConjugacyClassesOfNaturalGroup 
##
DeclareGlobalFunction( "ConjugacyClassesOfNaturalGroup" );


#############################################################################
##
#F  Phi2( <n> ) . . . . . . . . . . . .  Modification of Euler's Phi function
##
##  This is needed for the computation of the class numbers of SL(n,q),
##  PSL(n,q), SU(n,q) and PSU(n,q)
##
DeclareGlobalFunction("Phi2");

#############################################################################
##
#F  NrConjugacyClassesGL( <n>, <q> ) . . . . . . . . Class number for GL(n,q)
#F  NrConjugacyClassesGU( <n>, <q> ) . . . . . . . . Class number for GU(n,q)
#F  NrConjugacyClassesSL( <n>, <q> ) . . . . . . . . Class number for SL(n,q)
#F  NrConjugacyClassesSU( <n>, <q> ) . . . . . . . . Class number for SU(n,q)
#F  NrConjugacyClassesPGL( <n>, <q> ) . . . . . . .  Class number for PGL(n,q)
#F  NrConjugacyClassesPGU( <n>, <q> ) . . . . . . .  Class number for PGU(n,q)
#F  NrConjugacyClassesPSL( <n>, <q> ) . . . . . . .  Class number for PSL(n,q)
#F  NrConjugacyClassesPSU( <n>, <q> ) . . . . . . .  Class number for PSU(n,q)
#F  NrConjugacyClassesSLIsogeneous( <n>, <q>, <f> ) . . for SL(n,q) isogeneous
#F  NrConjugacyClassesSUIsogeneous( <n>, <q>, <f> ) . . for SU(n,q) isogeneous
##
##  The first of  these functions compute for given $<n>  \in N$ and prime
##  power $<q>$  the number of  conjugacy classes in the  classical groups
##  $GL( <n>, <q>  )$, $GU( <n>, <q>  )$, $SL( <n>, <q> )$,  $SU( <n>, <q>
##  )$, $PGL(  <n>, <q> )$,  $PGU( <n>, <q> )$,  $PSL( <n>, <q>  )$, $PSL(
##  <n>, <q> )$, respectively. (See also "ConjugacyClasses!attribute"  and
##  Section~"Classical Groups".)
##  
##  For  each  divisor  $<f>$ of  $<n>$  there  is  a  group of  Lie  type
##  with  the same  order  as $SL(  <n>,  <q> )$,  such  that its  derived
##  subgroup  modulo  its center  is  isomorphic  to  $PSL( <n>,  <q>  )$.
##  The  various  such  groups  with  fixed $<n>$  and  $<q>$  are  called
##  *isogeneous*. (Depending  on congruence conditions on  $<q>$ and $<n>$
##  several of  these groups  may actually  be isomorphic.)  The  function
##  `NrConjugacyClassesSLIsogeneous'  computes  the  number  of  conjugacy
##  classes in this group. The extreme cases  $<f> = 1$ and $<f> = n$ lead
##  to the groups $SL( <n>, <q> )$ and $PGL( <n>, <q> )$, respectively.
## 
##  The function `NrConjugacyClassesSUIsogeneous' is the analogous one for
##  the corresponding unitary groups.
##  
##  The  formulae   for  the  number   of  conjugacy  classes   are  taken
##  from~\cite{Mac81}.
##  
DeclareGlobalFunction("NrConjugacyClassesGL");
DeclareGlobalFunction("NrConjugacyClassesGU");
DeclareGlobalFunction("NrConjugacyClassesSL");
DeclareGlobalFunction("NrConjugacyClassesSU");
DeclareGlobalFunction("NrConjugacyClassesPGL");
DeclareGlobalFunction("NrConjugacyClassesPGU");
DeclareGlobalFunction("NrConjugacyClassesPSL");
DeclareGlobalFunction("NrConjugacyClassesPSU");
DeclareGlobalFunction("NrConjugacyClassesSLIsogeneous");
DeclareGlobalFunction("NrConjugacyClassesSUIsogeneous");


#############################################################################
##
#E